To see the other types of publications on this topic, follow the link: Maximum principle.

Journal articles on the topic 'Maximum principle'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Maximum principle.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Štecha, Jan, and Jan Rathouský. "Stochastic maximum principle." IFAC Proceedings Volumes 44, no. 1 (January 2011): 4714–20. http://dx.doi.org/10.3182/20110828-6-it-1002.01501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yazhe, Chen. "Aleksandrov maximum principle and bony maximum principle for parabolic equations." Acta Mathematicae Applicatae Sinica 2, no. 4 (December 1985): 309–20. http://dx.doi.org/10.1007/bf01665846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ivochkina, Nina. "On the maximum principle for principal curvatures." Banach Center Publications 33, no. 1 (1996): 115–26. http://dx.doi.org/10.4064/-33-1-115-126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dmitruk, A. V., and A. M. Kaganovich. "The Hybrid Maximum Principle is a consequence of Pontryagin Maximum Principle." Systems & Control Letters 57, no. 11 (November 2008): 964–70. http://dx.doi.org/10.1016/j.sysconle.2008.05.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dufour, Francois, and Boris Miller. "SINGULAR STOCHASTIC MAXIMUM PRINCIPLE." IFAC Proceedings Volumes 38, no. 1 (2005): 29–34. http://dx.doi.org/10.3182/20050703-6-cz-1902.00865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Chunjie. "On Korenblum’s maximum principle." Proceedings of the American Mathematical Society 134, no. 7 (January 5, 2006): 2061–66. http://dx.doi.org/10.1090/s0002-9939-06-08311-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

LEDZEWICZ, URSZULA, and HEINZ SCHÄTTLER. "AN EXTENDED MAXIMUM PRINCIPLE." Nonlinear Analysis: Theory, Methods & Applications 29, no. 2 (July 1997): 159–83. http://dx.doi.org/10.1016/s0362-546x(96)00038-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Parr, Robert G., and Pratim K. Chattaraj. "Principle of maximum hardness." Journal of the American Chemical Society 113, no. 5 (February 1991): 1854–55. http://dx.doi.org/10.1021/ja00005a072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lugovtsov, B. A. "Principle of maximum discharge." Journal of Applied Mechanics and Technical Physics 32, no. 4 (1992): 563–64. http://dx.doi.org/10.1007/bf00851561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schwick, Wilhelm. "On Korenblum’s maximum principle." Proceedings of the American Mathematical Society 125, no. 9 (1997): 2581–87. http://dx.doi.org/10.1090/s0002-9939-97-03247-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Eschenburg, J. H. "Maximum principle for hypersurfaces." Manuscripta Mathematica 64, no. 1 (March 1989): 55–75. http://dx.doi.org/10.1007/bf01182085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Pshenichnyi, B. N., and P. I. Ginailo. "Generalized discrete maximum principle." Ukrainian Mathematical Journal 37, no. 6 (1986): 630–33. http://dx.doi.org/10.1007/bf01057434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Dreyer, Wolfgang, and Matthias Kunik. "Maximum entropy principle revisited." Continuum Mechanics and Thermodynamics 10, no. 6 (December 1, 1998): 331–47. http://dx.doi.org/10.1007/s001610050097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Mohammed, Ahmed, and Antonio Vitolo. "On the strong maximum principle." Complex Variables and Elliptic Equations 65, no. 8 (April 4, 2019): 1299–314. http://dx.doi.org/10.1080/17476933.2019.1594207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Pinchover, Yehuda. "Book Review: The maximum principle." Bulletin of the American Mathematical Society 46, no. 3 (March 16, 2009): 499–504. http://dx.doi.org/10.1090/s0273-0979-09-01246-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kesavan, H. K., and J. N. Kapur. "The generalized maximum entropy principle." IEEE Transactions on Systems, Man, and Cybernetics 19, no. 5 (1989): 1042–52. http://dx.doi.org/10.1109/21.44019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Agrachev, A. A., and R. V. Gamkrelidze. "The geometry of maximum principle." Proceedings of the Steklov Institute of Mathematics 273, no. 1 (July 2011): 1–22. http://dx.doi.org/10.1134/s0081543811040018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Cellina, Arrigo. "On the strong maximum principle." Proceedings of the American Mathematical Society 130, no. 2 (May 23, 2001): 413–18. http://dx.doi.org/10.1090/s0002-9939-01-06104-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Wang, Shaojun, Dale Schuurmans, and Yunxin Zhao. "The Latent Maximum Entropy Principle." ACM Transactions on Knowledge Discovery from Data 6, no. 2 (July 2012): 1–42. http://dx.doi.org/10.1145/2297456.2297460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Pearson, Ralph G. "Principle of Maximum Physical Hardness." Journal of Physical Chemistry 98, no. 7 (February 1994): 1989–92. http://dx.doi.org/10.1021/j100058a044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Pearson, Ralph G. "The principle of maximum hardness." Accounts of Chemical Research 26, no. 5 (May 1993): 250–55. http://dx.doi.org/10.1021/ar00029a004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Guiasu, Silviu, and Abe Shenitzer. "The principle of maximum entropy." Mathematical Intelligencer 7, no. 1 (March 1985): 42–48. http://dx.doi.org/10.1007/bf03023004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Barbero-Liñán, M., and M. C. Muñoz-Lecanda. "Presymplectic high order maximum principle." Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 106, no. 1 (March 22, 2011): 97–110. http://dx.doi.org/10.1007/s13398-011-0022-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Pucci, Patrizia, and James Serrin. "The strong maximum principle revisited." Journal of Differential Equations 196, no. 1 (January 2004): 1–66. http://dx.doi.org/10.1016/j.jde.2003.05.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Mariconda, C., and G. Treu. "Gradient Maximum Principle for Minima." Journal of Optimization Theory and Applications 112, no. 1 (January 2002): 167–86. http://dx.doi.org/10.1023/a:1013052830852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Whittle, P. "A risk-sensitive maximum principle." Systems & Control Letters 15, no. 3 (September 1990): 183–92. http://dx.doi.org/10.1016/0167-6911(90)90110-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Da̧browski, Mariusz P., and H. Gohar. "Abolishing the maximum tension principle." Physics Letters B 748 (September 2015): 428–31. http://dx.doi.org/10.1016/j.physletb.2015.07.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bongini, Mattia, Massimo Fornasier, Francesco Rossi, and Francesco Solombrino. "Mean-Field Pontryagin Maximum Principle." Journal of Optimization Theory and Applications 175, no. 1 (August 10, 2017): 1–38. http://dx.doi.org/10.1007/s10957-017-1149-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Carozza, Menita, Luca Esposito, Raffaella Giova, and Francesco Leonetti. "Polyconvex functionals and maximum principle." Mathematics in Engineering 5, no. 4 (2023): 1–10. http://dx.doi.org/10.3934/mine.2023077.

Full text
Abstract:
<abstract><p>Let us consider continuous minimizers $ u : \bar \Omega \subset \mathbb{R}^n \to \mathbb{R}^n $ of</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \mathcal{F}(v) = \int_{\Omega} [|Dv|^p \, + \, |{\rm det}\,Dv|^r] dx, $\end{document} </tex-math></disp-formula></p> <p>with $ p &gt; 1 $ and $ r &gt; 0 $; then it is known that every component $ u^\alpha $ of $ u = (u^1, ..., u^n) $ enjoys maximum principle: the set of interior points $ x $, for which the value $ u^\alpha(x) $ is greater than the supremum on the boundary, has null measure, that is, $ \mathcal{L}^n(\{ x \in \Omega: u^\alpha (x) &gt; \sup_{\partial \Omega} u^\alpha \}) = 0 $. If we change the structure of the functional, it might happen that the maximum principle fails, as in the case</p> <p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \mathcal{F}(v) = \int_{\Omega}[\max\{(|Dv|^p - 1); 0 \} \, + \, |{\rm det}\,Dv|^r] dx, $\end{document} </tex-math></disp-formula></p> <p>with $ p &gt; 1 $ and $ r &gt; 0 $. Indeed, for a suitable boundary value, the set of the interior points $ x $, for which the value $ u^\alpha(x) $ is greater than the supremum on the boundary, has a positive measure, that is $ \mathcal{L}^n(\{ x \in \Omega: u^\alpha (x) &gt; \sup_{\partial \Omega} u^\alpha \}) &gt; 0 $. In this paper we show that the measure of the image of these bad points is zero, that is $ \mathcal{L}^n(u(\{ x \in \Omega: u^\alpha (x) &gt; \sup_{\partial \Omega} u^\alpha \})) = 0 $, provided $ p &gt; n $. This is a particular case of a more general theorem.</p></abstract>
APA, Harvard, Vancouver, ISO, and other styles
30

Meyer, J. C., and D. J. Needham. "Extended weak maximum principles for parabolic partial differential inequalities on unbounded domains." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2167 (July 8, 2014): 20140079. http://dx.doi.org/10.1098/rspa.2014.0079.

Full text
Abstract:
In this paper, we establish extended maximum principles for solutions to linear parabolic partial differential inequalities on unbounded domains, where the solutions satisfy a variety of growth/decay conditions on the unbounded domain. We establish a conditional maximum principle, which states that a solution u to a linear parabolic partial differential inequality satisfies a maximum principle whenever a suitable weight function can be exhibited. Our extended maximum principles are then established by exhibiting suitable weight functions and applying the conditional maximum principle. In addition, we include several specific examples, to highlight the importance of certain generic conditions, which are required in the statements of maximum principles of this type. Furthermore, we demonstrate how to obtain associated comparison theorems from our extended maximum principles.
APA, Harvard, Vancouver, ISO, and other styles
31

NEDOSHOVENKO, Andrii. "Synthesis of maximum economy, efficiency and proportionality as principles of public procurement execution." Economics. Finances. Law 5/3, no. - (May 30, 2022): 25–30. http://dx.doi.org/10.37634/efp.2022.5(3).6.

Full text
Abstract:
The principles of maximum economy, efficiency and proportionality belong to the institutional principles, as they determine the guiding ideas and principles of public procurement. Certain issues related to the principle of maximum economy, efficiency and proportionality were researched in the publications of N. Zdyrko, K. Chuchalina, T.O. Mulik, V.O. Psota et al. Nevertheless, existing publications are mostly devoted to the disclosure of the concept of maximum economy, efficiency and proportionality principles without coverage relationship among these principles. The purpose of this study is to reveal the problematic issues of maximum economy, efficiency and proportionality correlation as requirements which are set out in a separate principle of public procurement. The content and importance of maximum economy, efficiency and proportionality as principles of public procurement are analyzed within the article. The importance of this principle and its superiority among other principles of public procurement are substantiated. The contradictory aspects of the relationship between maximum economy and efficiency are highlighted in the paper, and the feasibility and possibility of their harmonization and comparison are justified. Practical aspects of maximum economy and efficiency execution in public procurement are revealed. The functional significance and place of proportionality in relation to the maximum economy and efficiency are covered. The author reaches a conclusion that principle of economy should not be opposed to the principle of efficiency because these principles do not contradict each other. Differences in subjects, objects and other conditions of procurement contracts demands a differentiated approach to the analysis of efficiency and maximum economy in public procurement.
APA, Harvard, Vancouver, ISO, and other styles
32

Berestycki, Henri, Italo Capuzzo Dolcetta, Alessio Porretta, and Luca Rossi. "Maximum Principle and generalized principal eigenvalue for degenerate elliptic operators." Journal de Mathématiques Pures et Appliquées 103, no. 5 (May 2015): 1276–93. http://dx.doi.org/10.1016/j.matpur.2014.10.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Antón, I., and J. López-Gómez. "Principal eigenvalue and maximum principle for cooperative periodic–parabolic systems." Nonlinear Analysis 178 (January 2019): 152–89. http://dx.doi.org/10.1016/j.na.2018.07.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Stehlík, Petr, and Jonáš Volek. "Maximum Principles for Discrete and Semidiscrete Reaction-Diffusion Equation." Discrete Dynamics in Nature and Society 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/791304.

Full text
Abstract:
We study reaction-diffusion equations with a general reaction functionfon one-dimensional lattices with continuous or discrete timeux′ (or Δtux)=k(ux-1-2ux+ux+1)+f(ux),x∈Z. We prove weak and strong maximum and minimum principles for corresponding initial-boundary value problems. Whereas the maximum principles in the semidiscrete case (continuous time) exhibit similar features to those of fully continuous reaction-diffusion model, in the discrete case the weak maximum principle holds for a smaller class of functions and the strong maximum principle is valid in a weaker sense. We describe in detail how the validity of maximum principles depends on the nonlinearity and the time step. We illustrate our results on the Nagumo equation with the bistable nonlinearity.
APA, Harvard, Vancouver, ISO, and other styles
35

Zemliak, Alexander. "Circuit Optimization Study According to the Maximum Principle." WSEAS TRANSACTIONS ON COMPUTERS 20 (December 9, 2021): 362–71. http://dx.doi.org/10.37394/23205.2021.20.38.

Full text
Abstract:
The minimization of the processor time of designing can be formulated as a problem of time minimization for transitional process of dynamic system. A special control vector that changes the internal structure of the equations of optimization procedure serves as a principal tool for searching the best strategies with the minimal CPU time. In this case a well-known maximum principle of Pontryagin is the best theoretical approach for finding of the optimum structure of control vector. Practical approach for realization of the maximum principle is based on the analysis of behavior of a Hamiltonian for various strategies of optimization. The possibility of applying the maximum principle to the problem of optimization of electronic circuits is analyzed. It is shown that in spite of the fact that the problem of optimization is formulated as a nonlinear task, and the maximum principle in this case isn't a sufficient condition for obtaining a minimum of the functional, it is possible to obtain the decision in the form of local minima. The relative acceleration of the CPU time for the best strategy found by means of maximum principle compared with the traditional approach is equal two to three orders of magnitude.
APA, Harvard, Vancouver, ISO, and other styles
36

Fattorini, H. "The maximum principle in infinite dimension." Discrete and Continuous Dynamical Systems 6, no. 3 (April 2000): 557–74. http://dx.doi.org/10.3934/dcds.2000.6.557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Darooneh, Amir. "Utility Function from Maximum Entropy Principle." Entropy 8, no. 1 (January 31, 2006): 18–24. http://dx.doi.org/10.3390/e8010018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Golubkin, Valerii Nikolaevich, and Grigorii Borisovich Sizykh. "MAXIMUM PRINCIPLE FOR THE BERNOULLI FUNCTION." TsAGI Science Journal 46, no. 5 (2015): 485–90. http://dx.doi.org/10.1615/tsagiscij.v46.i5.50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Artstein, Zvi. "Pontryagin Maximum Principle Revisited with Feedbacks." European Journal of Control 17, no. 1 (January 2011): 46–54. http://dx.doi.org/10.3166/ejc.17.46-54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Avakov, E., and G. Magaril-Ilyayev. "Generalized Maximum Principle in Optimal Control." Доклады академии наук 483, no. 3 (November 2018): 237–40. http://dx.doi.org/10.31857/s086956520003235-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ganguly, Siddhartha, Souvik Das, Debasish Chatterjee, and Ravi Banavar. "Rate Constrained Discrete-time Maximum Principle." IFAC-PapersOnLine 54, no. 19 (2021): 346–51. http://dx.doi.org/10.1016/j.ifacol.2021.11.101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

PETROVICI, M. A., C. DAMIAN, and D. COLTUC. "Maximum Entropy Principle in Image Restoration." Advances in Electrical and Computer Engineering 18, no. 2 (2018): 77–84. http://dx.doi.org/10.4316/aece.2018.02010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kipka, Robert, and Rohit Gupta. "The Discrete-Time Geometric Maximum Principle." SIAM Journal on Control and Optimization 57, no. 4 (January 2019): 2939–61. http://dx.doi.org/10.1137/16m1101489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Roupas, Zacharias. "Gravitational potential from maximum entropy principle." Classical and Quantum Gravity 37, no. 9 (April 14, 2020): 097001. http://dx.doi.org/10.1088/1361-6382/ab8144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lim, A. E. B., and Xun Yu Zhou. "A new risk-sensitive maximum principle." IEEE Transactions on Automatic Control 50, no. 7 (July 2005): 958–66. http://dx.doi.org/10.1109/tac.2005.851441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Gedalin, M. "Maximum entropy principle for anisotropic plasma." Physics of Fluids B: Plasma Physics 3, no. 8 (August 1991): 2149. http://dx.doi.org/10.1063/1.859627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

LI, XIANG, and BAODING LIU. "MAXIMUM ENTROPY PRINCIPLE FOR FUZZY VARIABLES." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 15, supp02 (April 2007): 43–52. http://dx.doi.org/10.1142/s0218488507004595.

Full text
Abstract:
The concept of fuzzy entropy is used to provide a quantitative measure of the uncertainty associated with every fuzzy variable. This paper proposes the maximum entropy principle for fuzzy variables, that is, out of all the membership functions satisfying given constraints, choose the one that has maximum entropy. The problem is what is the specific formulation of the maximum entropy membership function. The purpose of this paper is to solve this problem by Euler–Lagrange equation.
APA, Harvard, Vancouver, ISO, and other styles
48

Avakov, E. R., and G. G. Magaril-Il’yaev. "Pontryagin maximum principle, relaxation, and controllability." Doklady Mathematics 93, no. 2 (March 2016): 193–96. http://dx.doi.org/10.1134/s1064562416020216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Avakov, E. R., and G. G. Magaril-Il’yaev. "Generalized Maximum Principle in Optimal Control." Doklady Mathematics 98, no. 3 (November 2018): 575–78. http://dx.doi.org/10.1134/s1064562418070116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Canuto, Claudio. "Spectral methods and a maximum principle." Mathematics of Computation 51, no. 184 (1988): 615. http://dx.doi.org/10.1090/s0025-5718-1988-0930226-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography