Journal articles on the topic 'Maxwell's equations in time domain'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Maxwell's equations in time domain.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Huang, Zhi-Xiang, Wei Sha, Xian-Liang Wu, and Ming-Sheng Chen. "Decomposition methods for time-domain Maxwell's equations." International Journal for Numerical Methods in Fluids 56, no. 9 (2008): 1695–704. http://dx.doi.org/10.1002/fld.1569.
Full textBao, Gang, Bin Hu, Peijun Li, and Jue Wang. "Analysis of time-domain Maxwell's equations in biperiodic structures." Discrete & Continuous Dynamical Systems - B 25, no. 1 (2020): 259–86. http://dx.doi.org/10.3934/dcdsb.2019181.
Full textVan, Tri, and Aihua Wood. "A Time-Domain Finite Element Method for Maxwell's Equations." SIAM Journal on Numerical Analysis 42, no. 4 (2004): 1592–609. http://dx.doi.org/10.1137/s0036142901387427.
Full textAla, G., E. Francomano, A. Tortorici, E. Toscano, and F. Viola. "Corrective meshless particle formulations for time domain Maxwell's equations." Journal of Computational and Applied Mathematics 210, no. 1-2 (2007): 34–46. http://dx.doi.org/10.1016/j.cam.2006.10.054.
Full textLiu, Yaxing, Joon-Ho Lee, Tian Xiao, and Qing H. Liu. "A spectral-element time-domain solution of Maxwell's equations." Microwave and Optical Technology Letters 48, no. 4 (2006): 673–80. http://dx.doi.org/10.1002/mop.21440.
Full textBuchanan, W. J., and N. K. Gupta. "Maxwell's Equations in the 21st Century." International Journal of Electrical Engineering & Education 30, no. 4 (1993): 343–53. http://dx.doi.org/10.1177/002072099303000408.
Full textNevels, R., and J. Jeong. "The Time Domain Green's Function and Propagator for Maxwell's Equations." IEEE Transactions on Antennas and Propagation 52, no. 11 (2004): 3012–18. http://dx.doi.org/10.1109/tap.2004.835123.
Full textCohen, Gary, Xavier Ferrieres, and Sébastien Pernet. "Discontinuous Galerkin methods for Maxwell's equations in the time domain." Comptes Rendus Physique 7, no. 5 (2006): 494–500. http://dx.doi.org/10.1016/j.crhy.2006.03.004.
Full textSu, Zhuo, Yongqin Yang, and Yunliang Long. "A Compact Unconditionally Stable Method for Time-Domain Maxwell's Equations." International Journal of Antennas and Propagation 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/689327.
Full textWang, J., and Y. Long. "Long time stable compact fourth-order scheme for time domain Maxwell's equations." Electronics Letters 46, no. 14 (2010): 995. http://dx.doi.org/10.1049/el.2010.1204.
Full textDeore, Narendra, and Avijit Chatterjee. "CELL-VERTEX BASED MULTIGRID SOLUTION OF THE TIME-DOMAIN MAXWELL'S EQUATIONS." Progress In Electromagnetics Research B 23 (2010): 181–97. http://dx.doi.org/10.2528/pierb10062002.
Full textSha, Wei, Zhixiang Huang, Mingsheng Chen, and Xianliang Wu. "Survey on Symplectic Finite-Difference Time-Domain Schemes for Maxwell's Equations." IEEE Transactions on Antennas and Propagation 56, no. 2 (2008): 493–500. http://dx.doi.org/10.1109/tap.2007.915444.
Full textNevels, Robert, and Jaehoon Jeong. "Time Domain Coupled Field Dyadic Green Function Solution for Maxwell's Equations." IEEE Transactions on Antennas and Propagation 56, no. 8 (2008): 2761–64. http://dx.doi.org/10.1109/tap.2008.927574.
Full textWang, Jianying, Peng Liu, and Yunliang Long. "A Compact Symplectic High-Order Scheme for Time-Domain Maxwell's Equations." IEEE Antennas and Wireless Propagation Letters 9 (2010): 371–74. http://dx.doi.org/10.1109/lawp.2010.2049470.
Full textKim, Joonshik, and Fernando L. Teixeira. "Parallel and Explicit Finite-Element Time-Domain Method for Maxwell's Equations." IEEE Transactions on Antennas and Propagation 59, no. 6 (2011): 2350–56. http://dx.doi.org/10.1109/tap.2011.2143682.
Full textOmick, S., and S. Castillo. "Error characterization for the time-domain numerical solution of Maxwell's equations." IEEE Antennas and Propagation Magazine 36, no. 5 (1994): 58–62. http://dx.doi.org/10.1109/74.334927.
Full textBi, Z., K. Wu, C. Wu, and J. Litva. "A new finite-difference time-domain algorithm for solving Maxwell's equations." IEEE Microwave and Guided Wave Letters 1, no. 12 (1991): 382–84. http://dx.doi.org/10.1109/75.103858.
Full textLee, J. F. "WETD - a finite element time-domain approach for solving Maxwell's equations." IEEE Microwave and Guided Wave Letters 4, no. 1 (1994): 11–13. http://dx.doi.org/10.1109/75.267679.
Full textBao, Gang, Ying Li, and Zhengfang Zhou. "Lp estimates of time-harmonic Maxwell's equations in a bounded domain." Journal of Differential Equations 245, no. 12 (2008): 3674–86. http://dx.doi.org/10.1016/j.jde.2008.03.004.
Full textAngulo, Luis Diaz, Jesus Alvarez, Fernando L. Teixeira, M. Fernandez Pantoja, and Salvador G. Garcia. "A Nodal Continuous-Discontinuous Galerkin Time-Domain Method for Maxwell's Equations." IEEE Transactions on Microwave Theory and Techniques 63, no. 10 (2015): 3081–93. http://dx.doi.org/10.1109/tmtt.2015.2472411.
Full textLarson, R. W., T. Rudolph, and P. H. Ng. "Special purpose computers for the time domain advance of Maxwell's equations." IEEE Transactions on Magnetics 25, no. 4 (1989): 2913–15. http://dx.doi.org/10.1109/20.34322.
Full textDosopoulos, Stylianos, and Jin-Fa Lee. "Interior Penalty Discontinuous Galerkin Method for the Time-Domain Maxwell's Equations." IEEE Transactions on Magnetics 46, no. 8 (2010): 3512–15. http://dx.doi.org/10.1109/tmag.2010.2043235.
Full textHuang, Z. X., X. L. Wu, W. Sha, and M. S. Chen. "Optimal symplectic integrators for numerical solution of time-domain Maxwell's equations." Microwave and Optical Technology Letters 49, no. 3 (2007): 545–47. http://dx.doi.org/10.1002/mop.22193.
Full textHuang, Z. X., X. L. Wu, W. E. I. Sha, and B. Wu. "Optimized Operator-Splitting Methods in Numerical Integration of Maxwell's Equations." International Journal of Antennas and Propagation 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/956431.
Full textBALL, JOHN M., YVES CAPDEBOSCQ, and BASANG TSERING-XIAO. "ON UNIQUENESS FOR TIME HARMONIC ANISOTROPIC MAXWELL'S EQUATIONS WITH PIECEWISE REGULAR COEFFICIENTS." Mathematical Models and Methods in Applied Sciences 22, no. 11 (2012): 1250036. http://dx.doi.org/10.1142/s0218202512500364.
Full textKnoke, Tobias, Sebastian Kinnewig, Sven Beuchler, Ayhan Demircan, Uwe Morgner, and Thomas Wick. "Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers." Selecciones Matemáticas 10, no. 01 (2023): 1–15. http://dx.doi.org/10.17268/sel.mat.2023.01.01.
Full textHelfert, S. F. "The Method of Lines in the time domain." Advances in Radio Science 11 (July 4, 2013): 15–21. http://dx.doi.org/10.5194/ars-11-15-2013.
Full textCOSTABEL, MARTIN, MONIQUE DAUGE, and CHRISTOPH SCHWAB. "EXPONENTIAL CONVERGENCE OF hp-FEM FOR MAXWELL EQUATIONS WITH WEIGHTED REGULARIZATION IN POLYGONAL DOMAINS." Mathematical Models and Methods in Applied Sciences 15, no. 04 (2005): 575–622. http://dx.doi.org/10.1142/s0218202505000480.
Full textZhang, Pan, Yanyan Hu, Yuchen Jin, Shaogui Deng, Xuqing Wu, and Jiefu Chen. "A Maxwell's Equations Based Deep Learning Method for Time Domain Electromagnetic Simulations." IEEE Journal on Multiscale and Multiphysics Computational Techniques 6 (2021): 35–40. http://dx.doi.org/10.1109/jmmct.2021.3057793.
Full textJoon-Ho Lee, Jiefu Chen, and Qing Huo Liu. "A 3-D Discontinuous Spectral Element Time-Domain Method for Maxwell's Equations." IEEE Transactions on Antennas and Propagation 57, no. 9 (2009): 2666–74. http://dx.doi.org/10.1109/tap.2009.2027731.
Full textNickisch, L. J., and P. M. Franke. "Finite-difference time-domain solution of Maxwell's equations for the dispersive ionosphere." IEEE Antennas and Propagation Magazine 34, no. 5 (1992): 33–39. http://dx.doi.org/10.1109/74.163808.
Full textEl Bouajaji, M., B. Thierry, X. Antoine, and C. Geuzaine. "A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations." Journal of Computational Physics 294 (August 2015): 38–57. http://dx.doi.org/10.1016/j.jcp.2015.03.041.
Full textWinges, Johan, and Thomas Rylander. "Higher-order brick-tetrahedron hybrid method for Maxwell's equations in time domain." Journal of Computational Physics 321 (September 2016): 698–707. http://dx.doi.org/10.1016/j.jcp.2016.05.063.
Full textZhong, Shuangying, and Song Liu. "The Force-Gradient Symplectic Finite-Difference Time-Domain Scheme for Maxwell's Equations." IEEE Transactions on Antennas and Propagation 63, no. 2 (2015): 834–38. http://dx.doi.org/10.1109/tap.2014.2381255.
Full textPalaniswamy, Sampath, William F. Hall, and Vijaya Shankar. "Numerical solution to Maxwell's equations in the time domain on nonuniform grids." Radio Science 31, no. 4 (1996): 905–12. http://dx.doi.org/10.1029/96rs00783.
Full textLee, Robert L., and Niel K. Madsen. "A mixed finite element formulation for Maxwell's equations in the time domain." Journal of Computational Physics 85, no. 2 (1989): 503. http://dx.doi.org/10.1016/0021-9991(89)90168-x.
Full textLee, Robert L., and Niel K. Madsen. "A mixed finite element formulation for Maxwell's equations in the time domain." Journal of Computational Physics 88, no. 2 (1990): 284–304. http://dx.doi.org/10.1016/0021-9991(90)90181-y.
Full textNiegemann, Jens, Lasha Tkeshelashvili, and Kurt Busch. "Higher-Order Time-Domain Simulations of Maxwell's Equations Using Krylov-Subspace Methods." Journal of Computational and Theoretical Nanoscience 4, no. 3 (2007): 627–34. http://dx.doi.org/10.1166/jctn.2007.027.
Full textLovetri, Joe, and George I. Costache. "Efficient implementation issues of finite difference time-domain codes for Maxwell's equations." International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 6, no. 3 (1993): 195–206. http://dx.doi.org/10.1002/jnm.1660060304.
Full textMeagher, Timothy, Bin Jiang, and Peng Jiang. "An enhanced finite difference time domain method for two dimensional Maxwell's equations." Numerical Methods for Partial Differential Equations 36, no. 5 (2020): 1129–44. http://dx.doi.org/10.1002/num.22467.
Full textHuang, Zhi-Xiang, Wei Sha, Xian-Liang Wu, and Ming-Sheng Chen. "A novel high-order time-domain scheme for three-dimensional Maxwell's equations." Microwave and Optical Technology Letters 48, no. 6 (2006): 1123–25. http://dx.doi.org/10.1002/mop.21563.
Full textBouquet, A., C. Dedeban, and S. Piperno. "Discontinuous Galerkin time‐domain solution of Maxwell's equations on locally refined grids with fictitious domains." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 29, no. 3 (2010): 578–601. http://dx.doi.org/10.1108/03321641011028206.
Full textDOUGLAS, JIM, JUAN E. SANTOS, and DONGWOO SHEEN. "A NONCONFORMING MIXED FINITE ELEMENT METHOD FOR MAXWELL'S EQUATIONS." Mathematical Models and Methods in Applied Sciences 10, no. 04 (2000): 593–613. http://dx.doi.org/10.1142/s021820250000032x.
Full textPark, Jong Hyuk, and John C. Strikwerda. "The Domain Decomposition Method for Maxwell's Equations in Time Domain Simulations with Dispersive Metallic Media." SIAM Journal on Scientific Computing 32, no. 2 (2010): 684–702. http://dx.doi.org/10.1137/070705374.
Full textYee, K. S., and J. S. Chen. "The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell's equations." IEEE Transactions on Antennas and Propagation 45, no. 3 (1997): 354–63. http://dx.doi.org/10.1109/8.558651.
Full textSheu, Tony W. H., S. Z. Wang, J. H. Li, and Matthew R. Smith. "Simulation of Maxwell's Equations on GPU Using a High-Order Error-Minimized Scheme." Communications in Computational Physics 21, no. 4 (2017): 1039–64. http://dx.doi.org/10.4208/cicp.oa-2016-0079.
Full textYu, Mengjun, and Kun Li. "A data-driven reduced-order modeling approach for parameterized time-domain Maxwell's equations." Networks and Heterogeneous Media 19, no. 3 (2024): 1309–35. http://dx.doi.org/10.3934/nhm.2024056.
Full textJin, Jian-Ming, Mohammad Zunoubi, Kalyan C. Donepudi, and Weng C. Chew. "Frequency-domain and time-domain finite-element solution of Maxwell's equations using spectral Lanczos decomposition method." Computer Methods in Applied Mechanics and Engineering 169, no. 3-4 (1999): 279–96. http://dx.doi.org/10.1016/s0045-7825(98)00158-3.
Full textZunoubi, M., Jian-Ming Jin, and Weng Cho Chew. "Spectral Lanczos decomposition method for time domain and frequency domain finite-element solution of Maxwell's equations." Electronics Letters 34, no. 4 (1998): 346. http://dx.doi.org/10.1049/el:19980333.
Full textTiwari, Apurva, and Avijit Chatterjee. "Divergence Error Based p-adaptive Discontinuous Galerkin Solution of Time-domain Maxwell's Equations." Progress In Electromagnetics Research B 96 (2022): 153–72. http://dx.doi.org/10.2528/pierb22080403.
Full text