To see the other types of publications on this topic, follow the link: Maytansinoids.

Journal articles on the topic 'Maytansinoids'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Maytansinoids.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Giles, Francis, Rodica Morariu-Zamfir, John Lambert, et al. "Phase I Study of AVE9633, an AntiCD33-Maytansinoid Immunoconjugate, Administered as an Intravenous Infusion in Patients with Refractory/Relapsed CD33-Positive Acute Myeloid Leukemia (AML)." Blood 108, no. 11 (2006): 4548. http://dx.doi.org/10.1182/blood.v108.11.4548.4548.

Full text
Abstract:
Abstract AVE9633 is an immunoconjugate created by conjugation of the cytotoxic maytansinoid, DM4, to the monoclonal IgG1 antibody, huMy9-6 (average of 3.5 molecules of DM4 per antibody). The huMy9-6 antibody is a humanized version of a murine monoclonal antibody, My9-6, which is specific for the CD33 antigen expressed on the surface of myeloid cells, including the majority of cases of AML. Because CD33 has little expression outside the hematopoietic system, it represents an attractive target for antibody-based therapy in patients with AML. The humanized antibody, huMy9-6, binds to the CD33 ant
APA, Harvard, Vancouver, ISO, and other styles
2

Plattner, Ronald D., and Richard G. Powell. "Tandem Mass Spectrometry of Maytansinoids." Journal of Natural Products 49, no. 3 (1986): 475–82. http://dx.doi.org/10.1021/np50045a016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Larson, Gretchen M., Brian T. Schaneberg, and Albert T. Sneden. "Two New Maytansinoids fromMaytenus buchananii." Journal of Natural Products 62, no. 2 (1999): 361–63. http://dx.doi.org/10.1021/np9803732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Messuti, Eleonora, Bruno Achutti Duso, Alessia Castiglioni, et al. "Abstract 513: Intra-tubular damage is targeted by maytansinoids and rescued by NF1: Revisiting mechanism and biomarkers of an established ADC payload." Cancer Research 84, no. 6_Supplement (2024): 513. http://dx.doi.org/10.1158/1538-7445.am2024-513.

Full text
Abstract:
Abstract There is great interest in the identification of biomarkers to guide development of antibody-drug conjugates (ADC). We previously showed that loss of Neurofibromatosis 1 (NF1), a gene frequently mutated across cancers, enhances the activity of DM1, the maytansinoid payload of T-DM1, through a novel function in regulating microtubule (MT) dynamics. Maytansinoids are puzzlingly more effective in cells (in the nanomolar range) vs in vitro (in the micromolar range). Since maytansinoids bind at the interface between tubulin dimers, they are thought to only bind soluble tubulin dimers or MT
APA, Harvard, Vancouver, ISO, and other styles
5

Xu, Mengyao, Bo Rueda, David Spriggs, and Yeku Oladapo. "Abstract 2884: Development of antibody drug conjugates targeting MUC16 in ovarian cancer subtypes." Cancer Research 85, no. 8_Supplement_1 (2025): 2884. https://doi.org/10.1158/1538-7445.am2025-2884.

Full text
Abstract:
Abstract Background: Ovarian cancer (OC) remains a formidable challenge due to limited treatment options and inevitable development of multidrug resistance. Antibody-drug conjugates (ADCs) have emerged as a promising therapeutic modality, particularly for cancers with high unmet needs such as ovarian cancer (OC). MUC16, also known as CA125, is a high-molecular-weight glycoprotein overexpressed in ovarian cancer, serving as a biomarker for diagnosis and monitoring while contributing to tumor progression and immune evasion. Our laboratory previously identified 4H11, an antibody that preferential
APA, Harvard, Vancouver, ISO, and other styles
6

Lo, Chen-Fu, Tai-Yu Chiu, Yu-Tzu Liu, et al. "Synthesis and Evaluation of Small Molecule Drug Conjugates Harnessing Thioester-Linked Maytansinoids." Pharmaceutics 14, no. 7 (2022): 1316. http://dx.doi.org/10.3390/pharmaceutics14071316.

Full text
Abstract:
Ligand-targeting drug conjugates are a class of clinically validated biopharmaceutical drugs constructed by conjugating cytotoxic drugs with specific disease antigen targeting ligands through appropriate linkers. The integrated linker-drug motif embedded within such a system can prevent the premature release during systemic circulation, thereby allowing the targeting ligand to engage with the disease antigen and selective accumulation. We have designed and synthesized new thioester-linked maytansinoid conjugates. By performing in vitro cytotoxicity, targeting ligand binding assay, and in vivo
APA, Harvard, Vancouver, ISO, and other styles
7

Nittoli, Thomas, Frank Delfino, Marcus Kelly, et al. "Antibody drug conjugates of cleavable amino-benzoyl-maytansinoids." Bioorganic & Medicinal Chemistry 28, no. 23 (2020): 115785. http://dx.doi.org/10.1016/j.bmc.2020.115785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Suchocki, John A., and Albert T. Sneden. "New maytansinoids: reduction products of the C(9)-carbinolamide." Journal of Organic Chemistry 53, no. 17 (1988): 4116–18. http://dx.doi.org/10.1021/jo00252a047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ladino, Cynthia A., Ravi V. J. Chari, Lizabeth A. Bourret, Nancy L. Kedersha, and Victor S. Goldmacher. "Folate-maytansinoids: Target-selective drugs of low molecular weight." International Journal of Cancer 73, no. 6 (1997): 859–64. http://dx.doi.org/10.1002/(sici)1097-0215(19971210)73:6<859::aid-ijc16>3.0.co;2-#.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Perrino, Elena, Martina Steiner, Nikolaus Krall, et al. "Curative Properties of Noninternalizing Antibody–Drug Conjugates Based on Maytansinoids." Cancer Research 74, no. 9 (2014): 2569–78. http://dx.doi.org/10.1158/0008-5472.can-13-2990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Nittoli, Thomas, Marcus P. Kelly, Frank Delfino, et al. "Antibody drug conjugates of cleavable amino-alkyl and aryl maytansinoids." Bioorganic & Medicinal Chemistry 26, no. 9 (2018): 2271–79. http://dx.doi.org/10.1016/j.bmc.2018.02.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Liu, C., B. M. Tadayoni, L. A. Bourret, et al. "Eradication of large colon tumor xenografts by targeted delivery of maytansinoids." Proceedings of the National Academy of Sciences 93, no. 16 (1996): 8618–23. http://dx.doi.org/10.1073/pnas.93.16.8618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bénéchie, Michel, Bernard Delpech, Qui Khuong-Huu, and Françoise Khuong-Huu. "Total synthesis of maytansinoids. Approach to 4,6-bisdemethylmaytansine and 4-demethylmaytansine." Tetrahedron 48, no. 10 (1992): 1895–910. http://dx.doi.org/10.1016/s0040-4020(01)88513-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Li, Ya-Nan, Jia-Nan Li, Qin Ouyang, et al. "Determination of maytansinoids in Trewia nudiflora using QuEChERS extraction combined with HPLC." Journal of Pharmaceutical and Biomedical Analysis 198 (May 2021): 113993. http://dx.doi.org/10.1016/j.jpba.2021.113993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Reich, Eike, and Albert T. Sneden. "Normal- and bonded-phase liquid chromatography with photodiode array detection of maytansinoids." Journal of Chromatography A 763, no. 1-2 (1997): 213–19. http://dx.doi.org/10.1016/s0021-9673(96)00849-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Liu, Changnian, and Ravi VJ Chari. "The development of antibody delivery systems to target cancer with highly potent maytansinoids." Expert Opinion on Investigational Drugs 6, no. 2 (1997): 169–72. http://dx.doi.org/10.1517/13543784.6.2.169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

BENECHIE, M., B. DELPECH, Q. KHUONG-HUU, and F. KHUONG-HUU. "ChemInform Abstract: Total Synthesis of Maytansinoids. Approach to 4,6- Bisdemethylmaytansine and 4-Demethylmaytansine." ChemInform 23, no. 26 (2010): no. http://dx.doi.org/10.1002/chin.199226292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Duso, Bruno A., Eleonora Messuti, Emanuele Bonetti, et al. "Abstract 4896: NF1 (neurofibromatosis 1) controls microtubule dynamics and dictates sensitivity to maytansinoids." Cancer Research 83, no. 7_Supplement (2023): 4896. http://dx.doi.org/10.1158/1538-7445.am2023-4896.

Full text
Abstract:
Abstract The tumor suppressor NF1 is classically considered a negative RAS regulator, but sparse evidence suggests additional RAS-independent roles. Early studies suggested an interaction with tubulin, which remains poorly characterized to date but may be of particular therapeutic interest as NF1 is somatically mutated across multiple tumor types. We showed that multiple CRISPR-Cas9-engineeerd NF1 KO HER2+ breast cancer cells (BT-474, SK-BR3, HCC1954) become exquisitely sensitive to the Antibody-Drug Conjugate (ADC) Trastuzumab emtansine (T-DM1); we here investigate the underlying mechanism.TD
APA, Harvard, Vancouver, ISO, and other styles
19

Li, Wenting, Minhao Huang, Yuyan Li, et al. "C3 ester side chain plays a pivotal role in the antitumor activity of Maytansinoids." Biochemical and Biophysical Research Communications 566 (August 2021): 197–203. http://dx.doi.org/10.1016/j.bbrc.2021.05.071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Dang, Giap van, Bernd M. Rode, and Hermann Stuppner. "Quantitative electronic structure-activity relationship (QESAR) of natural cytotoxic compounds: maytansinoids, quassinoids and cucurbitacins." European Journal of Pharmaceutical Sciences 2, no. 5-6 (1994): 331–50. http://dx.doi.org/10.1016/0928-0987(94)00061-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Li, Shanren, Chunhua Lu, Xiaoyan Chang, and Yuemao Shen. "Constitutive overexpression of asm18 increases the production and diversity of maytansinoids in Actinosynnema pretiosum." Applied Microbiology and Biotechnology 100, no. 6 (2015): 2641–49. http://dx.doi.org/10.1007/s00253-015-7127-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Pullen, Christian B., Petra Schmitz, Dietmar Hoffmann, et al. "Occurrence and non-detectability of maytansinoids in individual plants of the genera Maytenus and Putterlickia." Phytochemistry 62, no. 3 (2003): 377–87. http://dx.doi.org/10.1016/s0031-9422(02)00550-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Eckelmann, Dennis, Souvik Kusari, and Michael Spiteller. "Occurrence and spatial distribution of maytansinoids in Putterlickia pyracantha , an unexplored resource of anticancer compounds." Fitoterapia 113 (September 2016): 175–81. http://dx.doi.org/10.1016/j.fitote.2016.08.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hodgson, David M., Philip J. Parsons, and Peter A. Stones. "A short and efficient synthesis of the C-3 to C-10 portion of the maytansinoids." Tetrahedron 47, no. 24 (1991): 4133–42. http://dx.doi.org/10.1016/s0040-4020(01)86450-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Madrigal, Richard V., Bruce W. Zilkowski, and Cecil R. Smith. "Structure-activity relationships among maytansinoids in their effect on the European corn borer,Ostrinia nubilalis (Hübner)." Journal of Chemical Ecology 11, no. 4 (1985): 501–6. http://dx.doi.org/10.1007/bf00989561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zhu, Na, Peiji Zhao, and Yuemao Shen. "Selective Isolation and Ansamycin-Targeted Screenings of Commensal Actinomycetes from the “Maytansinoids-Producing” Arboreal Trewia nudiflora." Current Microbiology 58, no. 1 (2008): 87–94. http://dx.doi.org/10.1007/s00284-008-9284-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kalinovsky, Daniel V., Irina V. Kholodenko, Elena V. Svirshchevskaya, et al. "Targeting GD2-Positive Tumor Cells by Pegylated scFv Fragment–Drug Conjugates Carrying Maytansinoids DM1 and DM4." Current Issues in Molecular Biology 45, no. 10 (2023): 8112–25. http://dx.doi.org/10.3390/cimb45100512.

Full text
Abstract:
Oligomerization of antibody fragments via modification with polyethylene glycol (pegylation) may alter their function and properties, leading to a multivalent interaction of the resulting constructs with the target antigen. In a recent study, we generated pegylated monomers and multimers of scFv fragments of GD2-specific antibodies using maleimide–thiol chemistry. Multimerization enhanced the antigen-binding properties and demonstrated a more efficient tumor uptake in a syngeneic GD2-positive mouse cancer model compared to monomeric antibody fragments, thereby providing a rationale for improvi
APA, Harvard, Vancouver, ISO, and other styles
28

Qi-Tao, Yu, Zhi-Heng Huang, Zhou Yun-Li, and Zhou Qi-Ting. "Mass spectrometry of maytansinoids-A study on the fragmentation mechanism and identification of synthetic analogs of maytansine." Acta Chimica Sinica 4, no. 1 (1986): 48–54. http://dx.doi.org/10.1002/cjoc.19860040108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sakai, Kunikazu, Tetsuya Ichikawa, Kaoru Yamada, et al. "Antitumor Principles in Mosses: the First Isolation and Identification of Maytansinoids, Including a Novel 15-Methoxyansamitocin P-3." Journal of Natural Products 51, no. 5 (1988): 845–50. http://dx.doi.org/10.1021/np50059a005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

HODGSON, D. M., P. J. PARSONS, and P. A. STONES. "ChemInform Abstract: A Short and Efficient Synthesis of the C-3 to C-10 Portion of the Maytansinoids." ChemInform 22, no. 35 (2010): no. http://dx.doi.org/10.1002/chin.199135273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ko, Soo sung, and Pat N. Confalone. "Model studies for the total synthesis of the maytansinoids based on the intramolecular nitrile oxide-olefin [3+2] cycloaddition reaction." Tetrahedron 41, no. 17 (1985): 3511–18. http://dx.doi.org/10.1016/s0040-4020(01)96704-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Cheng, Hong, Guoqing Xiong, Yi Li, et al. "Increased yield of AP-3 by inactivation of asm25 in Actinosynnema pretiosum ssp. auranticum ATCC 31565." PLOS ONE 17, no. 3 (2022): e0265517. http://dx.doi.org/10.1371/journal.pone.0265517.

Full text
Abstract:
Asamitocins are maytansinoids produced by Actinosynnema pretiosum ssp. auranticum ATCC 31565 (A. pretiosum ATCC 31565), which have a structure similar to that of maytansine, therefore serving as a precursor of maytansine in the development of antibody-drug conjugates (ADCs). Currently, there are more than 20 known derivatives of ansamitocins, among which ansamitocin P-3 (AP-3) exhibits the highest antitumor activity. Despite its importance, the application of AP-3 is restricted by low yield, likely due to a substrate competition mechanism underlying the synthesis pathways of AP-3 and its bypro
APA, Harvard, Vancouver, ISO, and other styles
33

Ikeda, Hiroshi, Teru Hideshima, Mariateresa Fulciniti, et al. "The Monoclonal Antibody nBT062 Conjugated to Cytotoxic Maytansinoids Has Selective Cytotoxicity Against CD138-Positive Multiple Myeloma Cells In vitro and In vivo." Clinical Cancer Research 15, no. 12 (2009): 4028–37. http://dx.doi.org/10.1158/1078-0432.ccr-08-2867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ikeda, Hiroshi, Teru Hideshima, Robert J. Lutz, et al. "The Monoclonal Antibody nBT062 Conjugated to Cytotoxic Maytansinoids Has Potent and Selective Cytotoxicity against CD138 Positive Multiple Myeloma Cells in Vitro and in Vivo." Blood 112, no. 11 (2008): 1716. http://dx.doi.org/10.1182/blood.v112.11.1716.1716.

Full text
Abstract:
Abstract CD138 is expressed on differentiated plasma cells and is involved in the development and/or proliferation of multiple myeloma (MM), for which it is a primary diagnostic marker. In this study, we report that immunoconjugates comprised of the murine/human chimeric CD138-specific monoclonal antibody nBT062 conjugated with highly cytotoxic maytansinoid derivatives (nBT062-SMCC-DM1, nBT062-SPDB-DM4 and nBT062-SPP-DM1) showed cytotoxic activity against CD138-positive MM cells both in vitro and in vivo. These agents demonstrated cytotoxicity against OPM1 and RPMI8226 (CD138-positive MM cell
APA, Harvard, Vancouver, ISO, and other styles
35

Kondrashov, Aleksei, Surendra Sapkota, Aditya Sharma, Ivy Riano, Razelle Kurzrock, and Jacob J. Adashek. "Antibody-Drug Conjugates in Solid Tumor Oncology: An Effectiveness Payday with a Targeted Payload." Pharmaceutics 15, no. 8 (2023): 2160. http://dx.doi.org/10.3390/pharmaceutics15082160.

Full text
Abstract:
Antibody–drug conjugates (ADCs) are at the forefront of the drug development revolution occurring in oncology. Formed from three main components—an antibody, a linker molecule, and a cytotoxic agent (“payload”), ADCs have the unique ability to deliver cytotoxic agents to cells expressing a specific antigen, a great leap forward from traditional chemotherapeutic approaches that cause widespread effects without specificity. A variety of payloads can be used, including most frequently microtubular inhibitors (auristatins and maytansinoids), as well as topoisomerase inhibitors and alkylating agent
APA, Harvard, Vancouver, ISO, and other styles
36

Erickson, Hans K., and John M. Lambert. "ADME of Antibody–Maytansinoid Conjugates." AAPS Journal 14, no. 4 (2012): 799–805. http://dx.doi.org/10.1208/s12248-012-9386-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wang, Hangxiang, Jiaping Wu, Li Xu, Ke Xie, Chao Chen, and Yuehan Dong. "Albumin nanoparticle encapsulation of potent cytotoxic therapeutics shows sustained drug release and alleviates cancer drug toxicity." Chemical Communications 53, no. 17 (2017): 2618–21. http://dx.doi.org/10.1039/c6cc08978j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Fishkin, Nathan. "Maytansinoid–BODIPY Conjugates: Application to Microscale Determination of Drug Extinction Coefficients and for Quantification of Maytansinoid Analytes." Molecular Pharmaceutics 12, no. 6 (2015): 1745–51. http://dx.doi.org/10.1021/mp500843r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Cassady, John M., Kenneth K. Chan, Heinz G. Floss, and Eckhard Leistner. "Recent Developments in the Maytansinoid Antitumor Agents." Chemical and Pharmaceutical Bulletin 52, no. 1 (2004): 1–26. http://dx.doi.org/10.1248/cpb.52.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Henning, Peter. "T-DM1 als Innovation beim HER2-positiven Brustkrebs: Antikörper und Zytostatikum als duale Wirkkombination." Onkologische Welt 03, no. 04 (2012): 172. http://dx.doi.org/10.1055/s-0038-1630203.

Full text
Abstract:
Das Antikörper-Wirkstoff-Konjugat Trastuzumab-Emtansin (T-DM1) steht für ein neues Wirkprinzip in der Therapie des HER2-positiven Mammakarzinoms. über Thioether Linker SMCC ist das Zytostatikum DM1, ein Spindelgift aus der Gruppe der Maytansinoide an den Antikörper Trastuzumab gebunden.
APA, Harvard, Vancouver, ISO, and other styles
41

Kovtun, Yelena V., Charlene A. Audette, Michele F. Mayo, et al. "Antibody-Maytansinoid Conjugates Designed to Bypass Multidrug Resistance." Cancer Research 70, no. 6 (2010): 2528–37. http://dx.doi.org/10.1158/0008-5472.can-09-3546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Luo, Quanzhou, Hyo Helen Chung, Christopher Borths, et al. "Structural Characterization of a Monoclonal Antibody–Maytansinoid Immunoconjugate." Analytical Chemistry 88, no. 1 (2015): 695–702. http://dx.doi.org/10.1021/acs.analchem.5b03709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lutz, Robert J., and Kathleen R. Whiteman. "Antibody-maytansinoid conjugates for the treatment of myeloma." mAbs 1, no. 6 (2009): 548–51. http://dx.doi.org/10.4161/mabs.1.6.10029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Goodwin, Thomas E., Shari G. Orlicek, N. Renee Adams, Lynn A. Covey-Morrison, J. Steve Jenkins, and Gary L. Templeton. "Preparation of an aromatic synthon for maytansinoid synthesis." Journal of Organic Chemistry 50, no. 26 (1985): 5889–92. http://dx.doi.org/10.1021/jo00350a098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kirschning, Andreas, Kirsten Harmrolfs, and Tobias Knobloch. "The chemistry and biology of the maytansinoid antitumor agents." Comptes Rendus Chimie 11, no. 11-12 (2008): 1523–43. http://dx.doi.org/10.1016/j.crci.2008.02.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Sherman, Igor A., Rebecca J. Boohaker, Karr Stinson, Patricia Griffin, and Wendy Hill. "An alpha-fetoprotein-maytansine conjugate for the treatment of AFP receptor expressing tumors." Journal of Clinical Oncology 40, no. 16_suppl (2022): e15056-e15056. http://dx.doi.org/10.1200/jco.2022.40.16_suppl.e15056.

Full text
Abstract:
e15056 Background: The alpha fetoprotein (AFP) receptor is an oncofetal antigen and a novel target for cancer therapeutics. It is highly expressed on the surfaces of many cancers and myeloid derived suppressor cells (MDSCs) but absent on normal tissues. By conjugating a novel maytansinoid toxin to a recombinant form of human AFP (ACT-101), we can selectively deliver the toxin to cancer and MDSC cells while sparing normal cells, thereby enabling a combination of targeted and immune activating approaches against the tumor. Methods: Four ACT-101-maytansinoid conjugates with different protein-toxi
APA, Harvard, Vancouver, ISO, and other styles
47

Sherman, Igor A., Rebecca J. Boohaker, Karr Stinson, Patricia Griffin, and Wendy Hill. "An alpha-fetoprotein-maytansine conjugate for the treatment of AFP receptor expressing tumors." Journal of Clinical Oncology 40, no. 16_suppl (2022): e15056-e15056. http://dx.doi.org/10.1200/jco.2022.40.16_suppl.e15056.

Full text
Abstract:
e15056 Background: The alpha fetoprotein (AFP) receptor is an oncofetal antigen and a novel target for cancer therapeutics. It is highly expressed on the surfaces of many cancers and myeloid derived suppressor cells (MDSCs) but absent on normal tissues. By conjugating a novel maytansinoid toxin to a recombinant form of human AFP (ACT-101), we can selectively deliver the toxin to cancer and MDSC cells while sparing normal cells, thereby enabling a combination of targeted and immune activating approaches against the tumor. Methods: Four ACT-101-maytansinoid conjugates with different protein-toxi
APA, Harvard, Vancouver, ISO, and other styles
48

Catcott, Kalli C., Molly A. McShea, Carl Uli Bialucha, et al. "Microscale screening of antibody libraries as maytansinoid antibody-drug conjugates." mAbs 8, no. 3 (2016): 513–23. http://dx.doi.org/10.1080/19420862.2015.1134408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Goodwin, Thomas E., Kimberley R. Cousins, Heidi M. Crane, et al. "Synthesis of Two New Maytansinoid Model Compounds from Carbohydrate Precursors." Journal of Carbohydrate Chemistry 17, no. 3 (1998): 323–39. http://dx.doi.org/10.1080/07328309808002895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Widdison, Wayne, Sharon Wilhelm, Karen Veale, et al. "Metabolites of Antibody–Maytansinoid Conjugates: Characteristics and in Vitro Potencies." Molecular Pharmaceutics 12, no. 6 (2015): 1762–73. http://dx.doi.org/10.1021/mp5007757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!