Academic literature on the topic 'MazEF TA system'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'MazEF TA system.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "MazEF TA system"

1

Jin, Chenglong, Sung-Min Kang, Do-Hee Kim, and Bong-Jin Lee. "Structural and functional analysis of the Klebsiella pneumoniae MazEF toxin–antitoxin system." IUCrJ 8, no. 3 (2021): 362–71. http://dx.doi.org/10.1107/s2052252521000452.

Full text
Abstract:
Bacterial toxin–antitoxin (TA) systems correlate strongly with physiological processes in bacteria, such as growth arrest, survival and apoptosis. Here, the first crystal structure of a type II TA complex structure of Klebsiella pneumoniae at 2.3 Å resolution is presented. The K. pneumoniae MazEF complex consists of two MazEs and four MazFs in a heterohexameric assembly. It was estimated that MazEF forms a dodecamer with two heterohexameric MazEF complexes in solution, and a truncated complex exists in heterohexameric form. The MazE antitoxin interacts with the MazF toxin via two binding modes
APA, Harvard, Vancouver, ISO, and other styles
2

Jin, Chenglong, Sung-Min Kang, Do-Hee Kim, Yuno Lee, and Bong-Jin Lee. "Discovery of Antimicrobial Agents Based on Structural and Functional Study of the Klebsiella pneumoniae MazEF Toxin–Antitoxin System." Antibiotics 13, no. 5 (2024): 398. http://dx.doi.org/10.3390/antibiotics13050398.

Full text
Abstract:
Klebsiella pneumoniae causes severe human diseases, but its resistance to current antibiotics is increasing. Therefore, new antibiotics to eradicate K. pneumoniae are urgently needed. Bacterial toxin–antitoxin (TA) systems are strongly correlated with physiological processes in pathogenic bacteria, such as growth arrest, survival, and apoptosis. By using structural information, we could design the peptides and small-molecule compounds that can disrupt the binding between K. pneumoniae MazE and MazF, which release free MazF toxin. Because the MazEF system is closely implicated in programmed cel
APA, Harvard, Vancouver, ISO, and other styles
3

Tang, Ziyun, Pengcheng Jiang та Wei Xie. "Long Dynamic β1–β2 Loops in M. tb MazF Toxins Affect the Interaction Modes and Strengths of the Toxin–Antitoxin Pairs". International Journal of Molecular Sciences 25, № 17 (2024): 9630. http://dx.doi.org/10.3390/ijms25179630.

Full text
Abstract:
Tuberculosis is a worldwide plague caused by the pathogen Mycobacterium tuberculosis (M. tb). Toxin–antitoxin (TA) systems are genetic elements abundantly present in prokaryotic organisms and regulate important cellular processes. MazEF is a TA system implicated in the formation of “persisters cells” of M. tb, which contain more than 10 such members. However, the exact function and inhibition mode of each MazF are not fully understood. Here we report crystal structures of MazF-mt3 in its apo form and in complex with the C-terminal half of MazE-mt3. Structural analysis suggested that two long b
APA, Harvard, Vancouver, ISO, and other styles
4

Nigam, Akanksha, Adi Oron-Gottesman, and Hanna Engelberg-Kulka. "A Bias in the Reading of the Genetic Code of Escherichia coli is a Characteristic for Genes that Specify Stress-induced MazF-mediated Proteins." Current Genomics 21, no. 4 (2020): 311–18. http://dx.doi.org/10.2174/1389202921999200606215305.

Full text
Abstract:
Background: Escherichia coli (E. coli) mazEF, a stress-induced toxin-antitoxin (TA) system, has been studied extensively. The MazF toxin is an endoribonuclease that cleaves RNAs at ACA sites. Thereby, under stress, the induced MazF generates a Stress-induced Translation Machinery (STM), composed of MazF processed mRNAs and selective ribosomes that specifically translate the processed mRNAs. Materials and Methods: Escherichia coli (E. coli) mazEF, a stress-induced toxin-antitoxin (TA) system, has been studied extensively. The MazF toxin is an endoribonuclease that cleaves RNAs at ACA sites. The
APA, Harvard, Vancouver, ISO, and other styles
5

Choi, Wonho, Yoshihiro Yamaguchi, Ji-Young Park, et al. "Functional Characterization of the mazEF Toxin-Antitoxin System in the Pathogenic Bacterium Agrobacterium tumefaciens." Microorganisms 9, no. 5 (2021): 1107. http://dx.doi.org/10.3390/microorganisms9051107.

Full text
Abstract:
Agrobacterium tumefaciens is a pathogen of various plants which transfers its own DNA (T-DNA) to the host plants. It is used for producing genetically modified plants with this ability. To control T-DNA transfer to the right place, toxin-antitoxin (TA) systems of A. tumefaciens were used to control the target site of transfer without any unintentional targeting. Here, we describe a toxin-antitoxin system, Atu0939 (mazE-at) and Atu0940 (mazF-at), in the chromosome of Agrobacterium tumefaciens. The toxin in the TA system has 33.3% identity and 45.5% similarity with MazF in Escherichia coli. The
APA, Harvard, Vancouver, ISO, and other styles
6

Norouzi, Masoumeh, Abbas Maleki, Elham Aboualigalehdari, and Sobhan Ghafourian. "Type II toxin- antitoxin systems in clinical isolates of antibiotic resistant Acinetobacter baumannii." Genetika 54, no. 2 (2022): 625–32. http://dx.doi.org/10.2298/gensr2202625n.

Full text
Abstract:
The over use of antibiotics to treat infections in humans and animals made a phenomenon of the antibiotic-resistant bacteria. While studies focused to find on new antibiotics but, identification of novel antibacterial targets in bacteria is very important. By Toxin antitoxin systems this hypothesis could be done, whereas by the activation of a toxin or inactivation of an antitoxin, the raised toxin kills the bacterium. These systems are attractive target for antimicrobial therapy. However, the most important step for potency of TA system, as an antibacterial target, is to identify a TA system
APA, Harvard, Vancouver, ISO, and other styles
7

Tsilibaris, Virginie, Geneviève Maenhaut-Michel, Natacha Mine, and Laurence Van Melderen. "What Is the Benefit to Escherichia coli of Having Multiple Toxin-Antitoxin Systems in Its Genome?" Journal of Bacteriology 189, no. 17 (2007): 6101–8. http://dx.doi.org/10.1128/jb.00527-07.

Full text
Abstract:
ABSTRACT The Escherichia coli K-12 chromosome encodes at least five proteic toxin-antitoxin (TA) systems. The mazEF and relBE systems have been extensively characterized and were proposed to be general stress response modules. On one hand, mazEF was proposed to act as a programmed cell death system that is triggered by a variety of stresses. On the other hand, relBE and mazEF were proposed to serve as growth modulators that induce a dormancy state during amino acid starvation. These conflicting hypotheses led us to test a possible synergetic effect of the five characterized E. coli TA systems
APA, Harvard, Vancouver, ISO, and other styles
8

Hosseini, Mandana, Jamileh Nowroozi, and Nour Amirmozafari. "The effect of type II toxin-antitoxin systems on methicillinresistant Staphylococcus aureus persister cell formation and antibiotic tolerance." Acta Biologica Szegediensis 65, no. 1 (2021): 113–17. http://dx.doi.org/10.14232/abs.2021.1.113-117.

Full text
Abstract:
Persister cells are defi ned as a subpopulation of bacteria in a dormant state with the ability to reduce bacterial metabolism and they are involved in antibiotic tolerance. Toxin-antitoxin (TA) systems have been previously suggested as important players in persistence. Therefore, this study aimed to study the involvement of TA systems in persister cell formation in methicillin-resistant Staphylococcus aureus following antibiotic exposure. Using TADB and RASTA database, two type II TA systems including MazF/MazE and RelE/RelB were predicted in S. aureus. The presence of these TA genes was dete
APA, Harvard, Vancouver, ISO, and other styles
9

Alkhalili, Rawana, Joel Wallenius, and Björn Canbäck. "Towards Exploring Toxin-Antitoxin Systems in Geobacillus: A Screen for Type II Toxin-Antitoxin System Families in a Thermophilic Genus." International Journal of Molecular Sciences 20, no. 23 (2019): 5869. http://dx.doi.org/10.3390/ijms20235869.

Full text
Abstract:
The toxin-antitoxin (TA) systems have been attracting attention due to their role in regulating stress responses in prokaryotes and their biotechnological potential. Much recognition has been given to type II TA system of mesophiles, while thermophiles have received merely limited attention. Here, we are presenting the putative type II TA families encoded on the genomes of four Geobacillus strains. We employed the TA finder tool to mine for TA-coding genes and manually curated the results using protein domain analysis tools. We also used the NCBI BLAST, Operon Mapper, ProOpDB, and sequence ali
APA, Harvard, Vancouver, ISO, and other styles
10

Valizadeh, Nasrin, Firuzeh Valian, Nourkhoda Sadeghifard, et al. "The Role of Peganum harmala Ethanolic Extract and Type II Toxin Antitoxin System in Biofilm Formation." Drug Research 67, no. 07 (2017): 385–87. http://dx.doi.org/10.1055/s-0043-102060.

Full text
Abstract:
AbstractToxin antitoxin system is a regulatory system that antitoxin inhibits the toxin. We aimed to determine the role of TA loci in biofilm formation in K. pneumoniae clinical and environmental isolates; also inhibition of biofilm formation by Peganum harmala. So, 40 K. pneumoniae clinical and environmental isolates were subjected for PCR to determine the frequency of mazEF, relEB, and mqsRA TA loci. Biofilm formation assay subjected for all isolates. Then, P. harmala was tested against positive biofilm formation strains. Our results demonstrated that relBE TA loci were dominant TA loci; whe
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "MazEF TA system"

1

Tandon, Himani. "Computational studies on interacting proteins with special reference to toxin-antitoxin systems." Thesis, 2019. https://etd.iisc.ac.in/handle/2005/4971.

Full text
Abstract:
Proteins interact with other proteins to maintain functional homeostasis of the cell by tightly regulating cellular processes. Hence, it becomes important to understand not only the downstream effects of protein-protein interactions (PPIs), but its impact on interacting partners too. Much of the work embodied in this thesis pertains to sequence, structure, dynamics and functional analysis of protein-protein complexes. Firstly, the impact of PPIs on structure and dynamics of individual interacting partners was studied using a dataset of 58 protein-protein complexes of known 3-D structure. It wa
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!