Academic literature on the topic 'MBBR TECHNOLOGY'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'MBBR TECHNOLOGY.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "MBBR TECHNOLOGY"

1

Leyva-Díaz, J. C., and J. M. Poyatos. "Start-up of membrane bioreactor and hybrid moving bed biofilm reactor–membrane bioreactor: kinetic study." Water Science and Technology 72, no. 11 (2015): 1948–53. http://dx.doi.org/10.2166/wst.2015.419.

Full text
Abstract:
A hybrid moving bed biofilm reactor–membrane bioreactor (hybrid MBBR-MBR) system was studied as an alternative solution to conventional activated sludge processes and membrane bioreactors. This paper shows the results obtained from three laboratory-scale wastewater treatment plants working in parallel in the start-up and steady states. The first wastewater treatment plant was a MBR, the second one was a hybrid MBBR-MBR system containing carriers both in anoxic and aerobic zones of the bioreactor (hybrid MBBR-MBRa), and the last one was a hybrid MBBR-MBR system which contained carriers only in the aerobic zone (hybrid MBBR-MBRb). The reactors operated with a hydraulic retention time of 30.40 h. A kinetic study for characterizing heterotrophic biomass was carried out and organic matter and nutrients removals were evaluated. The heterotrophic biomass of the hybrid MBBR-MBRb showed the best kinetic performance in the steady state, with yield coefficient for heterotrophic biomass = 0.30246 mg volatile suspended solids per mg chemical oxygen demand, maximum specific growth rate for heterotrophic biomass = 0.00308 h−1 and half-saturation coefficient for organic matter = 3.54908 mg O2 L−1. The removal of organic matter was supported by the kinetic study of heterotrophic biomass.
APA, Harvard, Vancouver, ISO, and other styles
2

Shin, D. H., W. S. Shin, Y. H. Kim, Myung Ho Han, and S. J. Choi. "Application of a combined process of moving-bed biofilm reactor (MBBR) and chemical coagulation for dyeing wastewater treatment." Water Science and Technology 54, no. 9 (2006): 181–89. http://dx.doi.org/10.2166/wst.2006.863.

Full text
Abstract:
A combined process consisted of a Moving-Bed Biofilm Reactor (MBBR) and chemical coagulation was investigated for textile wastewater treatment. The pilot scale MBBR system is composed of three MBBRs (anaerobic, aerobic-1 and aerobic-2 in series), each reactor was filled with 20% (v/v) of polyurethane-activated carbon (PU-AC) carrier for biological treatment followed by chemical coagulation with FeCl2.In the MBBR process, 85% of COD and 70% of color (influent COD=807.5 mg/L and color=3,400 PtCo unit) were removed using relatively low MLSS concentration and short hydraulic retention time (HRT=44 hr). The biologically treated dyeing wastewater was subjected to chemical coagulation. After coagulation with FeCl2, 95% of COD and 97% of color were removed overall. The combined process of MBBR and chemical coagulation has promising potential for dyeing wastewater treatment.
APA, Harvard, Vancouver, ISO, and other styles
3

Piculell, Maria, Thomas Welander, and Karin Jönsson. "Organic removal activity in biofilm and suspended biomass fractions of MBBR systems." Water Science and Technology 69, no. 1 (2013): 55–61. http://dx.doi.org/10.2166/wst.2013.552.

Full text
Abstract:
The moving bed biofilm reactor (MBBR) wastewater treatment process is usually designed based on the assumption that all activity in the process occurs in the biofilm on the MBBR carriers, although there is always some active biomass in the bulk liquid due to biofilm sloughing and, sometimes, free-growing bacteria. In this study the removal of organic matter is evaluated in laboratory-scale MBBR reactors under varying load, hydraulic retention time (HRT), oxygen concentration and volumetric filling degree of carriers in order to determine the heterotrophic activity in the different fractions of the MBBR biomass. The results showed that the heterotrophic conversions in an MBBR can show the same type of diffusion limited dependency on oxygen as nitrification, even for easily degradable substrates such as acetate. The contribution to the removal from the suspended biomass is shown to vary depending on HRT, as the amount of suspended solids changes. The developed method in this report is a useful tool for determining heterotrophic activity in the separate fractions of biomass in MBBRs.
APA, Harvard, Vancouver, ISO, and other styles
4

Melin, E., T. Leiknes, H. Helness, V. Rasmussen, and H. Ødegaard. "Effect of organic loading rate on a wastewater treatment process combining moving bed biofilm and membrane reactors." Water Science and Technology 51, no. 6-7 (2005): 421–30. http://dx.doi.org/10.2166/wst.2005.0664.

Full text
Abstract:
The effect of moving bed biofilm reactor (MBBR) loading rate on membrane fouling rate was studied in two parallel units combining MBBR and membrane reactor. Hollow fiber membranes with molecular weight cut-off of 30 kD were used. The HRTs of the MBBRs varied from 45 min to 4 h and the COD loading rates ranged from 4.1 to 26.6 g COD m−2 d−1. The trans-membrane pressure (TMP) was very sensitive to fluxes for the used membranes and the experiments were carried out at relatively low fluxes (3.3–5.6 l m−2 h−1). Beside the test with the highest flux, there were no consistent differences in fouling rate between the low- and high-rate reactors. Also, the removal efficiencies were quite similar in both systems. The average COD removal efficiencies in the total process were 87% at 3–4 h HRT and 83% at 0.75–1 h HRT. At high loading rates, there was a shift in particle size distribution towards smaller particles in the MBBR effluents. However, 79–81% of the COD was in particles that were separated by membranes, explaining the relatively small differences in the removal efficiencies at different loading rates. The COD fractionation also indicated that the choice of membrane pore size within the range of 30 kD to 0.1 μm has very small effect on the COD removal in the MBBR/membrane process, especially with low-rate MBBRs.
APA, Harvard, Vancouver, ISO, and other styles
5

Kängsepp, P., M. Sjölin, A. G. Mutlu, B. Teil, and C. Pellicer-Nàcher. "First full-scale combined MBBR, coagulation, flocculation, Discfilter plant with phosphorus removal in France." Water Practice and Technology 15, no. 1 (2019): 19–27. http://dx.doi.org/10.2166/wpt.2019.081.

Full text
Abstract:
Abstract The suspended solids (SS) concentrations in effluent from moving bed biofilm reactors (MBBRs) used for secondary biological treatment can be up to 500 mg/L. Microscreens (Drumfilters or Discfilters) can be used as alternatives to traditional clarification or dissolved air flotation to remove SS and total phosphorus (TP). This study shows how a small-scale municipal WWTP for 5,700 population equivalent (PE) can be upgraded to 12,000 PE by combining MBBR with coagulation-flocculation tanks and a Discfilter with a total footprint of 160 m2. This long-term investigation demonstrated that even though influent turbidity (range 146–431 NTU) and flow (25–125 m3/h) varied considerably, very low effluent turbidities (below 10 NTU) could be achieved continuously. Furthermore, this compact treatment system can provide average reductions of ammonium (NH4-N) from 19 to 0.04 mg/L, COD from 290 to 10 mg/L, and TP from 4.5 to 0.3 mg/L. The results show that effluent requirements can be reached by combining MBBR, coagulation-flocculation and disc filtration at full scale, without a primary clarifier upstream of MBBR.
APA, Harvard, Vancouver, ISO, and other styles
6

Rusten, B., B. G. Hellström, F. Hellström, O. Sehested, E. Skjelfoss, and B. Svendsen. "Pilot testing and preliminary design of moving bed biofilm reactors for nitrogen removal at the FREVAR wastewater treatment plant." Water Science and Technology 41, no. 4-5 (2000): 13–20. http://dx.doi.org/10.2166/wst.2000.0419.

Full text
Abstract:
A moving bed biofilm reactor (MBBR) pilot plant, using Kaldnes type K1 biofilm carriers, was tested for nitrogen removal at the FREVAR wastewater treatment plant. The pilot plant was fed primary treated municipal wastewater, at temperatures from 4.8 to about 20°C. The results showed that a reasonable design nitrification rate will be 190 g TKN/m3d, at 10°C and a reactor pH≥7.0. Pre-denitrification was very dependent on the concentration of readily biodegradable organic matter and the amount of oxygen in the influent to the first anoxic MBBR. It was found that a MBBR process for nitrogen removal at FREVAR will require a total reactor volume corresponding to an empty bed hydraulic retention time of 4–5 hours at average design influent flow. This was based on an influent concentration of 25 mg total N/l, 70% annual average removal of total N and a treatment process consisting of primary treatment, MBBRs with combined pre- and post-denitrification, and followed by coagulation/flocculation and a final solids separation stage.
APA, Harvard, Vancouver, ISO, and other styles
7

Sandip, Magdum, and V. Kalyanraman. "Enhanced simultaneous nitri-denitrification in aerobic moving bed biofilm reactor containing polyurethane foam-based carrier media." Water Science and Technology 79, no. 3 (2019): 510–17. http://dx.doi.org/10.2166/wst.2019.077.

Full text
Abstract:
Abstract Fluidization of carrier media for biofilm support and growth defines the moving bed biofilm reactor (MBBR) process. Major MBBR facilities apply virgin polyethylene (PE)-based circular plastic carrier media. Various carriers were studied to replace these conventional carriers, but polyurethane (PU) foam-based carrier media has not been much explored. This study evaluates the potential of PU foam carrier media in aerobic MBBR process for simultaneous nitri-denitrification (SND). Two parallel reactors loaded with conventional PE plastic (circular) and PU foam (cubical) carriers compared for their removal efficiencies of chemical oxygen demand (COD) and nitrogen contaminants from wastewater. Results indicate that average COD removal in MBBR containing PE plastic carrier media was 81%, compared to 83% in MBBR containing PU foam. Average ammonical and total nitrogen reduction was 71% and 59% for PU foam-based MBBR, compared to 60% and 42% for PE plastic-based MBBR. SND-based nitrogen removal capacity was doubled in aerobic MBBR filled with PU foam carrier media (27%), than MBBR containing PE plastic carrier media (13%). Cost economics also governs the commercial advantage for the application of PU foam-based carrier media in the MBBR process.
APA, Harvard, Vancouver, ISO, and other styles
8

Banti, Dimitra C., Petros Samaras, Eleni Kostopoulou, Vassiliki Tsioni, and Themistoklis Sfetsas. "Improvement of MBBR-MBR Performance by the Addition of Commercial and 3D-Printed Biocarriers." Membranes 13, no. 8 (2023): 690. http://dx.doi.org/10.3390/membranes13080690.

Full text
Abstract:
Moving bed biofilm reactor combined with membrane bioreactor (MBBR-MBR) constitute a highly effective wastewater treatment technology. The aim of this research work was to study the effect of commercial K1 biocarriers (MBBR-MBR K1 unit) and 3D-printed biocarriers fabricated from 13X and Halloysite (MBBR-MBR 13X-H unit), on the efficiency and the fouling rate of an MBBR-MBR unit during wastewater treatment. Various physicochemical parameters and trans-membrane pressure were measured. It was observed that in the MBBR-MBR K1 unit, membrane filtration improved reaching total membrane fouling at 43d, while in the MBBR-MBR 13X-H and in the control MBBR-MBR total fouling took place at about 32d. This is attributed to the large production of soluble microbial products (SMP) in the MBBR-MBR 13X-H, which resulted from a large amount of biofilm created in the 13X-H biocarriers. An optimal biodegradation of the organic load was concluded, and nitrification and denitrification processes were improved at the MBBR-MBR K1 and MBBR-MBR 13X-H units. The dry mass produced on the 13X-H biocarriers ranged at 4980–5711 mg, three orders of magnitude larger than that produced on the K1, which ranged at 2.9–4.6 mg. Finally, it was observed that mostly extracellular polymeric substances were produced in the biofilm of K1 biocarriers while in 13X-H mostly SMP.
APA, Harvard, Vancouver, ISO, and other styles
9

Mohd Sidek, Lariyah, Hairun Aishah Mohiyaden, Hidayah Basri, et al. "Experimental Comparison between Moving Bed Biofilm Reactor (MBBR) and Conventional Activated Sludge (CAS) for River Purification Treatment Plant." Advanced Materials Research 1113 (July 2015): 806–11. http://dx.doi.org/10.4028/www.scientific.net/amr.1113.806.

Full text
Abstract:
Moving Bed Biofilm Reactor (MBBR) systems have been proven as an effective technology for water treatment and have been used for Biochemical Oxygen Demand/Chemical Oxygen Demand (BOD/COD-removal), as well as for nitrification and denitrification in municipal and industrial wastewater treatment. Conventional Activated Sludge (CAS), in particular, has been extensively used in wastewater treatment since decades ago. In this study, physical performance results for both MBBR and CAS were compared and evaluated on laboratory scale basis. The study aims to identify the best system performance in terms of constituent removal efficiency for effective management of the river purification plant. A novel parallel MBBR and CAS pilot plant were fabricated and operated to compare the physical performance of MBBR and CAS. Analysis of the performances for MBBR and CAS show, MBBR has higher COD (85%), AN (75%) and TSS (80%) removal rate compared to CAS COD (53%), AN (53%) and TSS (69%). For BOD removal rate, CAS shows 68% removal rate whereas MBBR shows only 65%. Thus CAS has shown slightly higher removal rate than MBBR. In terms of sludge production, MBBR sludge is less than CAS. Overall performance proves that MBBR has better rate of constituent removal efficiency compared to CAS in the laboratory basis study.
APA, Harvard, Vancouver, ISO, and other styles
10

Andreottola, G., P. Foladori, M. Ragazzi, and F. Tatàno. "Experimental comparison between MBBR and activated sludge system for the treatment of municipal wastewater." Water Science and Technology 41, no. 4-5 (2000): 375–82. http://dx.doi.org/10.2166/wst.2000.0469.

Full text
Abstract:
The aim of the described experimentation was the comparison of a low cost MBBR and an activated sludge system (AS). The MBBR applied system consists of the FLOCOR-RMP® plastic media with a specific surface area of about 160 m2/m3 (internal surface only). The comparison with activated sludge (AS) was performed by two parallel treatment lines. Organic substance removal and nitrification were investigated over a 1-year period. Comparing the results obtained with the two lines, it can be observed AS totCOD removal efficiencies were higher than MBBR ones; the average efficiencies for totCOD removal were 76% for MBBR and 84% for AS. On the contrary, the solCOD removals resulted alike (71% for both systems). In spite of the remarkable variations of wastewater temperature, mainly in winter (range of 5–21°C), the average ammonium removal efficiency resulted 92% for MBBR and 98% for AS. With an ammonium loads up to 1.0 g m2 d−1 (up to 0.12 kg m−3 d−1), nitrification efficiencies in MBBR were more than 98%. At higher loads decrease in the MBBR efficiency was registered; that is related to the increase in the applied COD load.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography