Journal articles on the topic 'MCTS Tree Search Simulation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'MCTS Tree Search Simulation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
CHASLOT, GUILLAUME M. J.-B., MARK H. M. WINANDS, H. JAAP VAN DEN HERIK, JOS W. H. M. UITERWIJK, and BRUNO BOUZY. "PROGRESSIVE STRATEGIES FOR MONTE-CARLO TREE SEARCH." New Mathematics and Natural Computation 04, no. 03 (2008): 343–57. http://dx.doi.org/10.1142/s1793005708001094.
Full textBest, Graeme, Oliver M. Cliff, Timothy Patten, Ramgopal R. Mettu, and Robert Fitch. "Dec-MCTS: Decentralized planning for multi-robot active perception." International Journal of Robotics Research 38, no. 2-3 (2018): 316–37. http://dx.doi.org/10.1177/0278364918755924.
Full textChaudhry, Muhammad Umar, Muhammad Yasir, Muhammad Nabeel Asghar, and Jee-Hyong Lee. "Monte Carlo Tree Search-Based Recursive Algorithm for Feature Selection in High-Dimensional Datasets." Entropy 22, no. 10 (2020): 1093. http://dx.doi.org/10.3390/e22101093.
Full textGuo, Jian, Yaoyao Shi, Zhen Chen, Tao Yu, Bijan Shirinzadeh, and Pan Zhao. "Improved SP-MCTS-Based Scheduling for Multi-Constraint Hybrid Flow Shop." Applied Sciences 10, no. 18 (2020): 6220. http://dx.doi.org/10.3390/app10186220.
Full textFu, Michael C. "Simulation-Based Algorithms for Markov Decision Processes: Monte Carlo Tree Search from AlphaGo to AlphaZero." Asia-Pacific Journal of Operational Research 36, no. 06 (2019): 1940009. http://dx.doi.org/10.1142/s0217595919400098.
Full textLee, Gwangho, Gun Hyuk Jang, Ho Young Kang, and Giltae Song. "Predicting aptamer sequences that interact with target proteins using an aptamer-protein interaction classifier and a Monte Carlo tree search approach." PLOS ONE 16, no. 6 (2021): e0253760. http://dx.doi.org/10.1371/journal.pone.0253760.
Full textGu, Bonwoo, and Yunsick Sung. "Enhanced Reinforcement Learning Method Combining One-Hot Encoding-Based Vectors for CNN-Based Alternative High-Level Decisions." Applied Sciences 11, no. 3 (2021): 1291. http://dx.doi.org/10.3390/app11031291.
Full textDelattre, Sylvain, and Nicolas Fournier. "On Monte-Carlo tree search for deterministic games with alternate moves and complete information." ESAIM: Probability and Statistics 23 (2019): 176–216. http://dx.doi.org/10.1051/ps/2018006.
Full textAyton, Benjamin, Brian Williams, and Richard Camilli. "Measurement Maximizing Adaptive Sampling with Risk Bounding Functions." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 7511–19. http://dx.doi.org/10.1609/aaai.v33i01.33017511.
Full textSpoerer, Kristian. "BI-DIRECTIONAL MONTE CARLO TREE SEARCH." Asia-Pacific Journal of Information Technology and Multimedia 10, no. 01 (2021): 17–26. http://dx.doi.org/10.17576/apjitm-2021-1001-02.
Full textLee, Jongmin, Wonseok Jeon, Geon-Hyeong Kim, and Kee-Eung Kim. "Monte-Carlo Tree Search in Continuous Action Spaces with Value Gradients." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 4561–68. http://dx.doi.org/10.1609/aaai.v34i04.5885.
Full textWang, Linnan, Yiyang Zhao, Yuu Jinnai, Yuandong Tian, and Rodrigo Fonseca. "Neural Architecture Search Using Deep Neural Networks and Monte Carlo Tree Search." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 06 (2020): 9983–91. http://dx.doi.org/10.1609/aaai.v34i06.6554.
Full textVodopivec, Tom, Spyridon Samothrakis, and Branko Ster. "On Monte Carlo Tree Search and Reinforcement Learning." Journal of Artificial Intelligence Research 60 (December 20, 2017): 881–936. http://dx.doi.org/10.1613/jair.5507.
Full textCheng, Yanqiu, Xianbiao Hu, Qing Tang, Hongsheng Qi, and Hong Yang. "Monte Carlo Tree Search-Based Mixed Traffic Flow Control Algorithm for Arterial Intersections." Transportation Research Record: Journal of the Transportation Research Board 2674, no. 8 (2020): 167–78. http://dx.doi.org/10.1177/0361198120919746.
Full textLu, Lina, Wanpeng Zhang, Xueqiang Gu, Xiang Ji, and Jing Chen. "HMCTS-OP: Hierarchical MCTS Based Online Planning in the Asymmetric Adversarial Environment." Symmetry 12, no. 5 (2020): 719. http://dx.doi.org/10.3390/sym12050719.
Full textBaier, Hendrik, and Mark H. M. Winands. "MCTS-Minimax Hybrids with State Evaluations." Journal of Artificial Intelligence Research 62 (June 7, 2018): 193–231. http://dx.doi.org/10.1613/jair.1.11208.
Full textWang, Xiaoxue, Yujie Qian, Hanyu Gao, et al. "Towards efficient discovery of green synthetic pathways with Monte Carlo tree search and reinforcement learning." Chemical Science 11, no. 40 (2020): 10959–72. http://dx.doi.org/10.1039/d0sc04184j.
Full textKim, Beomjoon, Kyungjae Lee, Sungbin Lim, Leslie Kaelbling, and Tomas Lozano-Perez. "Monte Carlo Tree Search in Continuous Spaces Using Voronoi Optimistic Optimization with Regret Bounds." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 06 (2020): 9916–24. http://dx.doi.org/10.1609/aaai.v34i06.6546.
Full textFabbri, André, Frédéric Armetta, Éric Duchêne, and Salima Hassas. "A Self-Acquiring Knowledge Process for MCTS." International Journal on Artificial Intelligence Tools 25, no. 01 (2016): 1660007. http://dx.doi.org/10.1142/s0218213016600071.
Full textAgárdi, Anita, and Károly Nehéz. "PARALLEL MACHINE SCHEDULING WITH MONTE CARLO TREE SEARCH." Acta Polytechnica 61, no. 2 (2021): 307–12. http://dx.doi.org/10.14311/ap.2021.61.0307.
Full textBrown, Christopher, Vladimir Janjic, M. Goli, and J. McCall. "Programming Heterogeneous Parallel Machines Using Refactoring and Monte–Carlo Tree Search." International Journal of Parallel Programming 48, no. 4 (2020): 583–602. http://dx.doi.org/10.1007/s10766-020-00665-z.
Full textOntañón, Santiago. "Combinatorial Multi-armed Bandits for Real-Time Strategy Games." Journal of Artificial Intelligence Research 58 (March 29, 2017): 665–702. http://dx.doi.org/10.1613/jair.5398.
Full textHostetler, Jesse, Alan Fern, and Thomas Dietterich. "Sample-Based Tree Search with Fixed and Adaptive State Abstractions." Journal of Artificial Intelligence Research 60 (December 14, 2017): 717–77. http://dx.doi.org/10.1613/jair.5483.
Full textHaraszti, Sándor, Bálint Kővári, Máté Kolat, et al. "Area Scanning with Reinforcement Learning and MCTS in Smart City Applications." Repüléstudományi Közlemények 32, no. 2 (2020): 137–53. http://dx.doi.org/10.32560/rk.2020.2.10.
Full textWu, Keshou, Guanfeng Liu, and Junwen Lu. "Graph-Based Node Finding in Big Complex Contextual Social Graphs." Complexity 2020 (February 26, 2020): 1–13. http://dx.doi.org/10.1155/2020/7909826.
Full textThanh, Vo Hong, and Roberto Zunino. "Adaptive tree-based search for stochastic simulation algorithm." International Journal of Computational Biology and Drug Design 7, no. 4 (2014): 341. http://dx.doi.org/10.1504/ijcbdd.2014.066542.
Full textKucharski, Bryon, Azad Deihim, and Mehmet Ergezer. "Machine Learning Based Heuristic Search Algorithms to Solve Birds of a Feather Card Game." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 9656–61. http://dx.doi.org/10.1609/aaai.v33i01.33019656.
Full textCheng, Yuxia, Zhiwei Wu, Kui Liu, Qing Wu, and Yu Wang. "Smart DAG Tasks Scheduling between Trusted and Untrusted Entities Using the MCTS Method." Sustainability 11, no. 7 (2019): 1826. http://dx.doi.org/10.3390/su11071826.
Full textKumagai, Kaori, Ichiro Kobayashi, Daichi Mochihashi, Hideki Asoh, Tomoaki Nakamura, and Takayuki Nagai. "Natural Language Generation Using Monte Carlo Tree Search." Journal of Advanced Computational Intelligence and Intelligent Informatics 22, no. 5 (2018): 777–85. http://dx.doi.org/10.20965/jaciii.2018.p0777.
Full textTarrataca, Luís, and Andreas Wichert. "Tree search and quantum computation." Quantum Information Processing 10, no. 4 (2010): 475–500. http://dx.doi.org/10.1007/s11128-010-0212-z.
Full textLim, Hyesook, Ha Chu, and Changhoon Yim. "Hierarchical Binary Search Tree for Packet Classification." IEEE Communications Letters 11, no. 8 (2007): 689–91. http://dx.doi.org/10.1109/lcomm.2007.070389.
Full textShelar, Vaibhav, Selamani Subramani, and Jebaseelan Davidson. "R-tree data structure implementation for Computer Aided Engineering (CAE) tools." International Journal for Simulation and Multidisciplinary Design Optimization 12 (2021): 6. http://dx.doi.org/10.1051/smdo/2021005.
Full textGuo, Zhenyang, Xuan Wang, Shuhan Qi, Tao Qian, and Jiajia Zhang. "Heuristic Sensing: An Uncertainty Exploration Method in Imperfect Information Games." Complexity 2020 (October 24, 2020): 1–9. http://dx.doi.org/10.1155/2020/8815770.
Full textCarvalho, Alda, Nuno Crato, and Carla Gomes. "A generative power-law search tree model." Computers & Operations Research 36, no. 8 (2009): 2376–86. http://dx.doi.org/10.1016/j.cor.2008.08.017.
Full textXu, Kui, Zhe Wang, Jianping Shi, Hongsheng Li, and Qiangfeng Cliff Zhang. "A2-Net: Molecular Structure Estimation from Cryo-EM Density Volumes." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 1230–37. http://dx.doi.org/10.1609/aaai.v33i01.33011230.
Full textZhang, Jia Jia, Xuan Wang, Lin Yao, Jing Peng Li, and Xue Dong Shen. "Modified UCT Algorithm with Risk Dominance Methods in Imperfect Information Game." Applied Mechanics and Materials 610 (August 2014): 367–76. http://dx.doi.org/10.4028/www.scientific.net/amm.610.367.
Full textCheng, Yanqiu, Chenxi Chen, Xianbiao Hu, Kuanmin Chen, Qing Tang, and Yang Song. "Enhancing Mixed Traffic Flow Safety via Connected and Autonomous Vehicle Trajectory Planning with a Reinforcement Learning Approach." Journal of Advanced Transportation 2021 (June 12, 2021): 1–11. http://dx.doi.org/10.1155/2021/6117890.
Full textW. DeBry, Richard G. Olmstead, Ronald. "A Simulation Study of Reduced Tree-Search Effort in Bootstrap Resampling Analysis." Systematic Biology 49, no. 1 (2000): 171–79. http://dx.doi.org/10.1080/10635150050207465.
Full textHu, Zhong Yue. "Research on Anti-Collision Algorithm of Short Distance Data Communication Based on Binary-Tree Disassembly." Applied Mechanics and Materials 686 (October 2014): 354–58. http://dx.doi.org/10.4028/www.scientific.net/amm.686.354.
Full textMagid, Evgeni, Takashi Tsubouchi, Eiji Koyanagi, and Tomoaki Yoshida. "Building a Search Tree for a Pilot System of a Rescue Search Robot in a Discretized Random Step Environment." Journal of Robotics and Mechatronics 23, no. 4 (2011): 567–81. http://dx.doi.org/10.20965/jrm.2011.p0567.
Full textNéron, Emmanuel, Fabrice Tercinet, and Francis Sourd. "Search tree based approaches for parallel machine scheduling." Computers & Operations Research 35, no. 4 (2008): 1127–37. http://dx.doi.org/10.1016/j.cor.2006.07.008.
Full textShin, Kento, Duy Phuoc Tran, Kazuhiro Takemura, Akio Kitao, Kei Terayama, and Koji Tsuda. "Enhancing Biomolecular Sampling with Reinforcement Learning: A Tree Search Molecular Dynamics Simulation Method." ACS Omega 4, no. 9 (2019): 13853–62. http://dx.doi.org/10.1021/acsomega.9b01480.
Full textWang, Danping, Kunyuan Hu, Lianbo Ma, Maowei He, and Hanning Chen. "Multispecies Coevolution Particle Swarm Optimization Based on Previous Search History." Discrete Dynamics in Nature and Society 2017 (2017): 1–22. http://dx.doi.org/10.1155/2017/5193013.
Full textYang, Zhen Yu, Juan Xing, and Xin Gang Wang. "Segment Slot Partial Competitive Anti-Collision Algorithm for RFID System." Applied Mechanics and Materials 148-149 (December 2011): 753–56. http://dx.doi.org/10.4028/www.scientific.net/amm.148-149.753.
Full textForster, Florian, and Andreas Bortfeldt. "A tree search procedure for the container relocation problem." Computers & Operations Research 39, no. 2 (2012): 299–309. http://dx.doi.org/10.1016/j.cor.2011.04.004.
Full textCruz Chvez, Marco Antonio, and Alina Martnez Oropeza. "B-Tree Algorithm Complexity Analysis to Evaluate the Feasibility of its Application in the University Course Timetabling Problem." Journal of Artificial Intelligence and Soft Computing Research 3, no. 4 (2013): 251–63. http://dx.doi.org/10.2478/jaiscr-2014-0018.
Full textBai, Le Qiang, and Xi Yang. "An Parallel Anti-Collision Algorithm Based on Adaptive Multi-Tree Search." Applied Mechanics and Materials 556-562 (May 2014): 3707–10. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.3707.
Full textZheng, Lei, Jianbo Hu, and Shukui Xu. "Marine Search and Rescue of UAV in Long-Distance Security Modeling Simulation." Polish Maritime Research 24, s3 (2017): 192–99. http://dx.doi.org/10.1515/pomr-2017-0122.
Full textConsoli, S., K. Darby-Dowman, N. Mladenović, and J. A. Moreno Pérez. "Greedy Randomized Adaptive Search and Variable Neighbourhood Search for the minimum labelling spanning tree problem." European Journal of Operational Research 196, no. 2 (2009): 440–49. http://dx.doi.org/10.1016/j.ejor.2008.03.014.
Full textWinblad, Kjell, Konstantinos Sagonas, and Bengt Jonsson. "Lock-free Contention Adapting Search Trees." ACM Transactions on Parallel Computing 8, no. 2 (2021): 1–38. http://dx.doi.org/10.1145/3460874.
Full text