Academic literature on the topic 'Mean-field games'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mean-field games.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mean-field games"

1

Lasry, Jean-Michel, and Pierre-Louis Lions. "Mean field games." Japanese Journal of Mathematics 2, no. 1 (2007): 229–60. http://dx.doi.org/10.1007/s11537-007-0657-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tembine, Hamidou. "Mean-field-type games." AIMS Mathematics 2, no. 4 (2017): 706–35. http://dx.doi.org/10.3934/math.2017.4.706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Subramanian, Sriram Ganapathi, Matthew E. Taylor, Mark Crowley, and Pascal Poupart. "Decentralized Mean Field Games." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 9 (2022): 9439–47. http://dx.doi.org/10.1609/aaai.v36i9.21176.

Full text
Abstract:
Multiagent reinforcement learning algorithms have not been widely adopted in large scale environments with many agents as they often scale poorly with the number of agents. Using mean field theory to aggregate agents has been proposed as a solution to this problem. However, almost all previous methods in this area make a strong assumption of a centralized system where all the agents in the environment learn the same policy and are effectively indistinguishable from each other. In this paper, we relax this assumption about indistinguishable agents and propose a new mean field system known as De
APA, Harvard, Vancouver, ISO, and other styles
4

Ullmo, Denis, Igor Swiecicki, and Thierry Gobron. "Quadratic mean field games." Physics Reports 799 (April 2019): 1–35. http://dx.doi.org/10.1016/j.physrep.2019.01.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tembine, Hamidou. "Nonasymptotic Mean-Field Games." IFAC Proceedings Volumes 47, no. 3 (2014): 8989–94. http://dx.doi.org/10.3182/20140824-6-za-1003.01869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lions, Pierre-Louis, and Panagiotis Souganidis. "Extended mean-field games." Rendiconti Lincei - Matematica e Applicazioni 31, no. 3 (2020): 611–25. http://dx.doi.org/10.4171/rlm/907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tembine, Hamidou. "Nonasymptotic Mean-Field Games." IEEE Transactions on Cybernetics 44, no. 12 (2014): 2744–56. http://dx.doi.org/10.1109/tcyb.2014.2315171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bauso, Dario, Hamidou Tembine, and Tamer Başar. "Robust Mean Field Games." Dynamic Games and Applications 6, no. 3 (2015): 277–303. http://dx.doi.org/10.1007/s13235-015-0160-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cui, Kai, Wasiur R. KhudaBukhsh, and Heinz Koeppl. "Hypergraphon mean field games." Chaos: An Interdisciplinary Journal of Nonlinear Science 32, no. 11 (2022): 113129. http://dx.doi.org/10.1063/5.0093758.

Full text
Abstract:
We propose an approach to modeling large-scale multi-agent dynamical systems allowing interactions among more than just pairs of agents using the theory of mean field games and the notion of hypergraphons, which are obtained as limits of large hypergraphs. To the best of our knowledge, ours is the first work on mean field games on hypergraphs. Together with an extension to a multi-layer setup, we obtain limiting descriptions for large systems of non-linear, weakly interacting dynamical agents. On the theoretical side, we prove the well-foundedness of the resulting hypergraphon mean field game,
APA, Harvard, Vancouver, ISO, and other styles
10

Yin, Huibing, Prashant G. Mehta, Sean P. Meyn, and Uday V. Shanbhag. "Learning in Mean-Field Games." IEEE Transactions on Automatic Control 59, no. 3 (2014): 629–44. http://dx.doi.org/10.1109/tac.2013.2287733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Mean-field games"

1

Capuani, Rossana. "Mean Field Games with State Constraints." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLED006.

Full text
Abstract:
L’objet de cette thèse est l’étude des jeux champs moyen déterministes avec contrainte sur l’état. La théorie des jeux à champ moyen (mean field games (MFG)), initiée par Lasry et Lions en 2006, étudie des problèmes d’optimisation pour grandes populations d'agents dans un milieu dynamique. L'analyse mathématique de tels problèmes s'est jusqu'à présent concentrée sur des situations dans lequel les agents évoluent dans tout l’espace. En pratique, cependant, les agents ont des contraintes sur l'état. Le but de la thèse est celle d'étudier l'impact de ces contraintes sur l'analyse des systèmes de
APA, Harvard, Vancouver, ISO, and other styles
2

Butano, Matteo. "Mean-Field Games Applied to Pedestrian Dynamics." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP064.

Full text
Abstract:
Cette thèse explore la dynamique des piétons à travers des observations expérimentales et des simulations, en se concentrant sur l'aspect opérationnel. Des expériences avec des foules contrôlées révèlent que les piétons manifestent des comportements anticipatoires qui dévient du comportement granulaire. Cette thèse remet en question deux modèles existants de dynamique des piétons, de complexité différente, en montrant leurs limites à capturer les comportements anticipatoires observés. Ces modèles sont jugés trop myopes, se concentrant sur des décisions à court terme sans tenir compte de manièr
APA, Harvard, Vancouver, ISO, and other styles
3

GHIO, Maddalena. "Mean-Field games with absorption and singular controls." Doctoral thesis, Scuola Normale Superiore, 2021. http://hdl.handle.net/11384/108480.

Full text
Abstract:
The first part of the work is devoted to mean-field games with absorption, a class of games that can be viewed as natural limits of symmetric stochastic differential games with a large number of players who, interacting through a mean-field, leave the game as soon as their private states hit a given boundary. In most of the literature on mean-field games, all players stay in the game until the end of the period, while in many applications, especially in economics and finance, it is natural to have a mechanism deciding when a player has to leave. Such a mechanism can be modelled by intro
APA, Harvard, Vancouver, ISO, and other styles
4

Cecchin, Alekos. "Finite State N-player and Mean Field Games." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3424949.

Full text
Abstract:
Mean field games represent limit models for symmetric non-zero sum dynamic games when the number N of players tends to infinity. In this thesis, we study mean field games and corresponding N- player games in continuous time over a finite time horizon where the position of each agent belongs to a finite state space. As opposed to previous works on finite statemean field games, we use a probabilistic representation of the system dynamics in terms of stochastic differential equations driven by Poisson random measures. Firstly, under mild assumptions, we prove existence of solutions to the mean fi
APA, Harvard, Vancouver, ISO, and other styles
5

Basna, Rani. "Mean Field Games for Jump Non-Linear Markov Process." Doctoral thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-55852.

Full text
Abstract:
The mean-field game theory is the study of strategic decision making in very large populations of weakly interacting individuals. Mean-field games have been an active area of research in the last decade due to its increased significance in many scientific fields. The foundations of mean-field theory go back to the theory of statistical and quantum physics. One may describe mean-field games as a type of stochastic differential game for which the interaction between the players is of mean-field type, i.e the players are coupled via their empirical measure. It was proposed by Larsy and Lions and
APA, Harvard, Vancouver, ISO, and other styles
6

Mészáros, Alpár Richárd. "Density constraints in optimal transport, PDEs and mean field games." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112155/document.

Full text
Abstract:
Movité par des questions posées par F. Santambrogio, cette thèse est dédiée à l'étude de jeux à champ moyen et des modèles impliquant le transport optimal avec contraintes de densité. A fin d'étudier des modèles de MFG d'ordre deux dans l'esprit des travaux de F. Santambrogio, on introduit en tant que brique élementaire un modèle diffusif de mouvement de foule avec contraintes de densité (en généralisant dans une sense les travaux de Maury et al.). Le modèle est décrit par l'évolutions de la densité de la foule, qui peut être vu comme une courbe dans l'espace de Wasserstein. Du point de vu EDP
APA, Harvard, Vancouver, ISO, and other styles
7

Klinger, Lu. "A Mean Field Game Analysis of Sponsored Search Auctions." Thesis, The University of Sydney, 2019. http://hdl.handle.net/2123/20248.

Full text
Abstract:
In online sponsored searches, the advertisers participate in a sequence of multi-keyword sponsored search auctions, and their bidding behaviour can be analysed as a non-cooperative stochastic differential game. Each advertiser has a two-dimensional cost and valuation state. The underlying cost dynamics are modelled by a Markovian deterministic process driven by an optimal feedback control based on an analysis of competitors' behaviour. The underlying valuation dynamics are modelled by a stationary stochastic process, which can be estimated from the users' behaviour by using statistical tools.
APA, Harvard, Vancouver, ISO, and other styles
8

MENDICO, CRISTIAN. "Ergodic behavior of control systems and first-order mean field games." Doctoral thesis, Gran Sasso Science Institute, 2021. http://hdl.handle.net/20.500.12571/23542.

Full text
Abstract:
The work in this thesis concerns the analysis of first-order mean field game (MFG) systems with control of acceleration and the study of the long time-average behavior of control systems of sub-Riemannian type. More precisely, in the first part we begin by studying the well-posedness of the MFG system associated with a control problem with linear state equation. In particular, via a relaxed approach, we prove the existence and the uniqueness of mild solutions and we also study their regularity. Then, we focus on the MFG system with control of the acceleration, a particular case of the one abov
APA, Harvard, Vancouver, ISO, and other styles
9

Cirant, Marco A. "Nonlinear PDEs in ergodic control, Mean Field Games and prescribed curvature problems." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423511.

Full text
Abstract:
This thesis is concerned with nonlinear elliptic PDEs and system of PDEs arising in various problems of stochastic control, differential games, specifically Mean Field Games, and differential geometry. It is divided in three parts. The first part is focused on stochastic ergodic control problems where both the state and the control space is R^d. The interest is in giving conditions on the fixed drift, the cost function and the Lagrangian function that are sufficient for synthesizing an optimal control of feedback type. In order to obtain such conditions, an approach that combines the Lyapunov
APA, Harvard, Vancouver, ISO, and other styles
10

Mouzouni, Charafeddine. "Topic in mean field games theory & applications in economics and quantitative finance." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEC006.

Full text
Abstract:
Les systèmes de jeux à champ moyen (MFG) décrivent des configurations d’équilibre dans des jeux différentiels avec un nombre infini d’agents infinitésimaux. Cette thèse s’articule autour de trois contributions différentes la théorie des jeux à champ moyen. Le but principal est d’explorer des applications et des extensions de cette théorie, et de proposer de nouvelles approches et idées pour traiter les questions mathématiques sous-jacentes. Le premier chapitre introduit en premier lieu les concepts et idées clés que nous utilisons tout au long de la thèse. Nous introduisons le problème MFG et
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Mean-field games"

1

Delarue, François, ed. Mean Field Games. American Mathematical Society, 2021. http://dx.doi.org/10.1090/psapm/078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Achdou, Yves, Pierre Cardaliaguet, François Delarue, Alessio Porretta, and Filippo Santambrogio. Mean Field Games. Edited by Pierre Cardaliaguet and Alessio Porretta. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59837-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bensoussan, Alain, Jens Frehse, and Phillip Yam. Mean Field Games and Mean Field Type Control Theory. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8508-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Apaloo, Joseph, and Bruno Viscolani, eds. Advances in Dynamic and Mean Field Games. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70619-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Carmona, René, and François Delarue. Probabilistic Theory of Mean Field Games with Applications I. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-58920-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Carmona, René, and François Delarue. Probabilistic Theory of Mean Field Games with Applications II. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-56436-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sun, Jingrui, and Jiongmin Yong. Stochastic Linear-Quadratic Optimal Control Theory: Differential Games and Mean-Field Problems. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48306-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Soret, Agathe Camille. Mean field games with heterogeneous players: From portfolio optimization to network effects. [publisher not identified], 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bensoussan, Alain. Mean Field Games and Mean Field Type Control Theory. Springer London, Limited, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mean Field Games And Mean Field Type Control Theory. Springer-Verlag New York Inc., 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Mean-field games"

1

Caines, Peter E., Minyi Huang, and Roland P. Malhamé. "Mean Field Games." In Handbook of Dynamic Game Theory. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-44374-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Caines, Peter E., Minyi Huang, and Roland P. Malhamé. "Mean Field Games." In Handbook of Dynamic Game Theory. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-27335-8_7-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Caines, Peter E. "Mean Field Games." In Encyclopedia of Systems and Control. Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-5058-9_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Caines, Peter E. "Mean Field Games." In Encyclopedia of Systems and Control. Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5102-9_30-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Caines, Peter E. "Mean Field Games." In Encyclopedia of Systems and Control. Springer London, 2019. http://dx.doi.org/10.1007/978-1-4471-5102-9_30-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Caines, Peter E. "Mean Field Games." In Encyclopedia of Systems and Control. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-44184-5_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barreiro-Gomez, Julian, and Hamidou Tembine. "Mean-Field Games." In Mean-Field-Type Games for Engineers. CRC Press, 2021. http://dx.doi.org/10.1201/9781003098607-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bensoussan, Alain, Jens Frehse, and Phillip Yam. "The Mean Field Games." In Mean Field Games and Mean Field Type Control Theory. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8508-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Banez, Reginald A., Lixin Li, Chungang Yang, and Zhu Han. "Introduction to Mean Field Games and Mean-Field-Type Games." In Wireless Networks. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86905-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Benamou, Jean-David, Guillaume Carlier, and Filippo Santambrogio. "Variational Mean Field Games." In Active Particles, Volume 1. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49996-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Mean-field games"

1

Duncan, Tyrone E., Bozenna Pasik-Duncan, and Hamidou Tembine. "Mean-Field-Type Games driven by Rosenblatt Processes." In 2024 10th International Conference on Control, Decision and Information Technologies (CoDIT). IEEE, 2024. http://dx.doi.org/10.1109/codit62066.2024.10708394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baar, Wouter, and Dario Bauso. "Mean Field Games on Prosumers." In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9030034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hanif, Ahmed Farhan, Hamidou Tembine, Mohamad Assaad, and Djamal Zeghlache. "Cloud networking mean field games." In 2012 IEEE 1st International Conference on Cloud Networking (CLOUDNET). IEEE, 2012. http://dx.doi.org/10.1109/cloudnet.2012.6483654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vasal, Deepanshu. "Sequential Decomposition of Mean-Field Games." In 2020 American Control Conference (ACC). IEEE, 2020. http://dx.doi.org/10.23919/acc45564.2020.9147646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stella, Leonardo, Fabio Bagagiolo, Dario Bauso, and Raffaele Pesenti. "Bandwagon effect in mean-field games." In 2013 IEEE 52nd Annual Conference on Decision and Control (CDC). IEEE, 2013. http://dx.doi.org/10.1109/cdc.2013.6760044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gomes, Diogo, Roberto M. Velho, and Marie-Therese Wolfram. "Dual two-state mean-field games." In 2014 IEEE 53rd Annual Conference on Decision and Control (CDC). IEEE, 2014. http://dx.doi.org/10.1109/cdc.2014.7039803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tembine, Hamidou. "Risk-sensitive mean field stochastic games." In 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC 2011). IEEE, 2011. http://dx.doi.org/10.1109/cdc.2011.6160218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yin, Huibing, Prashant G. Mehta, Sean P. Meyn, and Uday V. Shanbhag. "Learning in mean-field oscillator games." In 2010 49th IEEE Conference on Decision and Control (CDC). IEEE, 2010. http://dx.doi.org/10.1109/cdc.2010.5717142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sen, Nevroz, and Peter E. Caines. "Mean field games with partially observed major player and stochastic mean field." In 2014 IEEE 53rd Annual Conference on Decision and Control (CDC). IEEE, 2014. http://dx.doi.org/10.1109/cdc.2014.7039804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tembine, H., R. Tempone, and P. Vilanova. "Mean field games for cognitive radio networks." In 2012 American Control Conference - ACC 2012. IEEE, 2012. http://dx.doi.org/10.1109/acc.2012.6314643.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Mean-field games"

1

Alvarez, Fernando, Francesco Lippi, and Takis Souganidis. Price Setting with Strategic Complementarities as a Mean Field Game. National Bureau of Economic Research, 2022. http://dx.doi.org/10.3386/w30193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!