Academic literature on the topic 'Mean Opinion Score'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mean Opinion Score.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mean Opinion Score"
Barazzetta, Massimo, Michele Colombo, Luca Bastianelli, Franco Moglie, Valter Mariani Primiani, Riccardo Diamanti, and Davide Micheli. "Testing of VoLTE mean opinion score in reverberation chambers." IET Science, Measurement & Technology 14, no. 8 (October 1, 2020): 949–54. http://dx.doi.org/10.1049/iet-smt.2019.0385.
Full textA. El-Saleh, Ayman, Abdulraqeb Alhammadi, Ibraheem Shayea, Azizul Azizan, and Wan Haslina Hassan. "Mean Opinion Score Estimation for Mobile Broadband Networks Using Bayesian Networks." Computers, Materials & Continua 72, no. 3 (2022): 4571–87. http://dx.doi.org/10.32604/cmc.2022.024642.
Full textStreijl, Robert C., Stefan Winkler, and David S. Hands. "Mean opinion score (MOS) revisited: methods and applications, limitations and alternatives." Multimedia Systems 22, no. 2 (December 28, 2014): 213–27. http://dx.doi.org/10.1007/s00530-014-0446-1.
Full textDemirsoy, Nilüfer, Hülya Öztürk, and Nurdan Ergün Acar. "A Cross-Sectional Study: Patient Privacy According to Doctors and Nurses." Nursing Science Quarterly 34, no. 2 (March 22, 2021): 114–22. http://dx.doi.org/10.1177/0894318420987171.
Full textKumar, Basant, S. P. Singh, Anand Mohan, and Animesh Anand. "Performance of Quality Metrics for Compressed Medical Images Through Mean Opinion Score Prediction." Journal of Medical Imaging and Health Informatics 2, no. 2 (June 1, 2012): 188–94. http://dx.doi.org/10.1166/jmihi.2012.1083.
Full textTiotsop, Lohic Fotio, Tomas Mizdos, Miroslav Uhrina, Peter Pocta, Marcus Barkowsky, and Enrico Masala. "Predicting Single Observer’s Votes from Objective Measures using Neural Networks." Electronic Imaging 2020, no. 11 (January 26, 2020): 130–1. http://dx.doi.org/10.2352/issn.2470-1173.2020.11.hvei-130.
Full textPritha, R. Thamil, and Dr T. Menakadevi. "Mean Opinion Score Based Handover Protocol with Particle Swarm Optimization for Multi Objective Constraints." IOSR Journal of Electronics and Communication Engineering 9, no. 2 (2014): 31–40. http://dx.doi.org/10.9790/2834-09223140.
Full textYashwant, Aniruddh V., Balamani Arayambath, Vikneshan Murugaboopathy, Pradeep Babu Kommi, Karthikshree V. Prashad, and U. B. Rajasekaran. "Comparative Evaluation of the Effectiveness of Blended Learning Versus Traditional Learning in Cephalometrics for Undergraduates." Journal of Indian Orthodontic Society 54, no. 1 (January 2020): 24–30. http://dx.doi.org/10.1177/0301574219883873.
Full textYadav, Renu, Soumitra Mukhopadhyay, and Subodh Kumar Yadav. "EVALUATION OF TUTOR PERFORMANCE IN PROBLEM BASED LEARNING: RATING THE SKILL ON STUDENTS PERSPECTIVE." Journal of Chitwan Medical College 10, no. 4 (December 16, 2020): 96–99. http://dx.doi.org/10.54530/jcmc.180.
Full textImsa-ard, Pariwat. "Reading Better?: Enhancing Thai EFL Secondary School Students' Reading Comprehension Abilities with the Use of Graphic Organizers." English Language Teaching 15, no. 5 (March 30, 2022): 1. http://dx.doi.org/10.5539/elt.v15n5p1.
Full textDissertations / Theses on the topic "Mean Opinion Score"
Barison, Dherik. "Avaliação da qualidade de chamadas VoIP cifradas usando Mean opinion score e Traffic control." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/259456.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-17T15:12:52Z (GMT). No. of bitstreams: 1 Barison_Dherik_M.pdf: 8956445 bytes, checksum: 9549370d08573863a0f2bab25d076945 (MD5) Previous issue date: 2010
Resumo: A proposta desta dissertação é avaliar a qualidade de chamadas VoIP cifradas com diferentes algoritmos de criptografia através do OpenVPN, com o objetivo de identificar as diferenças de resultados entre os algoritmos de criptografia e também entre as chamadas cifradas e as não cifradas. Esta avaliação ocorrerá utilizando o MOS (Mean Opinion Score), um método que permite indicar a satisfação do usuário quanto a qualidade da comunicação. As chamadas VoIP cifradas irão ocorrer em diferentes cenários de rede que apresentam diversos problemas, tais como perda de pacotes, pacotes fora de seqüência, atraso, largura de banda de rede, etc. Estes cenários foram baseados em algumas situações reais de uso e serão emulados através da ferramenta Traffic Control do Linux, capaz de manipular os pacotes enviados por qualquer uma das interfaces de rede. Os cenários também terão diferentes larguras de banda de rede, para avaliar a influência das mesmas em algumas situações.
Abstract: The purpose of this work is to evaluate the quality of encrypted VoIP calls with different cipher algorithms through OpenVPN software, in order to identify differences in results between encryption algorithms and also differences between non-encrypted and encrypted calls. This evaluation will do by the MOS (Mean Opinion Score), a method to indicate user satisfaction of communication quality. The encrypted VoIP calls will occur in different network scenarios that present different problems, like packet loss, out-of-order packets, delay, network bandwidths, etc. These scenarios were based on some real situations of use and will be emulated with the Traffic Control tool from Linux, able of handling the packages sent by any available network interface. The scenarios will also have different network bandwidths to assess its importance in some situations.
Mestrado
Telecomunicações e Telemática
Mestre em Engenharia Elétrica
Darisipudi, Veeravenkata Naga S. Maniteja. "Sustainable Throughput – QoE Perspective." Thesis, Blekinge Tekniska Högskola, Institutionen för kommunikationssystem, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14044.
Full textITAKURA, Fumitada, Kazuya TAKEDA, Katsunobu ITOU, and Weifeng LI. "Single-Channel Multiple Regression for In-Car Speech Enhancement." Institute of Electronics, Information and Communication Engineers, 2006. http://hdl.handle.net/2237/15051.
Full textZhen, Zuguang. "The effect of mobile cellular network performance and contextual factors on smartphone users’ satisfaction : A study on QoE evaluation for YouTube video streaming via CrowdSourcing." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-177566.
Full textVarisetty, Tilak, and Praveen Edara. "Systematic Overview of Savings versus Quality for H.264/SVC." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2455.
Full textEfterfrågan på effektiva video kodningstekniker har ökat under de senaste åren, vilket resulterar i utvecklingen av olika tekniker videokomprimering. SVC (Scalable Video Coding) är den senaste ändringen av H.264/AVC (Advanced Video Coding), vilket ger en ny dimension genom att möjligheten att koda en videoström till en kombination av olika sub strömmar som är skalbara i områden som motsvarar rumslig upplösning, tidsupplösning och kvalitet. Introduktion av skalbarhet aspekten är en effektiv video kodningsteknik i ett nätverk scenario där kunden kan avkoda sub strömmen beroende på den tillgängliga bandbredden i nätverket. En elegant nedbrytning i videokvaliteten förväntas när någon av den rumsliga, tidsmässiga eller kvaliteten skiktet avlägsnas. Fortfarande mängden nedbrytning i videokvalitet måste mätas i termer "Quality of Experience" (QoE) från användarens perspektiv. För att mäta försämring i video-kvalitet, har videoströmmar består av olika rumsliga och tidsmässiga skikt hämtats och ansträngningar har lagts för att ta bort varje lager från ett högre beroende lager eller förbättrande lagret och slutar upp med den lägsta beroendet lagret eller basen skikt. Extraktion av ett tidsmässigt nedsamplas lager hade problem med ram interpolation och för att övervinna detta, var temporal interpolering används. På liknande sätt har en rumslig nedsamplas skikt har uppsamplas i rumsdomänen för att jämföra med den ursprungliga strömmen. Senare har en objektiv videokvalitet bedömning gjorts genom att jämföra den extraherade underströmmen med färre lager som nedsamplade både rumsligt och tidsmässigt med den ursprungliga strömmen innehållande alla lager. De genomsnittliga yttrande poäng (MOS) erhölls från objektivt verktyg som heter Perceptuell utvärdering av Videokvalitet (PEVQ). Experimentet utförs för varje skikt och även för olika test video. Subjektiva tester utfördes också för att utvärdera användarupplevelsen. Resultaten ger rekommendationer till SVC kapabel router om videokvaliteten för varje lager och därmed nätverket kodomvandlaren kan överföra ett visst lager beroende på nätverksförhållanden och kapacitet avkodnings anordningen.
Tilak Varisetty, 518, Gamlainfartsvägen, Annebo, Karlskrona -37141, Mobil: 0723060131
Diallo, Mamadou Tourad. "Quality of experience and video services adaptation." Thesis, Evry, Institut national des télécommunications, 2015. http://www.theses.fr/2015TELE0010/document.
Full textWith the network heterogeneity and increasing demand of multimedia services, Quality of Experience (QoE) becomes a crucial determinant of the success or failure of these services. In this thesis, we first propose to analyze the impact of quality metrics on user engagement, in order to understand the effects of video metrics (video startup time, average bitrate, buffering ratio) and content popularity on user engagement. Our results show that video buffering and content popularity are critical parameters which strongly impacts the end-user’s satisfaction and user engagement, while the video startup time appears as less significant. On other hand, we consider subjective approaches such as the Mean Opinion Score (MOS) for evaluating QoE, in which users are required to give their assessment according to contextual information. A detailed statistical analysis of our study shows the existence of non-trivial parameters impacting MOS (the type of device and the content type). We propose mathematical models to develop functional relationships between the QoE and the context information which in turn permits us to estimate the QoE. A video content optimization technique called MDASH (for MOS Dynamic Adaptive Streaming over HTTP) is proposed, which improves the perceived QoE for different video sessions sharing the same local network, while taking QoE fairness among users as a leitmotiv. We also propose a utility-based approach for video delivery optimization, in which a global utility function is computed based on different constraints (e.g. target strategies coming from the actors of the delivery chain)
Aziz, Hussein. "Streaming Video over Unreliable and Bandwidth Limited Networks." Doctoral thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-00560.
Full textAdebomi, OYEKANLU Emmanuel, and JOHN Samson Mwela. "Impact of Packet Losses on the Quality of Video Streaming." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4098.
Full textBílek, Petr. "Měření kvality telefonních hovorů u pobočkové ústředny Asterisk." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-218970.
Full textRamadhani, Uri Arta. "Evaluation of the Profitability of Quality of Experience-based Resource Allocation Deployment in LTE Network : A Techno-economic Assessment based on Quality of Experience in Video Traffic." Thesis, KTH, Radio Systems Laboratory (RS Lab), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-218073.
Full textDen nuvarande mobiltelefonimarknaden kännetecknas av svag tillväxt av nya kunder men ett ökat nyttjande bland existerande kunder av företagens tjänster. Kundlojalitet har blivit en avgörande faktor för att uppnå en stark marknadsposition. Kundernas upplevda kvalitet utav mobiltjänsterna behöver upprätthållas på en hög nivå för att tillfredställa denna lojalitet. Att applicera en upplevad kvalitet (QoE) metod i en radio resurs kan vara ett medel till att förbättra kundernas upplevda kvalitet av mobiltj änsten. För att undersöka ifall en sådan tjänst är lönsam är det dock nödvändigt att en lönsamhetskalkyl genomförs, där investeringskostnad och systemets driftkostnad vägs mot eventuella intäkter. En lönsamhetsbedömning av QoE-baserad resursallokering krävs som grund för mobiloperatören att förutse deras potentiella fördelar med QoE-baserad resursschemaläggning. Denna uppsats undersöker lönsamheten av att implementera QoE i termer av förlorade intäkter, jämfört med proportionell rättvis (PF) schemaläggning, i att leverera en videoströmservice. I QoE-baserad RRM användes buffertprocentandel som användes av användarna i resursallokeringsprocessen. De två olika systemen simulerades genom att använda olika antal basstationer i mobilnätverkskonfigurationen. Användarnöjdhet kvantifierades genom att låta användarna betygsätta tjänsten, detta värde användes därefter till att uppskatta hur många av kunderna som sannolikt ej skulle återanvända tjänsten. En lönsamhetskalkyl genomfördes genom att prediktera förlorade intäkter med avseende på kunderna som ej skulle återanvända tjänsten. Resultaten från simulerings- och lönsamhetsberäkningen visade att även om QoE erbjuder en högre kundnöjdhet av tjänsten och tillfredsställelse för er basstationer, så leder inte en QoE-implementering till signikanta fördelar för nätverket i termer av förlorade intäkter och investeringskostnader jämfört med ett PF schemaläggare. Detta indikerar att om ett företags mål är att höja kundlojaliteten, då skall företaget applicera en PF schemaläggare istället för QoE.
Books on the topic "Mean Opinion Score"
Keane, Adrian, and Paul McKeown. 1. Introduction. Oxford University Press, 2018. http://dx.doi.org/10.1093/he/9780198811855.003.0001.
Full textFischer, Nick. John Bond Trevor, Radicals, Eugenics, and Immigration. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252040023.003.0006.
Full textAligica, Paul Dragos, Peter J. Boettke, and Vlad Tarko. Public Governance and the Classical-Liberal Perspective. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780190267032.001.0001.
Full textBook chapters on the topic "Mean Opinion Score"
Ostaszewska, A., and S. Żebrowska-Łucyk. "The Method of Increasing the Accuracy of Mean Opinion Score Estimation in Subjective Quality Evaluation." In Wearable and Autonomous Biomedical Devices and Systems for Smart Environment, 315–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15687-8_16.
Full textNimbhore, Sunil, Suhas Mache, and Sidhharth Mache. "Feature Exratction of PTTS System and Its Evaluation by Standard Statistical Method Mean Opinion Score." In Data Engineering for Smart Systems, 423–30. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2641-8_40.
Full textRenzi, Cristina, and Francesco Leali. "Multicriteria Decision Making Methods in Engineering Design: An Application on Medical Devices." In Lecture Notes in Mechanical Engineering, 406–11. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70566-4_64.
Full textSingh, Harman, Parminder Singh, and Manjot Kaur Gill. "Statistical Parametric Speech Synthesis for Punjabi Language using Deep Neural Network." In SCRS CONFERENCE PROCEEDINGS ON INTELLIGENT SYSTEMS, 431–41. Soft Computing Research Society, 2021. http://dx.doi.org/10.52458/978-93-91842-08-6-41.
Full textAlshamrani, Mazin I., and Ashraf A. Ali. "Performance Metrics for SIP-Based VoIP Applications Over DMO." In Advances in Wireless Technologies and Telecommunication, 50–79. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-2113-6.ch004.
Full textBen Kharrat, Firas, Aymen Elkhleifi, and Rim Faiz. "Improving Collaborative Filtering Algorithms." In Natural Language Processing, 638–57. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-0951-7.ch031.
Full textRitchie, Donald A. "Drew Pearson’s Leg Men." In The Columnist, 89–106. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780190067588.003.0005.
Full textWujczyk, Marcin. "Rozwiązanie umowy o pracę za wypowiedzeniem z radcą prawnym a obowiązek wyrażenia opinii przez radę okręgowej izby radców prawnych." In Nauka prawa a praktyka prawnicza: Księga jubileuszowa z okazji czterdziestolecia Okręgowej Izby Radców Prawnych w Krakowie, 653–69. Ksiegarnia Akademicka Publishing, 2022. http://dx.doi.org/10.12797/9788381387736.33.
Full textNg, C. Y., Kris M. Y. Law, and Andrew W. H. Ip. "Assessing Public Opinions of Products Through Sentiment Analysis." In Research Anthology on Implementing Sentiment Analysis Across Multiple Disciplines, 1422–40. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-6303-1.ch073.
Full textKeane, Adrian, and Paul McKeown. "1. Introduction." In The Modern Law of Evidence, 1–7. Oxford University Press, 2020. http://dx.doi.org/10.1093/he/9780198848486.003.0001.
Full textConference papers on the topic "Mean Opinion Score"
Gao, Yixuan, Xiongkuo Min, Yucheng Zhu, Jing Li, Xiao-Ping Zhang, and Guangtao Zhai. "Image Quality Assessment: From Mean Opinion Score to Opinion Score Distribution." In MM '22: The 30th ACM International Conference on Multimedia. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3503161.3547872.
Full textRibeiro, Flavio, Dinei Florencio, Cha Zhang, and Michael Seltzer. "CROWDMOS: An approach for crowdsourcing mean opinion score studies." In ICASSP 2011 - 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011. http://dx.doi.org/10.1109/icassp.2011.5946971.
Full textKim, Chin-chol, Sang-yong Ha, Byeong-hee Roh, Jong-pil Jeong, and Jae-young Choi. "Measurement Method for Mean Opinion Score in Actual Home Environments." In The 5th International Conference on Advanced Communication and Networking. Science & Engineering Research Support soCiety, 2013. http://dx.doi.org/10.14257/astl.2013.31.04.
Full textWaidyanatha, Nuwan, Tharaka Wilfred, Kasun Perera, and Manoj Silva. "Mean Opinion Score performance in classifying voice-enabled emergency communication systems." In 2012 International Conference on Computer & Information Science (ICCIS). IEEE, 2012. http://dx.doi.org/10.1109/iccisci.2012.6297114.
Full textEl Hajal, Karl, Milos Cernak, and Pablo Mainar. "MOSRA: Joint Mean Opinion Score and Room Acoustics Speech Quality Assessment." In Interspeech 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/interspeech.2022-10698.
Full textCocker, E., F. Ghazzi, and U. Speidel. "Quality trend measurement of long-distance VoIP communication via estimated mean opinion score." In 2015 10th International Conference on Information, Communications and Signal Processing (ICICS). IEEE, 2015. http://dx.doi.org/10.1109/icics.2015.7459895.
Full textMolina-Garcia, Mariano, and J. I. Alonso. "Evolution of mean opinion Score due to handover events in IEEE 802.11 WLAN networks." In 2009 IEEE Radio and Wireless Symposium (RWS). IEEE, 2009. http://dx.doi.org/10.1109/rws.2009.4957322.
Full textMisha and Dalveer Kaur. "Improving Mean Opinion Score (MOS) of VoIP in WiMAX System by Using an Efficient Technique." In 2019 International Conference on Communication and Electronics Systems (ICCES). IEEE, 2019. http://dx.doi.org/10.1109/icces45898.2019.9002169.
Full textYaseen, Alauldeen S., Alexey N. Pavlov, and Alexander E. Hramov. "Speech signal denoising with wavelet-transforms and the mean opinion score characterizing the filtering quality." In SPIE BiOS, edited by Valery V. Tuchin, Kirill V. Larin, Martin J. Leahy, and Ruikang K. Wang. SPIE, 2016. http://dx.doi.org/10.1117/12.2211384.
Full textNayem, Khandokar Md, and Donald S. Williamson. "Incorporating Embedding Vectors from a Human Mean-Opinion Score Prediction Model for Monaural Speech Enhancement." In Interspeech 2021. ISCA: ISCA, 2021. http://dx.doi.org/10.21437/interspeech.2021-1844.
Full textReports on the topic "Mean Opinion Score"
Clark, A., Q. Wu, R. Schott, and G. Zorn. RTP Control Protocol (RTCP) Extended Report (XR) Blocks for Mean Opinion Score (MOS) Metric Reporting. RFC Editor, June 2014. http://dx.doi.org/10.17487/rfc7266.
Full text