Academic literature on the topic 'Mean shift algorithm'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mean shift algorithm.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mean shift algorithm"
Aliyari Ghassabeh, Youness, and Frank Rudzicz. "Modified mean shift algorithm." IET Image Processing 12, no. 12 (December 1, 2018): 2172–77. http://dx.doi.org/10.1049/iet-ipr.2018.5600.
Full textZhao, Yi Zhi, Huan Wang, and Guo Cai Yin. "Research on Mean Shift Algorithm." Advanced Materials Research 756-759 (September 2013): 4021–25. http://dx.doi.org/10.4028/www.scientific.net/amr.756-759.4021.
Full textJingxue Chen, Jingxue Chen, Jingkang Yang Jingxue Chen, Juan Huang Jingkang Yang, and Yining Liu Juan Huang. "Robust Truth Discovery Scheme Based on Mean Shift Clustering Algorithm." 網際網路技術學刊 22, no. 4 (July 2021): 835–42. http://dx.doi.org/10.53106/160792642021072204011.
Full textWang, Juan. "Mean Shift Algorithm in Object Tracking." Advanced Science Letters 11, no. 1 (May 30, 2012): 768–71. http://dx.doi.org/10.1166/asl.2012.3028.
Full textLI, Xiang-Ru. "Convergence of a Mean Shift Algorithm." Journal of Software 16, no. 3 (2005): 365. http://dx.doi.org/10.1360/jos160365.
Full textWEN, Zhi-Qiang. "Convergence Analysis of Mean Shift Algorithm." Journal of Software 18, no. 2 (2007): 205. http://dx.doi.org/10.1360/jos180205.
Full textChen, JianJun, SuoFei Zhang, GuoCheng An, and ZhenYang Wu. "A generalized mean shift tracking algorithm." Science China Information Sciences 54, no. 11 (September 9, 2011): 2373–85. http://dx.doi.org/10.1007/s11432-011-4359-8.
Full textHE, LIWEN, YONG XU, YAN CHEN, and JIAJUN WEN. "RECENT ADVANCE ON MEAN SHIFT TRACKING: A SURVEY." International Journal of Image and Graphics 13, no. 03 (July 2013): 1350012. http://dx.doi.org/10.1142/s0219467813500125.
Full textDeng, Zheng Hong, Ting Ting Li, and Ting Ting Zhang. "An Adaptive Tracking Algorithm Based on Mean Shift." Advanced Materials Research 538-541 (June 2012): 2607–13. http://dx.doi.org/10.4028/www.scientific.net/amr.538-541.2607.
Full textKumar, Praveen, Anisha Rani, Ashok Rawat, and Seema Rawat. "Analysis of Mean-shift Algorithm to Detect Hotspots of Dengue Fever Outbreak." Journal of Advanced Research in Dynamical and Control Systems 11, no. 10 (October 31, 2019): 27–35. http://dx.doi.org/10.5373/jardcs/v11i10/20193002.
Full textDissertations / Theses on the topic "Mean shift algorithm"
Hu, Ting. "Convergence of the mean shift algorithm and its generalizations." Master's thesis, University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4925.
Full textID: 030423142; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Error in paging: p. vi followed by one unnumbered page followed by p. ii-iv.; Thesis (M.S.)--University of Central Florida, 2011.; Includes bibliographical references (p. 61-62).
M.S.
Masters
Mathematics
Sciences
Xie, Qing Yan. "K-Centers Dynamic Clustering Algorithms and Applications." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1384427644.
Full textMAHAJANI, RASIKA. "APPLICATION OF THE MEAN SHIFT ALGORITHM ON CLUSTERS OF ORTHOLOGOUS GROUPS AND PHYLOGENETIC IMPLICATIONS." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1131646726.
Full textKlvaňa, Marek. "Sledování vybraného objektu v dynamickém obraze." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229705.
Full textCarli, Daniel Michelon de. "GERAÇÃO PROCEDURAL DE CENÁRIOS 3D DE CÂNIONS COM FOCO EM JOGOS DIGITAIS." Universidade Federal de Santa Maria, 2012. http://repositorio.ufsm.br/handle/1/5394.
Full textEsta dissertação propõe um método procedural não assistido, baseado em técnicas de computação gráfica, visão computacional e busca em grafos, para a geração de cenários 3D de cânions com foco em jogos digitais. Para definir as características a serem reproduzidas, foram analisadas diversas imagens de cânions reais chegando-se em dois modelos, um comum e outro recursivo. A abordagem proposta manipula um reticulado gerado com ruído de Perlin, moldando assim as características inerentes a essa formação geológica. São levadas em conta as diversas parametrizações necessárias para permitir que o algoritmo construa cânions com curso de rio, áreas de planícies, regiões de encosta suave, estruturas de penhascos e, por fim, planaltos nas regiões mais altas. Para atingir o resultado final, o trabalho utiliza o algoritmo Mean Shift como mecanismo de segmentação, definindo dados e regiões de interesse. Munido dos dados do algoritmo de clusterizacao, é definido um limiar para a criação de uma máscara binária com a definição das planícies. Em um segundo momento, um algoritmo de rotulação de componentes conectados é executado, extraindo-se os centróides de cada planície. Por sua vez, o algoritmo de Dijkstra encaixa-se na definição de rotas que conectam estas planícies. O algoritmo de Dijkstra é, então, executado novamente, tendo por base uma função de custo de inclinação, para definir o curso do rio. Por fim, uma filtragem espacial baseada em um filtro Gaussiano é aplicada para interpolar as regiões de encostas de declive suave. A combinação dessas técnicas gera terrenos com grande variabilidade e com as características inerentes à formação geológica de cânions.
Savas, Zafer. "Real-time Detection And Tracking Of Human Eyes In Video Sequences." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606459/index.pdf.
Full textOur aim is to design a real-time, robust, scale-invariant eye tracker system with human eye movement indication property using the movements of eye pupil. Our eye tracker algorithm is implemented using the Continuously Adaptive Mean Shift (CAMSHIFT) algorithm proposed by Bradski and the EigenFace method proposed by Turk &
Pentland. Previous works for scale invariant object detection using Eigenface method are mostly dependent on limited number of user predefined scales which causes speed problems
so in order to avoid this problem an adaptive eigenface method using the information extracted from CAMSHIFT algorithm is implemented to have a fast and scale invariant eye tracking. First of all
human face in the input image captured by the camera is detected using the CAMSHIFT algorithm which tracks the outline of an irregular shaped object that may change size and shape during the tracking process based on the color of the object. Face area is passed through a number of preprocessing steps such as color space conversion and thresholding to obtain better results during the eye search process. After these preprocessing steps, search areas for left and right eyes are determined using the geometrical properties of the human face and in order to locate each eye indivually the training images are resized by the width information supplied by the CAMSHIFT algortihm. Search regions for left and right eyes are individually passed to the eye detection algortihm to determine the exact locations of each eye. After the detection of eyes, eye areas are individually passed to the pupil detection and eye area detection algorithms which are based on the Active Contours method to indicate the pupil and eye area. Finally, by comparing the geometrical locations of pupil with the eye area, human gaze information is extracted. As a result of this thesis a software named &ldquo
TrackEye&rdquo
with an user interface having indicators for the location of eye areas and pupils, various output screens for human computer interaction and controls for allowing to test the effects of color space conversions and thresholding types during object tracking has been built.
Naeem, Asad. "Single and multiple target tracking via hybrid mean shift/particle filter algorithms." Thesis, University of Nottingham, 2010. http://eprints.nottingham.ac.uk/12699/.
Full textBilgin, Arda. "Selection And Fusion Of Multiple Stereo Algorithms For Accurate Disparity Segmentation." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/2/12610133/index.pdf.
Full textElsayed, Elawady Mohamed. "Reflection Symmetry Detection in Images : Application to Photography Analysis." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSES006/document.
Full textSymmetry is a fundamental principle of the visual perception to feel the equally distributed weights within foreground objects inside an image. It is used as a significant visual feature through various computer vision applications (i.e. object detection and segmentation), plus as an important composition measure in art domain (i.e. aesthetic analysis). The development of symmetry detection has been improved rapidly since last century. In this thesis, we mainly aim to propose new approaches to detect reflection symmetry inside real-world images in a global scale. In particular, our main contributions concern feature extraction and globalrepresentation of symmetry axes. First, we propose a novel approach that detects global salient edges inside an image using Log-Gabor filter banks, and defines symmetry oriented similarity through textural and color around these edges. This method wins a recent symmetry competition worldwide in single and multiple cases.Second, we introduce a weighted kernel density estimator to represent linear and directional symmetrical candidates in a continuous way, then propose a joint Gaussian-vonMises distance inside the mean-shift algorithm, to select the relevant symmetry axis candidates along side with their symmetrical densities. In addition, we introduce a new challenging dataset of single symmetry axes inside artistic photographies extracted from the large-scale Aesthetic Visual Analysis (AVA) dataset. The proposed contributions obtain superior results against state-of-art algorithms among all public datasets, especially multiple cases in a global scale. We conclude that the spatial and context information of each candidate axis inside an image can be used as a local or global symmetry measure for further image analysis and scene understanding purposes
Kyrgyzov, Ivan. "Recherche dans les bases de donnees satellitaires des paysages et application au milieu urbain: clustering, consensus et categorisation." Phd thesis, Télécom ParisTech, 2008. http://pastel.archives-ouvertes.fr/pastel-00004084.
Full textBook chapters on the topic "Mean shift algorithm"
Shah, Rahul V., Amit Jain, Rutul B. Bhatt, Pinal Engineer, and Ekata Mehul. "Mean-Shift Algorithm: Verilog HDL Approach." In Lecture Notes in Electrical Engineering, 181–94. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3363-7_21.
Full textFang, Hui, Aimin Zhou, and Guixu Zhang. "A Mean Shift Assisted Differential Evolution Algorithm." In Bio-inspired Computing – Theories and Applications, 163–72. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-3614-9_21.
Full textSuárez, Yasel Garcés, Esley Torres, Osvaldo Pereira, Claudia Pérez, and Roberto Rogríguez. "Stopping Criterion for the Mean Shift Iterative Algorithm." In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, 383–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41822-8_48.
Full textKumar, Sandeep, Rohit Raja, and Archana Gandham. "Tracking an Object Using Traditional MS (Mean Shift) and CBWH MS (Mean Shift) Algorithm with Kalman Filter." In Algorithms for Intelligent Systems, 47–65. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3357-0_4.
Full textChen, Ai-hua, Ben-quan Yang, and Zhi-gang Chen. "A Timely Occlusion Detection Based on Mean Shift Algorithm." In Future Control and Automation, 51–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31003-4_7.
Full textDu, Ruo, Qiang Wu, Xiangjian He, and Jie Yang. "Object Categorization Based on a Supervised Mean Shift Algorithm." In Computer Vision – ECCV 2012. Workshops and Demonstrations, 611–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33885-4_64.
Full textAbdAllah, Loai, and Ilan Shimshoni. "Mean Shift Clustering Algorithm for Data with Missing Values." In Data Warehousing and Knowledge Discovery, 426–38. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10160-6_38.
Full textRodríguez, Roberto, and Ana G. Suarez. "An Image Segmentation Algorithm Using Iteratively the Mean Shift." In Lecture Notes in Computer Science, 326–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11892755_33.
Full textSojka, Eduard, Jan Gaura, Tomáš Fabián, and Michal Krumnikl. "Fast Mean Shift Algorithm Based on Discretisation and Interpolation." In Advanced Concepts for Intelligent Vision Systems, 402–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17688-3_38.
Full textVaradarajan, V., S. V. Lokesh, A. Ramesh, A. Vanitha, and V. Vaidehi. "Face Tracking Using Modified Forward-Backward Mean-Shift Algorithm." In Communications in Computer and Information Science, 46–59. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8603-8_5.
Full textConference papers on the topic "Mean shift algorithm"
Rao, Sudhir, Weifeng Liu, Jose Principe, and Allan Medeiros Martins. "Information Theoretic Mean Shift Algorithm." In 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing. IEEE, 2006. http://dx.doi.org/10.1109/mlsp.2006.275540.
Full textZhong, Xian, Kun Tu, and Hongxia Xia. "Mean-shift algorithm fusing multi feature." In 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). IEEE, 2017. http://dx.doi.org/10.1109/iaeac.2017.8054213.
Full textBo, Shukui, and Yongju Jing. "Image Clustering Using Mean Shift Algorithm." In 2012 4th International Conference on Computational Intelligence and Communication Networks (CICN). IEEE, 2012. http://dx.doi.org/10.1109/cicn.2012.128.
Full textShih-Yu Chiu, Jia-Rui Zhang, and Leu-Shing Lan. "A dual-mode mean-shift algorithm." In 2008 51st IEEE International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2008. http://dx.doi.org/10.1109/mwscas.2008.4616804.
Full textLópez Palafox, Guadalupe Desirée, Ana Luisa Sosa Ortíz, Oscar Marrufo Melendez, Orlando Morales Ballesteros, Jorge Luis Pérez González, and Juan Ramón Jiménez Alaniz. "Hippocampal segmentation using mean shift algorithm." In 12th International Symposium on Medical Information Processing and Analysis, edited by Eduardo Romero, Natasha Lepore, Jorge Brieva, and Ignacio Larrabide. SPIE, 2017. http://dx.doi.org/10.1117/12.2256810.
Full text"K-Centers Mean-shift Reverse Mean-shift clustering algorithm over heterogeneous wireless sensor networks." In 2014 Wireless Telecommunications Symposium (WTS). IEEE, 2014. http://dx.doi.org/10.1109/wts.2014.6835019.
Full textLi, Zhong-Sheng, Ren-Fa Li, Yu-Feng Liu, and Yao-Xue Zhang. "A New Improvement on Mean-Shift Algorithm." In 2008 Congress on Image and Signal Processing. IEEE, 2008. http://dx.doi.org/10.1109/cisp.2008.358.
Full textLiu, Jiangang, Mingyang Wang, Lingjiang Kong, and Xiaobo Yang. "Through-wall tracking using mean-shift algorithm." In 2017 IEEE Radar Conference (RadarConf17). IEEE, 2017. http://dx.doi.org/10.1109/radar.2017.7944400.
Full textTzon-Liang Shieh, Jia-Rui Zhang, Shih-Yu Chiu, and Leu-Shing Lan. "0n convergence of the mean shift algorithm." In 2008 3rd International Symposium on Communications, Control and Signal Processing (ISCCSP). IEEE, 2008. http://dx.doi.org/10.1109/isccsp.2008.4537298.
Full textChao, Xing, and Wang Ling. "Asymptotic mean shift algorithm for object tracking." In 5th International Conference on Advanced Computer Control. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/icacc130851.
Full textReports on the topic "Mean shift algorithm"
Zhang, Yunfeng, and Anthony J. Hornof. Using the Mean Shift Algorithm to Make Post Hoc Improvements to the Accuracy of Eye Tracking Data Based on Probable Fixation Locations. Fort Belvoir, VA: Defense Technical Information Center, August 2010. http://dx.doi.org/10.21236/ada528607.
Full text