Academic literature on the topic 'Mean value theorems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mean value theorems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mean value theorems"

1

Mukhopadhyay, S. N., and S. Ray. "Mean value theorems for divided differences and approximate Peano derivatives." Mathematica Bohemica 134, no. 2 (2009): 165–71. http://dx.doi.org/10.21136/mb.2009.140651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ni, Lei. "Mean Value Theorems on Manifolds." Asian Journal of Mathematics 11, no. 2 (2007): 277–304. http://dx.doi.org/10.4310/ajm.2007.v11.n2.a6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rassias, Themistocles M., and Young-Ho Kim. "On certain mean value theorems." Mathematical Inequalities & Applications, no. 3 (2008): 431–41. http://dx.doi.org/10.7153/mia-11-32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Matkowski, Janusz. "Power means generated by some mean-value theorems." Proceedings of the American Mathematical Society 139, no. 10 (October 1, 2011): 3601. http://dx.doi.org/10.1090/s0002-9939-2011-10981-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kôzaki, Masanori. "On mean value theorems for small geodesic spheres in Riemannian manifolds." Czechoslovak Mathematical Journal 42, no. 3 (1992): 519–47. http://dx.doi.org/10.21136/cmj.1992.128352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Krylov, N. V. "Mean value theorems for stochastic integrals." Annals of Probability 29, no. 1 (February 2001): 385–410. http://dx.doi.org/10.1214/aop/1008956335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Baker, J. A. "Mean Value Theorems via Spectral Synthesis." Journal of Mathematical Analysis and Applications 193, no. 1 (July 1995): 306–17. http://dx.doi.org/10.1006/jmaa.1995.1237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hardin, Christopher S., and Daniel J. Velleman. "The mean value theorem in second order arithmetic." Journal of Symbolic Logic 66, no. 3 (September 2001): 1353–58. http://dx.doi.org/10.2307/2695111.

Full text
Abstract:
This paper is a contribution to the project of determining which set existence axioms are needed to prove various theorems of analysis. For more on this project and its history we refer the reader to [1] and [2].We work in a weak subsystem of second order arithmetic. The language of second order arithmetic includes the symbols 0, 1, =, <, +, ·, and ∈, together with number variables x, y, z, … (which are intended to stand for natural numbers), set variables X, Y, Z, … (which are intended to stand for sets of natural numbers), and the usual quantifiers (which can be applied to both kinds of variables) and logical connectives. We write ∀x < t φ and ∃x < t φ as abbreviations for ∀x(x < t → φ) and ∃x{x < t ∧ φ) respectively; these are called bounded quantifiers. A formula is said to be if it has no quantifiers applied to set variables, and all quantifiers applied to number variables are bounded. It is if it has the form ∃xθ and it is if it has the form ∀xθ, where in both cases θ is .The theory RCA0 has as axioms the usual Peano axioms, with the induction scheme restricted to formulas, and in addition the comprehension scheme, which consists of all formulas of the formwhere φ is , ψ is , and X does not occur free in φ(n). (“RCA” stands for “Recursive Comprehension Axiom.” The reason for the name is that the comprehension scheme is only strong enough to prove the existence of recursive sets.) It is known that this theory is strong enough to allow the development of many of the basic properties of the real numbers, but that certain theorems of elementary analysis are not provable in this theory. Most relevant for our purposes is the fact that it is impossible to prove in RCA0 that every continuous function on the closed interval [0, 1] attains maximum and minimum values (see [1]).Since the most common proof of the Mean Value Theorem makes use of this theorem, it might be thought that the Mean Value Theorem would also not be provable in RCA0. However, we show in this paper that the Mean Value Theorem can be proven in RCA0. All theorems stated in this paper are theorems of RCA0, and all of our reasoning will take place in RCA0.
APA, Harvard, Vancouver, ISO, and other styles
9

PETER, IOAN RADU, and DORIAN POPA. "Stability of points in mean value theorems." Publicationes Mathematicae Debrecen 83, no. 3 (October 1, 2013): 375–84. http://dx.doi.org/10.5486/pmd.2013.5531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Huang, Jingjing, and Robert C. Vaughan. "Mean value theorems for binary Egyptian fractions." Journal of Number Theory 131, no. 9 (September 2011): 1641–56. http://dx.doi.org/10.1016/j.jnt.2011.04.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Mean value theorems"

1

MATSUMOTO, KOHJI. "LIFTINGS AND MEAN VALUE THEOREMS FOR AUTOMORPHIC L-FUNCTIONS." Cambridge University Press, 2005. http://hdl.handle.net/2237/10258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kong, Kar-lun, and 江嘉倫. "Some mean value theorems for certain error terms in analytic number theory." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lau, Yuk-kam. "Some results on the mean square formula for the riemann zeta-function /." [Hong Kong] : University of Hong Kong, 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13762394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lau, Yuk-kam, and 劉旭金. "Some results on the mean square formula for the riemann zeta-function." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31211586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Kai-yuen, and 李啟源. "On the mean square formula for the Riemann zeta-function on the critical line." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44674405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bel, Haj Frej Ghazi. "Estimation et commande décentralisée pour les systèmes de grandes dimensions : application aux réseaux électriques." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0139/document.

Full text
Abstract:
Les travaux de cette thèse portent sur l’estimation et la commande décentralisée des systèmes de grande dimension. L’objectif est de développer des capteurs logiciels pouvant produire une estimation fiable des variables nécessaires pour la stabilisation des systèmes non linéaires interconnectés. Une décomposition d’un tel système de grande dimension en un ensemble de n sous-systèmes interconnectés est primordiale. Ensuite, en tenant compte de la nature du sous-système ainsi que les fonctions d’interconnexions, des lois de commande décentralisées basées observateurs ont été synthétisées. Chaque loi de commande est associée à un sous-système qui permet de le stabiliser localement, ainsi la stabilité du système global est assurée. L’existence d’un observateur et d’un contrôleur stabilisant le système dépend de la faisabilité d’un problème d’optimisation LMI. La formulation LMI, basée sur l’approche de Lyapunov, est élaborée par l’utilisation de principe de DMVT sur la fonction d’interconnexion non linéaire supposée bornée et incertaine. Ainsi des conditions de synthèse non restrictives sont obtenues. Des méthodes de synthèse de loi de commande décentralisée basée observateur ont été proposées pour les systèmes non linéaires interconnectés dans le cas continu et dans le cas discret. Des lois de commande robuste H1 décentralisées sont élaborées pour les systèmes non linéaires interconnectés en présence de perturbations et des incertitudes paramétriques. L’efficacité et la validation des approches présentées sont testées sur un modèle de réseaux électriques composé de trois générateurs interconnectés
This thesis focuses on the decentralized estimation and control for large scale systems. The objective is to develop software sensors that can produce a reliable estimate of the variables necessary for the interconnected nonlinear systems stability analysis. A decomposition of a such large system into a set of n interconnected subsystems is paramount for model simplification. Then, taking into account the nature of the subsystem as well as the interconnected functions, observer-based decentralized control laws have been synthesized. Each control law is associated with a subsystem which allows it to be locally stable, thus the stability of the overall system is ensured. The existence of an observer and a controller gain matrix stabilizing the system depends on the feasibility of an LMI optimization problem. The LMI formulation, based on Lyapunov approach, is elaborated by applying the DMVT technique on the nonlinear interconnection function, assumed to be bounded and uncertain. Thus, non-restrictive synthesis conditions are obtained. Observer-based decentralized control schemes have been proposed for nonlinear interconnected systems in the continuous and discrete time. Robust Hinfini decentralized controllers are provided for interconnected nonlinear systems in the presence of perturbations and parametric uncertainties. Effectiveness of the proposed schemes are verified through simulation results on a power systems with interconnected machines
APA, Harvard, Vancouver, ISO, and other styles
7

Hassan, Lama. "Observation et commande des systèmes non linéaires à retard." Phd thesis, Université de Lorraine, 2013. http://tel.archives-ouvertes.fr/tel-00934943.

Full text
Abstract:
L'objectif de cette thèse est de développer des méthodes de synthèses d'observateurs et des contrôleurs basés sur un observateur pour les systèmes à retard. Différentes classes de systèmes ont été traitées avec différents types de retard. Trois méthodes ont été développées. La première méthode traite des systèmes non linéaires avec des non-linéarités lipschitziennes et consiste à transformer le système d'origine à un système LPV grâce à une reformulation de la propriété classique de Lipschitz. Cette technique est formulée pour les cas continu et discret, respectivement. Nous avons démontré, à travers des exemples numériques, que cette technique offre des conditions de synthèse moins restrictives par rapport aux résultats existants dans la littérature. La seconde méthode est développée pour une classe de systèmes singuliers avec des perturbations. La principale difficulté résidait dans la présence des dérivées des perturbations qui entravent l'analyse de la stabilité et pour laquelle deux approches ont été proposées: une approche Hinf en utilisant une fonctionnelle de Lyapunov-Krasovskii spéciale dépendante des perturbations et une approche basée sur l'utilisation d'un critère de performance W1;2. La dernière méthode est basée sur l'utilisation des matrices de pondération libres pour résoudre le problème de contrôle des systèmes non-linéaires à retards inconnus. La solution proposée fournit une condition de synthèse LMI garantissant la stabilisation du système en boucle fermée malgré la présence du retard inconnu, au lieu d'une inégalité matricielle linéaire itérative ILMI trouvée habituellement dans la littérature.
APA, Harvard, Vancouver, ISO, and other styles
8

Huang, Gen-Ben, and 黃錦斌. "Topics on Mean Value Theorems." Thesis, 2001. http://ndltd.ncl.edu.tw/handle/44922758257851081506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lin, Yu-Siang, and 林郁翔. "Discrete Mean Value Theorem." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/60305687811322887486.

Full text
Abstract:
碩士
國立中興大學
應用數學系所
102
In this thesis, we derive the mean value theorems for the super-harmonic, sub-harmonic and harmonic solutions on square domains. Moreover, we consider the mesh functions on the mesh squares and establish the discrete mean value theorem by using the Green’s identities on rectangles in R2. From the discrete mean value theorem, we obtain that the value of a discrete harmonic function at a mesh point (x0, y0) is the average of any discrete square which has center at this mesh point (x0, y0) . For further research, it is interesting to extend the result here to n-dimensional space.
APA, Harvard, Vancouver, ISO, and other styles
10

Hwang, Gwo-Jwu, and 黃國祖. "Mean value Theorem for one-sided differentiable function." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/46244603358603144552.

Full text
Abstract:
碩士
國立臺北大學
統計學系
94
In the study of the behavior of probability density function of continuous random variable, if the functions are differentiable or piecewise differentiable, usually, one can apply the method of calculus to determine the monotonically, concavity, points of inflection and asymptotes of these functions to attain some properties of the probability distributions. Most of the tools in calculus are consequences of the Mean Value Theorem for Derivatives. It is a theorem about functions continuous in bounded closed intervals and differentiable in the interior of the intervals. In general, continuous probability density functions are not necessarily differentiable everywhere, typical examples such as continuous piecewise linear distributions and double exponential distributions, but they have both left and right derivatives at the points where they are not differentiable. In this thesis, we shall consider one-sided differential functions defined on some intervals in the real number system and attain a Mean Value Theorem for One-sided Derivatives by an elementary proof. We also apply the result to discuss the monotonically and concavity of functions by examine some probability density functions.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Mean value theorems"

1

Ramachandra, K. Lectures on the mean-value and omega-theorems for the Riemann zeta-function. Berlin: Springer-Verlag, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sabelʹfelʹd, K. K. Spherical means for PDEs. Utrecht, Netherlands: VSP, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jürgen, Spilker, ed. Arithmetical functions: An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties. Cambridge: Cambridge University Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schwarz, Wolfgang. Arithmetical functions: An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties. Cambridge: Cambridge University Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bishop, Tom, Gina Bloom, and Erika T. Lin, eds. Games and Theatre in Shakespeare's England. NL Amsterdam: Amsterdam University Press, 2021. http://dx.doi.org/10.5117/9789463723251.

Full text
Abstract:
This collection of essays brings together theories of play and game with theatre and performance to produce new understandings of the history and design of early modern English drama. Through literary analysis and embodied practice, an international team of distinguished scholars examines a wide range of games—from dicing to bowling to roleplaying to videogames—to uncover their fascinating ramifications for the stage in Shakespeare’s era and our own. Foregrounding ludic elements challenges the traditional view of drama as principally mimesis, or imitation, revealing stageplays to be improvisational experiments and participatory explorations into the motive, means, and value of recreation. Delving into both canonical masterpieces and hidden gems, this innovative volume stakes a claim for play as the crucial link between games and early modern theatre, and for the early modern theatre as a critical site for unraveling the continued cultural significance and performative efficacy of gameplay today.
APA, Harvard, Vancouver, ISO, and other styles
6

Probabilistic Number Theory I: Mean-Value Theorems. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mean Value Theorms and Functional Equations. World Scientific Publishing Company, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ramachandra, K. Lectures on the Mean-Value and Omega Theorems for the Riemann Zeta-Function (Lectures on Mathematics and Physics). Springer, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hardin, Russell. Normative Methodology. Edited by Janet M. Box-Steffensmeier, Henry E. Brady, and David Collier. Oxford University Press, 2009. http://dx.doi.org/10.1093/oxfordhb/9780199286546.003.0002.

Full text
Abstract:
This article shows that one should start social science inquiry with individuals, their motivations, and the kinds of transactions they undertake with one another. It specifically discusses four basic schools of social theory: conflict, shared-values, exchange, and coordination theories. Conflict theories almost inherently lead into normative discussions of the justification of coercion in varied political contexts. Religious visions of social order are usually shared-value theories and interest is the chief means used by religions to guide people. Individualism is at the core of an exchange theory. Because the first three theories are generally in conflict in any moderately large society, coercion is a sine qua non for social order. Coordination interactions are especially important for politics and political theory and probably for sociology, although exchange relations might be most of economics, or at least of classical economics. Shared-value theory may possibly turn into the most commonly asserted alternative to rational choice in this time as contractarian reasoning recedes from center stage in the face of challenges to the story of contracting that lies behind it and the difficulty of believing people actually think they have consciously agreed to their political order.
APA, Harvard, Vancouver, ISO, and other styles
10

Jeske, Diane. Do the Ends Justify the Means? Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190685379.003.0004.

Full text
Abstract:
Moral deliberation, like deliberation in general, almost always involves some appeal to the consequences of the actions available to the agent. The case studies of Franz Stangl, Ted Bundy, and Charles Colcock Jones provide examples of an appeal to consequences to attempt to justify action. In order to see what is wrong with the way that these men reasoned, the chapter examines the competing moral theories of consequentialism and deontology, and the nature of intrinsic versus instrumental value. By doing so, the author shows how to isolate errors in appealing to consequences such as failure to identify the full array of options, the effects on all people, and the overweighting of one’s own interests and of the interests of one’s loved ones.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Mean value theorems"

1

Coleman, Rodney. "Mean Value Theorems." In Calculus on Normed Vector Spaces, 61–78. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3894-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gray, Alfred. "Mean-value Theorems." In Tubes, 231–45. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7966-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yuan, Wang. "Mean Value Theorems." In Diophantine Equations and Inequalities in Algebraic Number Fields, 44–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-58171-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mercer, Peter R. "Other Mean Value Theorems." In More Calculus of a Single Variable, 159–69. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1926-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rassias, Themistocles M., and Young-Ho Kim. "On Certain Functional Equations and Mean Value Theorems." In Functional Equations, Inequalities and Applications, 149–58. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0225-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Haussmann, W., L. Wehrend, and K. Zeller. "Mean Value Theorems and Best L 1-Approximation." In Approximation by Solutions of Partial Differential Equations, 93–102. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2436-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Isac†, G., and S. Z. Németh. "Mean Value Theorems for the Scalar Derivative and Applications." In Nonlinear Analysis and Variational Problems, 325–41. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0158-3_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Seip, K. "Mean Value Theorems and Concentration Operators in Bargmann and Bergman Space." In inverse problems and theoretical imaging, 209–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75988-8_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Safonov, Mikhail V. "Mean Value Theorems and Harnack Inequalities for Second—Order Parabolic Equations." In Nonlinear Problems in Mathematical Physics and Related Topics II, 329–52. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0701-7_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Seip, K. "Mean Value Theorems and Concentration Operators in Bargmann and Bergman Space." In Wavelets, 209–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-97177-8_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Mean value theorems"

1

Wang, Xin, Shiqin Wang, and Cheng Wang. "Study on the Relations and Differences of Differential Mean Value Theorems." In 2015 3rd International Conference on Mechatronics and Industrial Informatics. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icmii-15.2015.16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Huang, Yong. "Research on Extensions and Applications of Integral Mean Value Theorem." In 2017 4th International Conference on Machinery, Materials and Computer (MACMC 2017). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/macmc-17.2018.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Qingling, and Huazhou Hou. "Impulse analysis for nonlinear singular system via Differential Mean Value Theorem." In 2016 Chinese Control and Decision Conference (CCDC). IEEE, 2016. http://dx.doi.org/10.1109/ccdc.2016.7531145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ma, Wenting. "Study of Higher Order Differential Mean Value Theorem for Multivariate Function." In 2017 5th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/icmmct-17.2017.281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pei, Hongmei, Xuanhai Li, and Jielin Shang. "Two Methods of Proving the Improved Mean Value Theorem of Integral." In International Conference on Education, Management, Computer and Society. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/emcs-16.2016.132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ichalal, Dalil, Benoit Marx, Said Mammar, Didier Maquin, and Jose Ragot. "Observer for Lipschitz nonlinear systems: Mean Value Theorem and sector nonlinearity transformation." In 2012 IEEE International Symposium on Intelligent Control (ISIC). IEEE, 2012. http://dx.doi.org/10.1109/isic.2012.6398269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Messaoud, Ramzi Ben. "Nonlinear Unknown Input Observer Using Mean Value Theorem and Simulated Annealing Algorithm." In 2019 International Conference on Advanced Systems and Emergent Technologies (IC_ASET). IEEE, 2019. http://dx.doi.org/10.1109/aset.2019.8871002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Donghui Li. "On asymptotic properties for the median point of Cauchy Mean-value Theorem." In 2011 International Conference on Multimedia Technology (ICMT). IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6002502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, C., Q. Lv, and J. Yan. "Numerical Solution of Mean-Value Theorem for Downward Continuation of Potential Fields." In 80th EAGE Conference and Exhibition 2018. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201801462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ou, Yangjing, Chenghua Wang, and Feng Hong. "A Variable Step Maximum Power Point Tracking Method Using Taylor Mean Value Theorem." In 2010 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/appeec.2010.5449521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography