Academic literature on the topic 'Mean-Variance Portfolio'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mean-Variance Portfolio.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mean-Variance Portfolio"
Vanti, Eka Nur, and Epha Diana Supandi. "Pembentukan Portofolio Optimal dengan Menggunakan Mean Absolute Deviation dan Conditional Mean Variance." Jurnal Fourier 9, no. 1 (April 30, 2020): 25–34. http://dx.doi.org/10.14421/fourier.2020.91.25-34.
Full textKumar, Ronald Ravinesh, Peter Josef Stauvermann, and Aristeidis Samitas. "An Application of Portfolio Mean-Variance and Semi-Variance Optimization Techniques: A Case of Fiji." Journal of Risk and Financial Management 15, no. 5 (April 19, 2022): 190. http://dx.doi.org/10.3390/jrfm15050190.
Full textXu, Jonathan. "MEAN VARIANCE PORTFOLIO OPTIMIZATION." European Journal of Economics and Management Sciences, no. 2 (2021): 76–81. http://dx.doi.org/10.29013/ejems-21-2-76-81.
Full textLefebvre, William, Grégoire Loeper, and Huyên Pham. "Mean-Variance Portfolio Selection with Tracking Error Penalization." Mathematics 8, no. 11 (November 1, 2020): 1915. http://dx.doi.org/10.3390/math8111915.
Full textDeng, Zhixiang, and Yujia Han. "The Application of ARIMA and Mean-variance Models on Financial Market." BCP Business & Management 26 (September 19, 2022): 1051–57. http://dx.doi.org/10.54691/bcpbm.v26i.2069.
Full textVasant, Jiten, Laurent Irgolic, Ryan Kruger, and Kanshukan Rajaratnam. "A Comparison Of Mean-Variance And Mean-Semivariance Optimisation On The JSE." Journal of Applied Business Research (JABR) 30, no. 6 (October 21, 2014): 1587. http://dx.doi.org/10.19030/jabr.v30i6.8876.
Full textFontana, Claudio, and Martin Schweizer. "Simplified mean-variance portfolio optimisation." Mathematics and Financial Economics 6, no. 2 (April 3, 2012): 125–52. http://dx.doi.org/10.1007/s11579-012-0067-4.
Full textPedersen, Jesper Lund, and Goran Peskir. "Optimal mean-variance portfolio selection." Mathematics and Financial Economics 11, no. 2 (June 20, 2016): 137–60. http://dx.doi.org/10.1007/s11579-016-0174-8.
Full textBi, Junna, Hanqing Jin, and Qingbin Meng. "Behavioral mean-variance portfolio selection." European Journal of Operational Research 271, no. 2 (December 2018): 644–63. http://dx.doi.org/10.1016/j.ejor.2018.05.065.
Full textJena, R. K. "Extended Mean - Variance Portfolio Optimization Model: A Comparative Study Among Swarm Intelligence Algorithms." International Journal of Accounting and Financial Reporting 9, no. 2 (April 15, 2019): 184. http://dx.doi.org/10.5296/ijafr.v9i2.14601.
Full textDissertations / Theses on the topic "Mean-Variance Portfolio"
Cardoso, João Nuno Martins. "Robust mean variance." Master's thesis, Instituto Superior de Economia e Gestão, 2015. http://hdl.handle.net/10400.5/10706.
Full textEste estudo empírico tem como objectivo avaliar o impacto da estimação robusta nos portefólios de média variância. Isto foi conseguido fazendo uma simulação do comportamento de 15 acções do SP500. Esta simulação inclui dois cenários: um com amostras que seguem uma distribuição normal e outro com amostras contaminadas não normais. Cada cenário inclui 200 reamostragens. O performance dos portefólios estimados usando a máxima verosimilhança (clássicos) e dos portefólios estimados de forma robusta são comparados, resultando em algumas conclusões: Em amostras normais, portefólios robustos são marginalmente menos eficientes que os portefólios clássicos. Contudo, em amostras não normais, os portefólios robustos apresentam um performance muito superior que os portefólios clássicos. Este acréscimo de performance está positivamente correlacionado com o nível de contaminação da amostra. Em suma, assumindo que os retornos financeiros têm uma distribuição não normal, podemos afirmar que os estimadores robustos resultam em portefólios de média variância mais estáveis.
This empirical study's objective is to evaluate the impact of robust estimation on mean variance portfolios. This was accomplished by doing a simulation on the behavior of 15 SP500 stocks. This simulation includes two scenarios: One with normally distributed samples and another with contaminated non-normal samples. Each scenario includes 200 resamples. The performance of maximum likelihood (classical) estimated portfolios and robustly estimated portfolios are compared, resulting in some conclusions: On normally distributed samples, robust portfolios are marginally less efficient than classical portfolios. However, on non-normal samples, robust portfolios present a much higher performance than classical portfolios. This increase in performance is positively correlated with the level of contamination present on the sample. In summary, assuming that financial returns do not present a normal distribution, we can state that robust estimators result in more stable mean variance portfolios.
Lim, Jeffrey Cheong Kee. "Multi-period mean-variance option portfolio strategies." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337901.
Full textWong, Kwok-chuen, and 黃國全. "Mean variance portfolio management : time consistent approach." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/196026.
Full textpublished_or_final_version
Mathematics
Master
Master of Philosophy
Stein, Michael. "Mean-Variance Portfolio Selection With Complex Constraints." [S.l. : s.n.], 2007. http://digbib.ubka.uni-karlsruhe.de/volltexte/1000007246.
Full textMayambala, Fred. "Mean-Variance Portfolio Optimization : Eigendecomposition-Based Methods." Licentiate thesis, Linköpings universitet, Matematiska institutionen, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-118362.
Full textSezgin, Alp Ozge. "Continuous Time Mean Variance Optimal Portfolios." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613824/index.pdf.
Full texts one period mean-variance portfolio selection problem. However, it is criticized because of its one period static nature. Further, the estimation of the stock price expected return is a particularly hard problem. For this purpose, there are a lot of studies solving the mean-variance portfolio optimization problem in continuous time. To solve the estimation problem of the stock price expected return, in 1992, Black and Litterman proposed the Bayesian asset allocation method in discrete time. Later on, Lindberg has introduced a new way of parameterizing the price dynamics in the standard Black-Scholes and solved the continuous time mean-variance portfolio optimization problem. In this thesis, firstly we take up the Lindberg'
s approach, we generalize the results to a jump-diffusion market setting and we correct the proof of the main result. Further, we demonstrate the implications of the Lindberg parameterization for the stock price drift vector in different market settings, we analyze the dependence of the optimal portfolio from jump and diffusion risk, and we indicate how to use the method. Secondly, we present the Lagrangian function approach of Korn and Trautmann and we derive some new results for this approach, in particular explicit representations for the optimal portfolio process. In addition, we present the L2-projection approach of Schweizer for the continuous time mean-variance portfolio optimization problem and derive the optimal portfolio and the optimal wealth processes for this approach. While, deriving these results as the underlying model, the market parameterization of Lindberg is chosen. Lastly, we compare these three different optimization frameworks in detail and their attractive and not so attractive features are highlighted by numerical examples.
Ramos-Elorduy, Ernesto Paolo Conconi. "Mean-variance approach for World Bank's portfolio of projects." Thesis, University of York, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399627.
Full textAsumeng-Denteh, Emmanuel. "Transaction costs and resampling in mean-variance portfolio optimization." Link to electronic thesis, 2004. http://www.wpi.edu/Pubs/ETD/Available/etd-0430104-123456/.
Full textWang, Yang. "Multi-Period Mean-Variance Portfolio Selection with Regime-Switching." Thesis, Curtin University, 2019. http://hdl.handle.net/20.500.11937/78725.
Full textHäggbom, Marcus, and Shayan Nafar. "Mean-Variance Portfolio Selection Accounting for Financial Bubbles: A Mean-Field Type Approach." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252299.
Full textFinansiella bubblor är ett fenomen som har påverkat marknader sedan 1600-talet. Bubblor tenderar att skapas när marknaden kraftigt övervärderar en tillgång vilket orsakar en hyperbolisk tillväxt i marknadspriset. Detta följs av en plötslig kollaps. Därför är det viktigt för investerare att kunna minska sin exponering mot aktier som befinner sig i en bubbla, så att risken för stora plötsliga förluster reduceras. Således är portföljoptimering där aktiedynamiken tar hänsyn till bubblor av högt intresse för marknadsdeltagare. Portföljoptimering med avseende på medelfältet är ett relativt nytt tillvägagångssätt för att behandla bubbelfenomen. Av denna anledning undersöks i detta arbete en hittills oprövad lösningsmetod som möjliggör en medelfältslösning till avvägningen mellan förväntad avkastning och risk. Där-utöver presenteras även ett antal nya modeller för aktier som kan bortleda investerare från bubblor.
Books on the topic "Mean-Variance Portfolio"
Agarwal, Megha. Developments in Mean-Variance Efficient Portfolio Selection. London: Palgrave Macmillan UK, 2015. http://dx.doi.org/10.1057/9781137359926.
Full textDevelopments in mean-variance efficient portfolio selection. Houndmills, Basingstoke, Hampshire: Palgrave Macmillan, 2015.
Find full textMarkowitz, H. Mean-variance analysis in portfolio choice and capital markets. Oxford, OX, UK: B. Blackwell, 1987.
Find full textMarkowitz, H. Mean-variance analysis in portfolio choice and capital markets. Oxford: Basil Blackwell, 1987.
Find full textMarkowitz, H. Mean-variance analysis in portfolio choice and capital markets. Oxford: Blackwell, 1990.
Find full textMarkowitz, H. Mean-variance analysis in portfolio choice and capital markets. New Hope: Frank J. Fabozzi Associates, 1987.
Find full textO'Gorman, Aongus J. Mean-risk analysis: An examination of semivariance as an alternative to the traditional risk measure of variance. Dublin: University College Dublin, 1994.
Find full textBack, Kerry E. Mean-Variance Analysis. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190241148.003.0005.
Full textAgarwal, M. Developments in Mean-Variance Efficient Portfolio Selection. Palgrave Macmillan Limited, 2015.
Find full textAgarwal, M. Developments in Mean-Variance Efficient Portfolio Selection. Palgrave Macmillan Limited, 2014.
Find full textBook chapters on the topic "Mean-Variance Portfolio"
Hsiao, Cheng, and Shin-Huei Wang. "Mean variance portfolio allocation." In Encyclopedia of Finance, 457–63. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-26336-6_45.
Full textDe Luca, Pasquale. "Mean-Variance Portfolio Analysis." In Springer Texts in Business and Economics, 183–208. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18300-3_9.
Full textHsiao, Cheng, and Shin-Huei Wang. "Mean Variance Portfolio Allocation." In Encyclopedia of Finance, 743–52. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91231-4_20.
Full textHsiao, Cheng, and Shin-Huei Wang. "Mean Variance Portfolio Allocation." In Encyclopedia of Finance, 341–46. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-5360-4_20.
Full textBoard, John L. G., Charles M. S. Sutcliffe, and William T. Ziemba. "Portfolio Theory: Mean-Variance Model." In Encyclopedia of Operations Research and Management Science, 1142–48. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4419-1153-7_775.
Full textThompson, Neil. "The Mean-Variance Approach." In Portfolio Theory and the Demand for Money, 4–24. London: Palgrave Macmillan UK, 1993. http://dx.doi.org/10.1007/978-1-349-22827-0_2.
Full textDhankar, Raj S. "Mean–Variance Approach and Portfolio Selection." In India Studies in Business and Economics, 249–63. New Delhi: Springer India, 2019. http://dx.doi.org/10.1007/978-81-322-3950-5_16.
Full textLari-Lavassani, Ali, and Xun Li. "Dynamic Mean Semi-variance Portfolio Selection." In Lecture Notes in Computer Science, 95–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44860-8_10.
Full textAgarwal, Megha. "Contributions to the Portfolio Theory." In Developments in Mean-Variance Efficient Portfolio Selection, 56–70. London: Palgrave Macmillan UK, 2015. http://dx.doi.org/10.1057/9781137359926_3.
Full textAgarwal, Megha. "Mean-Variance Efficient Portfolio Selection: Model Development." In Developments in Mean-Variance Efficient Portfolio Selection, 71–100. London: Palgrave Macmillan UK, 2015. http://dx.doi.org/10.1057/9781137359926_4.
Full textConference papers on the topic "Mean-Variance Portfolio"
Siyu, Lv, Wu Zhen, and Zhuang Yi. "Recursive mean-variance portfolio choice problems with constrained portfolios." In 2015 34th Chinese Control Conference (CCC). IEEE, 2015. http://dx.doi.org/10.1109/chicc.2015.7260016.
Full textHoe, Lam Weng, and Lam Weng Siew. "Portfolio optimization with mean-variance model." In INNOVATIONS THROUGH MATHEMATICAL AND STATISTICAL RESEARCH: Proceedings of the 2nd International Conference on Mathematical Sciences and Statistics (ICMSS2016). Author(s), 2016. http://dx.doi.org/10.1063/1.4952526.
Full textWan, Shuping. "Mean-variance Portfolio Model with Consumption." In 2006 9th International Conference on Control, Automation, Robotics and Vision. IEEE, 2006. http://dx.doi.org/10.1109/icarcv.2006.345085.
Full textChen, Guohua, and Xiaolian Liao. "Credibility Mean-Variance-skewness Portfolio Selection Model." In 2010 2nd International Workshop on Database Technology and Applications (DBTA). IEEE, 2010. http://dx.doi.org/10.1109/dbta.2010.5659059.
Full textPan, Qiming, and Xiaoxia Huang. "Mean-Variance Model for International Portfolio Selection." In 2008 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing (EUC). IEEE, 2008. http://dx.doi.org/10.1109/euc.2008.16.
Full textLai, Kin Keung, Lean Yu, and Shouyang Wang. "Mean-Variance-Skewness-Kurtosis-based Portfolio Optimization." In 2006 International Multi-Symposiums on Computer and Computational Sciences (IMSCCS). IEEE, 2006. http://dx.doi.org/10.1109/imsccs.2006.239.
Full textBanihashemi, Shokoofeh. "Portfolio Management by Normal Mean-Variance Mixture Distributions." In 2019 3rd International Conference on Data Science and Business Analytics (ICDSBA). IEEE, 2019. http://dx.doi.org/10.1109/icdsba48748.2019.00052.
Full textSignoretto, Marco, and Johan A. K. Suykens. "DynOpt: Incorporating dynamics into mean-variance portfolio optimization." In 2013 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr). IEEE, 2013. http://dx.doi.org/10.1109/cifer.2013.6611696.
Full textGubu, La, Dedi Rosadi, and Abdurakhman. "Robust mean-variance portfolio selection with time series clustering." In INTERNATIONAL CONFERENCE ON MATHEMATICS, COMPUTATIONAL SCIENCES AND STATISTICS 2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0042172.
Full textZulkifli, Mohamed, Mohamed Daud, and Samat Omar. "Maximizing portfolio diversification benefit via extended mean-variance model." In 2010 IEEE Symposium on Industrial Electronics and Applications (ISIEA 2010). IEEE, 2010. http://dx.doi.org/10.1109/isiea.2010.5679379.
Full textReports on the topic "Mean-Variance Portfolio"
Cochrane, John. A Mean-Variance Benchmark for Intertemporal Portfolio Theory. Cambridge, MA: National Bureau of Economic Research, February 2013. http://dx.doi.org/10.3386/w18768.
Full textBeurskens, Luuk, Jaap C. Jansen, Shimon Ph D. Awerbuch, and Thomas E. Drennen. The cost of geothermal energy in the western US region:a portfolio-based approach a mean-variance portfolio optimization of the regions' generating mix to 2013. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/876243.
Full text