Academic literature on the topic 'Mechanical properties of protein materials'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mechanical properties of protein materials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mechanical properties of protein materials"

1

Kumar, Rakesh, Linxiang Wang, and Lina Zhang. "Structure and mechanical properties of soy protein materials plasticized by Thiodiglycol." Journal of Applied Polymer Science 111, no. 2 (October 17, 2008): 970–77. http://dx.doi.org/10.1002/app.29136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ford, Audrey C., Hans Machula, Robert S. Kellar, and Brent A. Nelson. "Characterizing the mechanical properties of tropoelastin protein scaffolds." MRS Proceedings 1569 (2013): 45–50. http://dx.doi.org/10.1557/opl.2013.1059.

Full text
Abstract:
ABSTRACTThis paper reports on mechanical characterization of electrospun tissue scaffolds formed from varying blends of collagen and human tropoelastin. The electrospun tropoelastin-based scaffolds have an open, porous structure conducive to cell attachment and have been shown to exhibit strong biocompatibility, but the mechanical character is not well known. Mechanical properties were tested for scaffolds consisting of 100% tropoelastin and 1:1 tropoelastin-collagen blends. The results showed that the materials exhibited a three order of magnitude change in the initial elastic modulus when tested dry vs. hydrated, with moduli of 21 MPa and 0.011 MPa respectively. Noncrosslinked and crosslinked tropoelastin scaffolds exhibited the same initial stiffness from 0 to 50% strain, and the noncrosslinked scaffolds exhibited no stiffness at strains >∼50%. The elastic modulus of a 1:1 tropoelastin-collagen blend was 50% higher than that of a pure tropoelastin scaffold. Finally, the 1:1 tropoelastin-collagen blend was five times stiffer from 0 to 50% strain when strained at five times the ASTM standard rate. By systematically varying protein composition and crosslinking, the results demonstrate how protein scaffolds might be manipulated as customized biomaterials, ensuring mechanical robustness and potentially improving biocompatibility through minimization of compliance mismatch with the surrounding tissue environment. Moreover, the demonstration of strain-rate dependent mechanical behavior has implications for mechanical design of tropoelastin-based tissue scaffolds.
APA, Harvard, Vancouver, ISO, and other styles
3

Gosline, John M. "Structure and Mechanical Properties of Rubberlike Proteins in Animals." Rubber Chemistry and Technology 60, no. 3 (July 1, 1987): 417–38. http://dx.doi.org/10.5254/1.3536137.

Full text
Abstract:
Abstract Polymer networks formed from protein molecules that adopt kinetically-free, random-coil conformations are found in many animals, where they play a number of important roles. The 5 rubberlike proteins isolated and studied to date indicate that animal rubbers, like their synthetic counterparts, contain random networks which are usually stabilized by covalent crosslinks. Long-range elasticity in rubberlike proteins is based on changes in the conformational entropy of random-coil molecules. Further, these protein networks show viscoelastic glass transitions similar to all other amorphous polymer networks. Future research on protein sequences should increase our understanding of how polypeptide chains can function as random-coil molecules, and studies into the mechanical state of elastin in arterial tissues may provide important clues about the mechanisms of some forms of human disease.
APA, Harvard, Vancouver, ISO, and other styles
4

Buchko, Christopher J., Margaret J. Slattery, Kenneth M. Kozloff, and David C. Martin. "Mechanical properties of biocompatible protein polymer thin films." Journal of Materials Research 15, no. 1 (January 2000): 231–42. http://dx.doi.org/10.1557/jmr.2000.0038.

Full text
Abstract:
A silklike protein with fibronectin functionality (SLPF) (ProNectin F®, Protein Polymer Technologies, Inc.) is a genetically engineered protein polymer containing structural and biofunctional segments. The mechanical properties and deformation mechanisms of electrostatically deposited SLPF thin films were examined by scratch testing, tensile testing, and nanoindentation. Scanning electron microscopy and scanned probe microscopy revealed that the macroscopic properties were a sensitive function of microstructure. The SLPF films were relatively brittle in tension, with typical elongation-to-break values of 3%. Nanoindentation data were fit to a power law relationship.
APA, Harvard, Vancouver, ISO, and other styles
5

Gosline, J., M. Lillie, E. Carrington, P. Guerette, C. Ortlepp, and K. Savage. "Elastic proteins: biological roles and mechanical properties." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 357, no. 1418 (February 28, 2002): 121–32. http://dx.doi.org/10.1098/rstb.2001.1022.

Full text
Abstract:
The term ‘elastic protein’ applies to many structural proteins with diverse functions and mechanical properties so there is room for confusion about its meaning. Elastic implies the property of elasticity, or the ability to deform reversibly without loss of energy; so elastic proteins should have high resilience. Another meaning for elastic is ‘stretchy’, or the ability to be deformed to large strains with little force. Thus, elastic proteins should have low stiffness. The combination of high resilience, large strains and low stiffness is characteristic of rubber–like proteins (e.g. resilin and elastin) that function in the storage of elastic–strain energy. Other elastic proteins play very different roles and have very different properties. Collagen fibres provide exceptional energy storage capacity but are not very stretchy. Mussel byssus threads and spider dragline silks are also elastic proteins because, in spite of their considerable strength and stiffness, they are remarkably stretchy. The combination of strength and extensibility, together with low resilience, gives these materials an impressive resistance to fracture (i.e. toughness), a property that allows mussels to survive crashing waves and spiders to build exquisite aerial filters. Given this range of properties and functions, it is probable that elastic proteins will provide a wealth of chemical structures and elastic mechanisms that can be exploited in novel structural materials through biotechnology.
APA, Harvard, Vancouver, ISO, and other styles
6

Folegatti, Marília I. S., Aloísio José Antunes, and Jorge A. Marcondes. "Mechanical and permeability properties of milk protein films." Brazilian Archives of Biology and Technology 41, no. 3 (1998): 320–28. http://dx.doi.org/10.1590/s1516-89131998000300008.

Full text
Abstract:
Edible films present a potential alternative for replacing plastic films used for packaging in food industry. One of the major advantages is the environmental appeal of this technology, which produces no packaging waste. Some films made with other edible materials have found commercial applications, and many more are being developed using a myriad of food based components. This paper focuses on some important characteristics of films produced with sodium and calcium caseinates. The effects of caseinate type and concentration, plasticizer concentration and pH were studied. Major parameters investigated were solubility, tensile properties, water vapour and oxygen permeabilities. Caseinate films showed high solubility at pH range 6.0-8.0 and complete insolubility at pH 3.0 and 4.0. Calcium caseinate films had a higher tensile strength and a lower % elongation at break than sodium caseinate films. There was not significant difference in water vapour and oxygen permeabilities between sodium and calcium caseinate films.
APA, Harvard, Vancouver, ISO, and other styles
7

Tsai, Shang-Pu, David W. Howell, Zhao Huang, Hao-Ching Hsiao, Yang Lu, Kathleen S. Matthews, Jun Lou, and Sarah E. Bondos. "The Effect of Protein Fusions on the Production and Mechanical Properties of Protein-Based Materials." Advanced Functional Materials 25, no. 9 (January 27, 2015): 1442–50. http://dx.doi.org/10.1002/adfm.201402997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jong, L. "Dynamic Mechanical Properties of Soy Protein Filled Elastomers." Journal of Polymers and the Environment 13, no. 4 (October 2005): 329–38. http://dx.doi.org/10.1007/s10924-005-5526-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sato, M., W. H. Schwartz, S. C. Selden, and T. D. Pollard. "Mechanical properties of brain tubulin and microtubules." Journal of Cell Biology 106, no. 4 (April 1, 1988): 1205–11. http://dx.doi.org/10.1083/jcb.106.4.1205.

Full text
Abstract:
We measured the elasticity and viscosity of brain tubulin solutions under various conditions with a cone and plate rheometer using both oscillatory and steady shearing modes. Microtubules composed of purified tubulin, purified tubulin with taxol and 3x cycled microtubule protein from pig, cow, and chicken behaved as mechanically indistinguishable viscoelastic materials. Microtubules composed of pure tubulin and heat stable microtubule-associated proteins were also similar but did not recover their mechanical properties after shearing like other samples, even after 60 min. All of the other microtubule samples were more rigid after flow orientation, suggesting that the mechanical properties of anisotropic arrays of microtubules may be substantially greater than those of randomly arranged microtubules. These experiments confirm that MAPs do not cross link microtubules. Surprisingly, under conditions where microtubule assembly is strongly inhibited (either 5 degrees or at 37 degrees C with colchicine or Ca++) tubulin was mechanically indistinguishable from microtubules at 10-20 microM concentration. By electron microscopy and ultracentrifugation these samples were devoid of microtubules or other obvious structures. However, these mechanical data are strong evidence that tubulin will spontaneously assemble into alternate structures (aggregates) in nonpolymerizing conditions. Because unpolymerized tubulin is found in significant quantities in the cytoplasm, it may contribute significantly to the viscoelastic properties of cytoplasm, especially at low deformation rates.
APA, Harvard, Vancouver, ISO, and other styles
10

Xue, Ye, Samuel Lofland, and Xiao Hu. "Thermal Conductivity of Protein-Based Materials: A Review." Polymers 11, no. 3 (March 11, 2019): 456. http://dx.doi.org/10.3390/polym11030456.

Full text
Abstract:
Fibrous proteins such as silks have been used as textile and biomedical materials for decades due to their natural abundance, high flexibility, biocompatibility, and excellent mechanical properties. In addition, they also can avoid many problems related to traditional materials such as toxic chemical residues or brittleness. With the fast development of cutting-edge flexible materials and bioelectronics processing technologies, the market for biocompatible materials with extremely high or low thermal conductivity is growing rapidly. The thermal conductivity of protein films, which is usually on the order of 0.1 W/m·K, can be rather tunable as the value for stretched protein fibers can be substantially larger, outperforming that of many synthetic polymer materials. These findings indicate that the thermal conductivity and the heat transfer direction of protein-based materials can be finely controlled by manipulating their nano-scale structures. This review will focus on the structure of different fibrous proteins, such as silks, collagen and keratin, summarizing factors that can influence the thermal conductivity of protein-based materials and the different experimental methods used to measure their heat transfer properties.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Mechanical properties of protein materials"

1

Keten, Sinan. "Size-dependent mechanical properties of beta-structures in protein materials." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/60792.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 199-217).
Protein materials such as spider silk can be exceptionally strong, and they can stretch tremendously before failure. Notably, silks are made entirely of proteins, which owe their structure and stability to weak molecular interactions, in particular, hydrogen bonds (H-bonds). Beta-structures, a class of protein folds that employ dense arrays of H-bonds, are universal in strong protein materials such as silks, amyloids, muscle fibers and virulence factors. The biological recipe for creating strong, tough materials from weak bonds, however, has so far remained a secret. In this dissertation, size, geometry and deformation rate dependent properties of beta-structures are investigated, in order to provide a link between the nanostructure and mechanics of protein materials at multiple length scales. Large-scale molecular dynamics (MD) simulations show that beta-structures reinforce protein materials such as silk by forming H-bonded crystalline regions that cross-link polypeptide chains. A key finding is that superior strength and toughness can only be achieved if the size of the beta-sheet crystals is reduced to a few nanometers. Upon confinement into orderly nanocrystals, H-bond arrays achieve a strong character through cooperation under uniform shear deformation. Moreover, the size-dependent emergence of a molecular stick-slip failure mechanism enhances toughness of the material. Based on replica-exchange MD simulations, the first representative atomistic model for spider silk is proposed. The computational, bottom-up approach predicts a multi-phase material with beta-sheet nanocrystals dispersed within semi-amorphous domains, where the large-deformation and failure of silk is governed by the beta-structures. These findings explain a wide range of observations from single molecule experiments on proteins, as well as characterization studies on silks. Results illustrate how nano-scale confinement of weak bond clusters may lead to strong, tough polymer materials that self-assemble from common, simple building blocks.
by Sinan Keten.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
2

Kappiyoor, Ravi. "Mechanical Properties of Elastomeric Proteins." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/54563.

Full text
Abstract:
When we stretch and contract a rubber band a hundred times, we expect the rubber band to fail. Yet our heart stretches and contracts the same amount every two minutes, and does not fail. Why is that? What causes the significantly higher elasticity of certain molecules and the rigidity of others? Equally importantly, can we use this information to design materials for precise mechanical tasks? It is the aim of this dissertation to illuminate key aspects of the answer to these questions, while detailing the work that remains to be done. In this dissertation, particular emphasis is placed on the nanoscale properties of elastomeric proteins. By better understanding the fundamental characteristics of these proteins at the nanoscale, we can better design synthetic rubbers to provide the same desired mechanical properties.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
3

Guan, Juan. "Investigations on natural silks using dynamic mechanical thermal analysis (DMTA)." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:c16d816c-84e3-4186-8d6d-45071b9a7067.

Full text
Abstract:
This thesis examines the dynamic mechanical properties of natural silk fibres, mainly from silkworm species Bombyx mori (B. mori) and spider species Nephila edulis, using dynamic mechanical thermal analysis, DMTA. The aim is not only to provide novel data on mechanical properties of silk, but also to relate these properties to the structure and morphology of silk. A systematic approach is adopted to evaluate the effect of the three principal factors of stress, temperature and hydration on the properties and structure of silk. The methods developed in this work are then used to examine commercially important aspects of the ‘quality’ of silk. I show that the dynamic storage modulus of silks increases with loading stress in the deformation through yield to failure, whereas the conventional engineering tensile modulus decreases significantly post-yield. Analyses of the effects of temperature and thermal history show a number of important effects: (1) the loss peak at -60 °C is found to be associated the protein-water glass transition; (2) the increase in the dynamic storage modulus of native silks between temperature +25 and 100 °C is due simply to water loss; (3) a number of discrete loss peaks from +150 to +220°C are observed and attributed to the glass transition of different states of disordered structure with different intermolecular hydrogen bonding. Excess environmental humidity results in a lower effective glass transition temperature (Tg) for disordered silk fractions. Also, humidity-dynamic mechanical analysis on Nephila edulis spider dragline silks has shown that the glass transition induces a partial supercontraction, called Tg contraction. This new finding leads to the conclusion of two independent mechanisms for supercontraction in spider dragline silks. Study of three commercial B. mori cocoon silk grades and a variety of processed silks or artificial silks shows that lower grade and poorly processed silks display lower Tg values, and often have a greater loss tangent at Tg due to increased disorder. This suggests that processing contributes significantly to the differences in the structural order among natural or unnatural silks. More importantly, dynamic mechanical thermal analysis is proposed to be a potential tool for quality evaluation and control in silk production and processing. In summary, I demonstrate that DMTA is a valuable analytical tool for understanding the structure and properties of silk, and use a systematic approach to understand quantitatively the important mechanical properties of silk in terms of a generic structural framework in silk proteins.
APA, Harvard, Vancouver, ISO, and other styles
4

Silva, Nuno Hélder da Cruz Simões. "Production of protein nanofibers and their application in the development of innovative materials." Doctoral thesis, Universidade de Aveiro, 2018. http://hdl.handle.net/10773/23348.

Full text
Abstract:
Doutoramento em Engenharia Química
As nanofibras proteicas, também conhecidas como fibrilas amilóide, estão a ganhar muito interesse devido às suas propriedades únicas, nomeadamente elevada resistência mecânica e propriedades funcionais. Estas nanofibras caracterizam-se por depósitos proteicos que resultam de um processo onde a molécula proteica adquire uma conformação estrutural em folhas-β. Dadas as suas propriedades, estas nanofibras têm sido estudadas como elementos estruturais e funcionais no desenvolvimento de materiais inovadores para aplicação em diferentes áreas como, por exemplo, em biosensores, membranas bioactivas e estruturas tridimensionais (scaffolds) para engenharia de tecidos. No entanto, uma das principais limitações na exploração de nanofibras proteicas está relacionada com o tempo necessário para a sua produção, uma vez que a fibrilação é um processo moroso que pode levar horas, dias ou até mesmo semanas. A utilização de solventes alternativos como agentes promotores de fibrilação, nomeadamente líquidos iónicos (ILs), foi recentemente demonstrada como uma via para reduzir o tempo de fibrilação. Estes resultados serviram de inspiração para estudarmos o processo de fibrilação de uma proteína modelo, a lisozima, em soluções aquosas de líquidos iónicos baseados nos catiões imidazólio ou colina com diferentes aniões derivados de ácidos orgânicos. A presença de qualquer um dos ILs testados no meio de fibrilação demonstrou ser muito eficiente obtendo-se taxas de conversão superiores a 80% de fibrilas. Seguindo uma abordagem semelhante, estudou-se também um solvente eutéctico profundo (DES) baseado em cloreto de colina e ácido acético (1:1) como possível promotor da fibrilação da lisozima, diminuindo-se o tempo de fibrilação de 8-15 h para apenas 2-3 h. Foi também demonstrado que a temperatura tem um papel fundamental na aceleração da fibrilação e tanto a temperatura como o pH influenciam significativamente as dimensões das nanofibras, nomeadamente em termos de comprimento e largura. Com o objectivo de ajustar a razão de aspecto das nanofibras (razão comprimento/largura), foram ainda estudados vários DES baseados em cloreto de colina e com ácidos mono-, di- e tri-carboxílicos, tendo-se observado que o ácido carboxílico do DES desempenha um papel fundamental no comprimento das nanofibras produzidas, sendo as razões de aspecto sempre superiores às obtidas por fibrilação apenas com cloreto de colina. O potencial das nanofibras proteicas como elementos de reforço em materiais compósitos foi avaliado pela preparação de filmes nanocompósitos à base de pululano com nanofibras de lisozima em diferentes proporções. Foram obtidos filmes transparentes com maior resistência mecânica à tracção, particularmente para as nanofibras com razões de aspecto mais elevadas. Além disso, a incorporação de nanofibras de lisozima nos filmes de pululano conferiu propriedades bioativas aos filmes, nomeadamente capacidade antioxidante e atividade antibacteriana contra a Staphylococcus aureus. O aumento do conteúdo de nanofibras nos filmes promoveu um aumento das propriedades antioxidante e antibacteriano dos filmes, sugerindo-se como possível aplicação a utilização destes nanocompósitos como filmes comestíveis e ecológicos para embalagens alimentares bioactivas. As nanofibras de lisozima foram também misturadas com fibras de nanocelulose com o objectivo de produzir um filme sustentável para a remoção de mercúrio (II) de águas naturais. Os filmes foram obtidos por filtração sob vácuo e mostraram-se homogéneos e translúcidos. A incorporação das nanofibras de lisozima nos filmes de nanocelulose promoveu um reforço mecânico significativo. Em termos da capacidade de remoção de mercúrio (II) a partir de água natural, a presença das nanofibras de lisozima proporcionou um aumento muito expressivo com eficiências de 82% (pH 7) < 89% (pH 9) < 93% (pH 11), utilizando concentrações de mercúrio (II) de acordo com o limite estabelecido nos regulamentos da União Europeia (50 μg L-1). Em suma, foi demonstrado nesta tese que o uso de líquidos iónicos e de solventes eutécticos profundos assume um papel fundamental na formação de nanofibras de lisozima morfologicamente alongadas e finas, que podem ser exploradas no desenvolvimento de bionanocompósitos para diversas aplicações desde embalagens bioactivas a sistemas de purificação de água.
Protein nanofibers, also known as amyloid fibrils, are gaining much attention due to their peculiar morphology, mechanical strength and functionalities. These nanofibers are characterized as fibrillar assemblies of monomeric proteins or peptides that underwent unfolding-refolding transition into stable β-sheet structures and are emerging as building nanoblocks for the development of innovative functional materials for application in distinct fields, for instance, in biosensors, bioactive membranes and tissue engineering scaffolds. However, one of the main limitations pointed out for the exploitation of protein nanofibers is their high production time since fibrillation is a time-consuming process that can take hours, days, and even weeks. The use of alternative solvents, such as ionic liquids (ILs), as fibrillation agents has been recently reported with considerable reduction in the fibrillation time. This fact encouraged us to study the fibrillation of a model protein, hen egg white lysozyme (HEWL), in the presence of several ILs based on imidazolium and cholinium cations combined with different anions derived from organic acids. All ILs used were shown to fibrillate HEWL within a few hours with conversion ratios over than 80% and typically worm-like nanofibers were obtained. In another study, a deep eutectic solvent (DES) based on cholinium chloride and acetic acid (1:1) was studied as a possible promoter of HEWL fibrillation, and a considerably reduction of the fibrillation time from 8-15 h to just 2-3 h was also observed. Temperature has a key role in the acceleration of the fibrillation and both temperature and pH significantly influence the nanofibers dimensions, in terms of length and width. In what concerns the nanofibers aspect-ratio, several DES combining cholinium chloride and mono-, di- and tri-carboxylic acids were studied. It was observed that carboxylic acid plays an important role on the length of the nanofibers produced with aspect-ratios always higher than those obtained by fibrillation with cholinium chloride alone. The potential of the obtained protein nanofibers as reinforcing elements was evaluated by preparing pullulan-based nanocomposite films containing lysozyme nanofibers with different aspect-ratios, resulting in highly homogenous and transparent films with improved mechanical performance, particularly for the nanofibers with higher aspect-ratios. Furthermore, the incorporation of lysozyme nanofibers in the pullulan films imparted them also with bioactive functionalities, namely antioxidant capacity and antibacterial activity against Staphylococcus aureus. The results showed that the antioxidant and antibacterial effectiveness increased with the content of nanofibers, supporting the use these films as, for example, eco-friendly edible films for active packaging. Lysozyme nanofibers were also blended with nanocellulose fibers to produce a sustainable sorbent film to be used in the removal of mercury (II) from natural waters. Homogenous and translucent films were obtained by vacuum filtration and the incorporation of these nanofibers in a nanocellulose film promoted a considerable mechanical reinforcement. In terms of the capacity to remove mercury (II) from natural water, the presence of lysozyme nanofibers demonstrated to increase expressively the mercury (II) removal with efficiencies of 82% (pH 7) < 89% (pH 9) < 93% (pH 11), using realistic concentrations of mercury (II) under the limit established in the European Union regulations (50 μg L-1). In sum, it was demonstrated in this thesis that the use of ionic liquids and deep eutectic solvents can accelerate the formation of long and thin lysozyme nanofibers that can be explored as nanosized reinforcing elements for the development of bionanocomposites with applications ranging from food packaging to water purification systems and nanotechnology
APA, Harvard, Vancouver, ISO, and other styles
5

Clemments, Alden Michael. "A Study Of The Physicochemical Properties Of Dense And Mesoporous Silica Nanoparticles That Impact Protein Adsorption From Biological Fluids." ScholarWorks @ UVM, 2016. http://scholarworks.uvm.edu/graddis/639.

Full text
Abstract:
At the intersection of materials chemistry and biology, biomaterials have been successfully employed in an array of medical applications. From diagnostic tools to targeted drug delivery, the modular physical and chemical properties of these materials provide numerous applications. For example, porous nanoparticles have been widely integrated as vehicles to carry chemotherapeutics to localized tumor sites. By encapsulating these cytotoxic compounds within a porous framework, the commonly associated adverse side effects of conventional chemotherapeutics, such as Doxorubicin, have been greatly reduced. One such material, mesoporous silica, has received widespread attention due to its excellent biocompatibility, high surface area to mass ratio, tunable pore diameters and volumes, and robust surface chemistry. However, recent studies have demonstrated that exposing silica nanoparticles, and other synthetic materials, to biological milieu envelops the particles in layers of proteins and biomolecules. The resulting protein coat, known as the "protein corona", has been shown to have profound effects on bioavailability, cellular targeting, and cytotoxicity. Thus, in order to develop safe and effective particle-based therapies, it is of utmost importance to establish a more thorough understanding of this process. To examine how changes in surface chemistry influence protein adsorption, monodisperse, spherical mesoporous silica nanoparticles, ca. 50 nm, were modified with a variety of surface functionalizations, -NH2, -COOH, and -PEG. Exposing these materials to biological fluid revealed drastically different protein fingerprints, suggesting a strong correlation between the surface chemistry and the identity and composition of the protein corona. Quantification of the protein corona, i.e. mg protein/mg particles, was then achieved by performing thermogravimetric analysis. These values, in concert with spectral counts obtained by shotgun proteomics, illustrates a method for quantifying individual proteins present in the corona. Spherical, silica particles of varying diameters, 70-900 nm, were then synthesized to investigate how particle diameter may affect the biomolecular identity of the protein corona. Applying the previously described methods, it was found that mesoporous particles exhibit a higher affinity for low-molecular weight proteins compared to dense silica particles of similar diameters. Finally, stochastic optical reconstruction microscopy (STORM) was used to map protein adsorption/diffusion throughout as-prepared (pore diameter ~ 30 Å) .and large pore (pore diameter > 60 Å) mesoporous silica particles. By collecting three-dimensional data on the protein-adsorbed materials, a sphere-fitting algorithm could be applied to determine the center and radius of the host particle. This calculation demonstrated that the depth by which specific proteins diffused into the porous framework was a function of both the protein's molecular weight as well as the pore diameter.
APA, Harvard, Vancouver, ISO, and other styles
6

Kopuletá, Ema. "Struktura a vlastnosti nanokompozitních sítí kolagen/HAP." Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2014. http://www.nusl.cz/ntk/nusl-233390.

Full text
Abstract:
Polymerní biomateriály jsou jedním ze současných populárních témat vzhledem k možnosti potenciální aplikace v tkáňovém inženýrství a řízeného dávkování léčiv v organismech. Kolagen je jako jeden z nejčastěji se vyskytujících proteinů zvláště zajímavý díky svým rozmanitým vlastnostem bez imunoreakce organismu příjemce. Tato práce je zaměřena na samouspořádávací procesy, kinetiku, obecné zákonitosti řídící proces samouspořádání a mechanické vlastnosti kolagenních roztoků. Dále je zkoumán efekt hydroxyapatitových nanočástic na samouspořádávání kolagenu a mechanické vlastnosti výsledných nanokompozitních hydrogelů. Jsou objasněny možné mechanismy interakcí mezi kolagenem I a hydroxyapatitem spolu s popisem vývoje struktury a vlastností na různých úrovních struktury. Byly měřeny a molekulárně interpretovány závislosti viskoelastických veličin na smykové rychlosti spolu s viskoelastickým chováním. Dále byla studována struktura kolagenních scaffoldů a určen vliv HAP a síťování. Závěrem byly diskutovány výsledky v souvislosti s jejich aplikovatelností v tkáňovém inženýrství chrupavek tvrdých tkání a v regenerativní medicíně.
APA, Harvard, Vancouver, ISO, and other styles
7

Chopra, Prateek. "Effective mechanical properties of lattice materials." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/39436.

Full text
Abstract:
Lattice materials possess a spatially repeating porous microstructure or unit cell. Their usefulness lies in their multi-functionality in terms of providing high specific stiffness, thermal conductivity, energy absorption and vibration control by attenuating forcing frequencies falling within the band gap region. Analytical expressions have been proposed in the past to predict cell geometry dependent effective material properties by considering a lattice as a network of beams in the high porosity limit. Applying these analytical techniques to complex cell geometries is cumbersome. This precludes the use of analytical methods in conducting a comparative study involving complex lattice topologies. A numerical method based on the method of long wavelengths and Bloch theory is developed here and applied to a chosen set of lattice geometries in order to compare effective material properties of infinite lattices. The proposed method requires implementation of Floquet-bloch transformation in conjunction with a Finite Element (FE) scheme. Elastic boundary layers emerge from surfaces and interfaces in a finite lattice, or an infinite lattice with defects such as cracks. Boundary layers can degrade effective material properties. A semi-analytical formulation is developed and applied to a chosen set of topologies and the topologies with deep boundary layers are identified. The methods developed in this dissertation facilitate rapid design calculation and selection of appropriate core topologies in multifunctional design of sandwich structures employing a lattice core.
APA, Harvard, Vancouver, ISO, and other styles
8

Lawson, Nathaniel C. "Mechanical properties of dental impression materials." Birmingham, Ala. : University of Alabama at Birmingham, 2007. https://www.mhsl.uab.edu/dt/2008r/lawson.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ajwani, Anita. "Mechanical properties of bio-absorbable materials." Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-12042009-020133/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Calvo, de la Rosa Jaume. "Mechanical and functional properties in magnetic materials." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/667865.

Full text
Abstract:
This doctoral Thesis has been focused on the preparation of magnetic materials by different methods, the characterization of their structural characteristics, and the understanding of their mechanical and magnetic properties. Furthermore, a big effort has been paid to investigate the frequency-dependent functional properties of different materials, which are increasingly demanded in novel technological applications. Moreover, this work presents this characterization in a wide range of frequencies, from the kHz to the THz. In the first chapter, the reader will find an introduction to the topic and the state of the art of those materials that have been synthesized and developed in this Thesis. Then, the general goals of our research are described. Chapter II provides all the needed fundamental theory to accomplish with the previously stated goals. The concepts exposed here will be used later in the following chapters where the results will be shown and discussed. Moreover, this chapter does not only pretend to give the essential notions used in the following chapter, but we also aim to provide a useful guide to anyone who starts working on this field. All the materials, devices, software, and experimental conditions used in this Thesis are described in Chapter III. Here, we describe these aspects in detail in order to allow an agile discussion in the following chapters. The first experimental chapter is Chapter IV, where the synthesis of copper ferrite nanoparticles by mean of sol-gel and co-precipitation is described. The sol-gel process is optimized through of design of experiments (DoE) approach. The results of the mechanical and magnetic characterization of solid pellets fabricated with the previously synthesized nanoparticles are also shown in this chapter. Finally, by using statistical methods a direct experimental correlation between the mechanical and magnetic properties is found in this material. Another material, a carbon nanotube–based nanocomposite, is studied in Chapter V. This novel material is first structurally characterized in order to understand its magnetic properties. A big effort is paid on the study of the magnetic relaxation of this material, which has not been previously reported as far as we know. The investigation of soft magnetic materials (SMM) and composites (SMC) can be found in Chapter VI. The actual SMCs are first structurally and magnetically characterized. Their magnetic properties in the kHz and MHz frequency range are also investigated, showing the better performance of the SMC at high frequencies. In the second part of the chapter, the development on new SMC’s formulations is described. The developed materials are potentially useful for applications in the kHz and MHz frequency range. The frequency is raised in Chapter VII. Terahertz time-domain spectroscopy (THz-TDS) is used to investigate the optical and dielectric properties of two different semiconductor oxides from 180 GHz to 3 THz. The signal processing and the interpretation of the effect that different characteristics of the sample may have on the observed properties are discussed. In this chapter, magnetic materials are not investigated because the Fresnel model – which is the base of this technique - assumes a non-magnetic response of the material. The work described in Chapter VIII is completely different from the previous ones. In this case, we investigate the manipulation of the magnetic moments by using surface acoustic waves (SAWs). The experiments done in this chapter lead to interesting observation about the potentiality of the use of SAWs to accelerate the magnetic moment reversal in magnetic nanoparticles.
Esta Tesis Doctoral se centra en el estudio de materiales magnéticos en su conjunto, tanto desde la síntesis hasta sus propiedades mecánicas y funcionales finales. Además, ha habido un especial interés en el estudio de las propiedades funcionales en un amplio rango frecuencial. De este modo, en el primer capítulo, el lector puede encontrar una introducción al campo de investigación, así como también el estado del arte de aquellos materiales que se han sintetizado y desarrollado en esta Tesis. Por otro lado, en el Capítulo II se aportan todos los conceptos teóricos necesarios para el siguiente desarrollo de la Tesis. Además, los materiales, dispositivos, software y condiciones experimentales utilizados durante el desarrollo de esta investigación están descritos en el Capítulo III. El Capítulo IV es la primera parte experimental de la Tesis, y en la que se describe la síntesis de nanopartículas de ferrita de cobre vía sol-gel y coprecipitación. Además, se estudian las propiedades magnéticas y mecánicas en bulk, y se analiza su correlación empírica. El Capítulo V está dedicado al estudio de un nuevo material: un nanocompuesto magnético basado en nanotubos de carbono. Inicialmente se caracteriza química y estructuralmente para después centrarse en las propiedades magnéticas. Se realiza, además, un detallado estudio de su relajación magnética. Por otro lado, en el Capítulo VI, se investigan materiales magnéticos blandos. Inicialmente se analizan los materiales actualmente utilizados, mientras que en una segunda parte se desarrollan nuevas formulaciones con interesantes propiedades tecnológicas. En el Capítulo VII se presenta el estudio de las propiedades ópticas y dieléctricas en el rango de los THz. Se describe detalladamente el método, análisis de señal, y efecto de las características físicas de la muestra sobre la medida. Finalmente, también se propone un método para cuantificar el efecto de la porosidad de las muestras. Por último, el Capítulo VIII se investiga la manipulación del momento magnético mediante estímulos mecánicos como las ondas acústicas superficiales (SAW, en inglés). Se observa una clara variación experimental con la aplicación de las SAWs, y se relaciona matemáticamente esta variación con la frecuencia y potencia de las SAWs.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Mechanical properties of protein materials"

1

Khataee, A. R. Mechanical and dynamical principles of protein nanomotors: The key to nano-engineering applications. New York: Nova Science Publishers, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Khataee, A. R. Mechanical and dynamical principles of protein nanomotors: The key to nano-engineering applications. Hauppauge, N.Y: Nova Science Publishers, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pelleg, Joshua. Mechanical Properties of Materials. Dordrecht: Springer Netherlands, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pelleg, Joshua. Mechanical Properties of Materials. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-4342-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mechanical properties of engineered materials. New York: Marcel Dekker, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mechanical properties of nanocrystalline materials. Singapore: Pan Stanford Pub., 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mechanical behavior of materials. 2nd ed. Boston: McGraw Hill, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hosford, William F. Mechanical behavior of materials. 2nd ed. Cambridge: Cambridge University Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dominique, François. Mechanical behavior of materials. Dordrecht: Kluwer Academic Publishers, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mechanical behavior of materials. New York: McGraw-Hill, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Mechanical properties of protein materials"

1

Juarez-Martinez, Gabriela, Alessandro Chiolerio, Paolo Allia, Martino Poggio, Christian L. Degen, Li Zhang, Bradley J. Nelson, et al. "Mechanical Properties of Hierarchical Protein Materials." In Encyclopedia of Nanotechnology, 1285–95. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Buehler, Markus J., and Graham Bratzel. "Mechanical Properties of Hierarchical Protein Materials." In Encyclopedia of Nanotechnology, 1915–26. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Xiao-Wei, Dong Liu, Guang-Zhong Yin, and Wen-Bin Zhang. "Tuning Mechanical Properties of Protein Hydrogels." In Bioinspired Materials Science and Engineering, 295–309. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119390350.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tarakanova, Anna, Shu-Wei Chang, and Markus J. Buehler. "Computational Materials Science of Bionanomaterials: Structure, Mechanical Properties and Applications of Elastin and Collagen Proteins." In Handbook of Nanomaterials Properties, 941–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-31107-9_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Anderson, J. C., K. D. Leaver, R. D. Rawlings, and J. M. Alexander. "Mechanical Properties." In Materials Science, 181–244. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-6826-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lacroix, Damien, and Josep A. Planell. "Mechanical Properties." In Biomedical Materials, 303–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49206-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dasari, Aravind, Zhong-Zhen Yu, and Yiu-Wing Mai. "Mechanical Properties." In Engineering Materials and Processes, 133–60. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-6809-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

White, Mary Anne. "Mechanical Properties." In Physical Properties of Materials, 397–446. Third edition. | Boca Raton : Taylor & Francis, CRC Press, 2019.: CRC Press, 2018. http://dx.doi.org/10.1201/9780429468261-19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wesolowski, Robert A., Anthony P. Wesolowski, and Roumiana S. Petrova. "Mechanical Properties." In The World of Materials, 39–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-17847-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gottstein, Günter. "Mechanical Properties." In Physical Foundations of Materials Science, 197–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09291-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Mechanical properties of protein materials"

1

Teng, Weibing, Joseph Cappello, and Xiaoyi Wu. "Viscoelastic Properties of Genetically Engineered Silk-Elastin-Like Protein Polymers." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192252.

Full text
Abstract:
Genetic engineering of protein-based materials provides material scientists with high levels of control in material microstructures, properties, and functions [1]. For example, multi-block protein copolymers in which individual block may possess distinct mechanical or biological properties have been biosynthesized [2, 3]. Polypeptide sequences derived from well-studied structural proteins (e.g., collagen, silk, elastin) are often used as motifs in the design and synthesis of new protein-based material, in which new functional groups may be incorporated. In this fashion, we have produced a series of silk-elastin-like proteins (SELPs) consisting of polypeptide sequences derived from silk of superior mechanical strength and elastin that is extremely durable and resilient [2, 4]. Notably, the silk-like blocks are capable of crystallizing to form virtual cross-links between elastin-mimetic sequences, which, in turn, lower the crystallinity of the silk-like blocks and thus enhance the solubility of SELPs. Consequently, SELPs may be fabricated into useful structures for biomedical applications, including drug delivery. In this study, we will characterize viscoelastic properties of SELPs, which are particularly relevant to tissue engineering applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Durbaca, Ion, Radu Iatan, Elena Surdu, and Dana-Claudia Farcas-Flamaropol. "Approaches to the evaluation of the mechanical properties of single-layer composite plates made of recyclable polymeric and protein materials." In The 8th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2020. http://dx.doi.org/10.24264/icams-2020.i.8.

Full text
Abstract:
This paper deals with the theoretical and experimental mechanical characteristics of composite plates obtained from recyclable polymer and protein matrix and fibrous reinforcement. The definition of the theoretical model of the monolayer composite material with its structural elements and the physical-mechanical evaluation of its characteristics leads to the optimal and efficient design and use of all products made of such materials. By the theoretical and experimental determination of the mechanical characteristics that define the properties of the composite material, it can be decided on its use in specific industrial technical applications.
APA, Harvard, Vancouver, ISO, and other styles
3

Keten, Sinan, and Markus J. Buehler. "Elasticity and Strength of Beta-Sheet Protein Materials: Geometric Confinement and Size Effects." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-205464.

Full text
Abstract:
Elasticity and strength of proteins influence their biological functions. Under external forces, many proteins exhibit entropic elasticity with a characteristic stiffening elastic behavior and unravel due to the rupture of interstrand H-bonds. We develop a fracture mechanics based theoretical framework that considers the free energy competition between entropic elasticity of polypeptide chains and rupture of peptide hydrogen bonds, which we use here to provide an explanation for the intrinsic strength limit of protein domains at vanishing rates [1, 2]. Our analysis predicts that individual protein domains stabilized only by hydrogen bonds cannot exhibit rupture forces larger than 100–300 pN in the asymptotic quasi-static limit. This result explains earlier experimental and computational observations that suggest such a universal, asymptotic strength limit at vanishing pulling rates. We show that the rupture strength of H-bond assemblies in beta-sheets is governed by geometric confinement effects, suggesting that clusters of at most 3–4 H-bonds break concurrently, even under uniform shear loading of a much larger number of H-bonds. These strength, elasticity and size effect predictions all agree well with recent experimental findings and proteomics data. Our model confirms that fracture mechanics concepts, previously primarily applied to macroscale fracture phenomena, can also be directly applied at nanoscale, to be used for describing failure mechanisms in protein materials. Our strength and optimal size predictions lead to a key hypothesis: confined H-bond clusters are prevalent in alpha helices, beta-sheets and beta-solenoids, perhaps as an evolutionary design principle that derives from generic mechanical properties of the fundamental building blocks of life.
APA, Harvard, Vancouver, ISO, and other styles
4

Chun, Keyoung Jin, Hyun Ho Choi, and Jong Yeop Lee. "A Comparative Study of Mechanical Properties of Tooth Reconstruction Materials." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63106.

Full text
Abstract:
Tooth reconstruction materials are used to reconstruct damaged teeth as well as to recover their functions. In this study, the mechanical properties of various tooth reconstruction materials were determined using test specimens of identical shape and dimension under the same compressive test condition; the hardness values of them were obtained from previous studies and compared with those of enamel and dentin. Amalgam, dental ceramic, dental gold alloy, dental resin, zirconia and titanium were processed as tooth reconstruction material specimens. For each material, 10 specimens having a of 3.0 × 1.2 × 1.2 mm (length × width × height) were used. The stresses, strains, and elastic moduli of amalgam, dental ceramic, gold alloy, dental resin, zirconia, and titanium alloy were obtained from the compressive test. The hardness values of amalgam, dental ceramic, gold alloy, dental resin, zirconia, and titanium alloy were obtained from the references [14–19]. And, the stresses, strains, elastic moduli, and the hardness values of enamel and dentin were obtained from the reference [13]. The mechanical role of enamel is to crush food and protect dentin because of its higher wear resistance, and that of dentin is to absorb bite forces because of its higher force resistance. Therefore, the hardness value should be prioritized for enamel replacement materials, and mechanical properties should be prioritized for dentin replacement materials. Therefore, zirconia and titanium alloy were considered suitable tooth reconstruction materials for replacing enamel, and gold alloy, zirconia, and titanium alloy were considered suitable tooth reconstruction materials for replacing dentin. However, owing to the excessive mechanical properties and hardness values of zirconia and titanium alloy, these may show poor biocompatibility with natural teeth. Thus far, no tooth reconstruction material satisfies the requirements of having both a hardness value similar to that of enamel and mechanical properties similar to those of dentin.
APA, Harvard, Vancouver, ISO, and other styles
5

Munro, Troy, Changhu Xing, Andrew Marquette, Heng Ban, Cameron Copeland, and Randolph Lewis. "Description of Test Setup and Approach to Measure Thermal Properties of Natural and Synthetic Spider Silks at Cryogenic Temperatures." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66630.

Full text
Abstract:
Spider silk is well-known for its exceptional mechanical properties, such as strength, elasticity and flexibility. Recently, it has been reported that dragline silk from a Nephila clavipes also has an exceptionally high thermal conductivity, comparable to copper when the fiber is stretched. Synthetic spider silks have been spun from spider silk proteins produced in transgenic sources, and their production process has the optimization potential to have properties similar to or better than the natural spider silk. There is interest to measure the thermal properties of natural and synthetic silk at cryogenic temperatures for use of spider silk fibers as heat conduits in systems where component weight is an issue, such as in spacecraft. This low temperature measurement is also of particular interest because of the conformational changes in protein structures, which affect material properties, that occurs at lower temperatures for some proteins. A measurement system has been designed and is being tested to characterize the thermal properties of natural and synthetic spider silks by means of a transient electrothermal method.
APA, Harvard, Vancouver, ISO, and other styles
6

Karuppiah, K. S. Kanaga, Sriram Sundararajan, Zhi-Hui Xu, and Xiaodong Li. "The Effect of Surface Processing on the Protein Adsorption and Tribomechanical Properties of Ultra-High-Molecular Weight Polyethylene." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15187.

Full text
Abstract:
Ultra-high molecular weight polyethylene (UHMWPE) is a popular choice for the liner material of the acetabular cup and forms one of the articulating surfaces in total joint replacements (TJRs). Evaluating the tribological characteristics of UHMWPE on immediate contact with the physiological fluid is essential to understand pathways and mechanisms of eventual failure. In this study, the friction response and interfacial shear strength of a UHMWPE - ceramic interface was quantified using atomic force microscopy (AFM) before and after exposure to bovine serum albumin (BSA) solution. A 10% protein solution concentration was used to closely mimic protein levels in human physiological fluid. Medical grade UHMWPE samples with two different surface finishing treatments, milling and melting/reforming were used in the experiments. Friction response as a function of normal load was monitored on a particular area on each sample. Fluorescence microscopy was used to assess the protein adsorption on the test area. The interfacial shear strength of the interface was calculated from the friction data using contact mechanics. Contact angle measurements were also performed on the surfaces to evaluate the surface energies before and after protein adsorption. Correlations between the friction behavior and surface energy of the surfaces are discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

Zamiri, Amir Reza, and Suvranu De. "Multiscale Modeling of Protein Crystals: Application to Tetragonal Lysozyme." In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13170.

Full text
Abstract:
Recently, protein crystals have emerged as promising bionanoporous materials for different applications including highly selective biocatalysis, biosensing, bioseparation, vaccine formulation, and drug delivery. The environmental working conditions require the protein crystals to be both chemically and mechanically stable. The structure, behavior, and mechanical properties of protein crystals play an important role in the performance and life cycle of these materials [1,2]. In this work we introduce a strategy for evaluating the mechanical response of protein crystals with the tetragonal lysozyme crystal as a model.
APA, Harvard, Vancouver, ISO, and other styles
8

Esmaeilzadeh, Hamed, George Cernigliaro, Junwei Su, Lin Gong, Iman Mirzaee, Majid Charmchi, and Hongwei Sun. "The Effects of Material Properties on Pillar-Based QCM Sensors." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52533.

Full text
Abstract:
Quartz crystal microbalance (QCM) device is a highly sensitive mass sensor (sensitivity: 0.5 ng/cm2) with a wide range of applications including biosensing, thin film deposition, surface chemistry, volatile organic compounds (VOC) and gaseous analytes detection. A recent study shows that several orders of magnitude improvement in sensitivity can be achieved by attaching microscale Polymethyl methacrylate (PMMA) pillars onto the surface of the QCM (QCM-P) to form a two-degree of freedom coupled resonant system. In this research, the effects of residual layer from the nanoimprinting process of micro-pillars and polydispersity index (Pd) of PMMA molecules on the sensitivity of QCM-P devices are investigated both experimentally and theoretically. The results show the residual layer behaves as an additional mass and significantly reduces the frequency shift of QCM-P sensor while a low polydispersity of PMMA improves the sensor responses. The outcome of this research leads to an in-depth understanding of the effects of material and fabrication process on QCM-P sensors which will build a solid foundation for the further improvement of QCM-P devices for a variety of applications such as protein binding measurement in drug discovery, gas detection for environmental monitoring and protection.
APA, Harvard, Vancouver, ISO, and other styles
9

Rosa, Isamar, Henning Roedel, Michael D. Lepech, and David J. Loftus. "Creation of Statistically Equivalent Periodic Unit Cells for Protein-Bound Soils." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52029.

Full text
Abstract:
In 2010, NASA was directed to develop technologies to reduce the cost and risk of space exploration and send humans beyond the International Space Station. A central challenge to long-duration space missions is a lack of available construction materials in situ. This work focuses on a novel class of composites that can be produced extraterrestrially in situ by desiccating a mixture of soil, water, and protein binder to create a strong, versatile material. To date, experimental tests of mechanical properties have shown significant variability among samples. This paper focuses on the creation of Statistically Equivalent Periodic Unit Cells (SEPUC) to stochastically model protein-bound composites for the purpose of creating FE models that provide insights into experimental results. Model inputs include the soil granulometry and volume fractions of the phases. Ellipsoidal particles are placed, and protein coatings and bridges are created, using a Level Set based Random Sequential Addition algorithm. Each image is assigned a statistical descriptor and a simple genetic algorithm is used to optimize for a statistical descriptor close to that of experimental specimens. The framework is validated by comparing experimental images of protein-bound soils obtained by micro-CT scanning with those obtained through the SEPUC framework.
APA, Harvard, Vancouver, ISO, and other styles
10

Cuppoletti, John. "Composite Synthetic Membranes Containing Native and Engineered Transport Proteins." In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-449.

Full text
Abstract:
Our membrane transport protein laboratory has worked with material scientists, computational chemists and electrical and mechanical engineers to design bioactuators and sensing devices. The group has demonstrated that it is possible to produce materials composed native and engineered biological transport proteins in a variety of synthetic porous and solid materials. Biological transport proteins found in nature include pumps, which use energy to produce gradients of solutes, ion channels, which dissipate ion gradients, and a variety of carriers which can either transport substances down gradients or couple the uphill movement of substances to the dissipation of gradients. More than one type of protein can be reconstituted into the membranes to allow coupling of processes such as forming concentration gradients with ion pumps and dissipating them with an ion channel. Similarly, ion pumps can provide ion gradients to allow the co-transport of another substance. These systems are relevant to bioactuation. An example of a bioactuator that has recently been developed in the laboratory was based on a sucrose-proton exchanger coupled to a proton pump driven by ATP. When coupled together, the net reaction across the synthetic membrane was ATP driven sucrose transport across a flexible membrane across a closed space. As sucrose was transported, net flow of water occurred, causing pressure and deformation of the membrane. Transporters are regulated in nature. These proteins are sensitive to voltage, pH, sensitivity to a large variety of ligands and they can be modified to gain or lose these responses. Examples of sensors include ligand gated ion channels reconstituted on solid and permeable supports. Such sensors have value as high throughput screening devices for drug screening. Other sensors that have been developed in the laboratory include sensors for membrane active bacterial products such as the anthrax pore protein. These materials can be self assembled or manufactured by simple techniques, allowing the components to be stored in a stable form for years before (self) assembly on demand. The components can be modified at the atomic level, and are composed of nanostructures. Ranges of sizes of structures using these components range from the microscopic to macroscopic scale. The transport proteins can be obtained from natural sources or can be produced by recombinant methods from the genomes of all kingdoms including archea, bacteria and eukaryotes. For example, the laboratory is currently studying an ion channel from a thermophile from deep sea vents which has a growth optimum of 90 degrees centigrade, and has membrane transport proteins with very high temperature stability. The transport proteins can also be genetically modified to produce new properties such as activation by different ligands or transport of new substances such as therapeutic agents. The structures of many of these proteins are known, allowing computational chemists to help understand and predict the transport processes and to guide the engineering of new properties for the transport proteins and the composite membranes. Supported by DARPA and USARMY MURI Award and AFOSR.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Mechanical properties of protein materials"

1

Byun, T. S. Temperature Effects on the Mechanical Properties of Candidate SNS Target Container Materials after Proton and Neutron Irradiation. Office of Scientific and Technical Information (OSTI), November 2001. http://dx.doi.org/10.2172/814075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Solem, J. C., and J. K. Dienes. Mechanical Properties of Cellular Materials. Office of Scientific and Technical Information (OSTI), July 1999. http://dx.doi.org/10.2172/759178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Siegel, R. W., and G. E. Fougere. Mechanical properties of nanophase materials. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10110297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tretiak, Sergei, Benjamin Tyler Nebgen, Justin Steven Smith, Nicholas Edward Lubbers, and Andrey Lokhov. Machine Learning for Quantum Mechanical Materials Properties. Office of Scientific and Technical Information (OSTI), February 2019. http://dx.doi.org/10.2172/1498000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hardy, Robert Douglas, David R. Bronowski, Moo Yul Lee, and John H. Hofer. Mechanical properties of thermal protection system materials. Office of Scientific and Technical Information (OSTI), June 2005. http://dx.doi.org/10.2172/923159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

William D. Nix. Mechanical Properties of Materials with Nanometer Scale Microstructures. US: Stanford University, October 2004. http://dx.doi.org/10.2172/833870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nix, W. D. Mechanical properties of materials with nanometer scale microstructures. Office of Scientific and Technical Information (OSTI), July 1991. http://dx.doi.org/10.2172/5951104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nix, William D. Mechanical properties of materials with nanometer scale dimensions and microstructures. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1235947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Clark, Elizabeth J. Molecular and microstructural factors affecting mechanical properties of polymeric cover plate materials. Gaithersburg, MD: National Bureau of Standards, 1985. http://dx.doi.org/10.6028/nbs.ir.85-3197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Westbrook, J. H. Standards and metadata requirements for computerization of selected mechanical properties of metallic materials. Gaithersburg, MD: National Bureau of Standards, 1985. http://dx.doi.org/10.6028/nbs.sp.702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography