Academic literature on the topic 'Mechanical properties of protein materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mechanical properties of protein materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mechanical properties of protein materials"
Kumar, Rakesh, Linxiang Wang, and Lina Zhang. "Structure and mechanical properties of soy protein materials plasticized by Thiodiglycol." Journal of Applied Polymer Science 111, no. 2 (October 17, 2008): 970–77. http://dx.doi.org/10.1002/app.29136.
Full textFord, Audrey C., Hans Machula, Robert S. Kellar, and Brent A. Nelson. "Characterizing the mechanical properties of tropoelastin protein scaffolds." MRS Proceedings 1569 (2013): 45–50. http://dx.doi.org/10.1557/opl.2013.1059.
Full textGosline, John M. "Structure and Mechanical Properties of Rubberlike Proteins in Animals." Rubber Chemistry and Technology 60, no. 3 (July 1, 1987): 417–38. http://dx.doi.org/10.5254/1.3536137.
Full textBuchko, Christopher J., Margaret J. Slattery, Kenneth M. Kozloff, and David C. Martin. "Mechanical properties of biocompatible protein polymer thin films." Journal of Materials Research 15, no. 1 (January 2000): 231–42. http://dx.doi.org/10.1557/jmr.2000.0038.
Full textGosline, J., M. Lillie, E. Carrington, P. Guerette, C. Ortlepp, and K. Savage. "Elastic proteins: biological roles and mechanical properties." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 357, no. 1418 (February 28, 2002): 121–32. http://dx.doi.org/10.1098/rstb.2001.1022.
Full textFolegatti, Marília I. S., Aloísio José Antunes, and Jorge A. Marcondes. "Mechanical and permeability properties of milk protein films." Brazilian Archives of Biology and Technology 41, no. 3 (1998): 320–28. http://dx.doi.org/10.1590/s1516-89131998000300008.
Full textTsai, Shang-Pu, David W. Howell, Zhao Huang, Hao-Ching Hsiao, Yang Lu, Kathleen S. Matthews, Jun Lou, and Sarah E. Bondos. "The Effect of Protein Fusions on the Production and Mechanical Properties of Protein-Based Materials." Advanced Functional Materials 25, no. 9 (January 27, 2015): 1442–50. http://dx.doi.org/10.1002/adfm.201402997.
Full textJong, L. "Dynamic Mechanical Properties of Soy Protein Filled Elastomers." Journal of Polymers and the Environment 13, no. 4 (October 2005): 329–38. http://dx.doi.org/10.1007/s10924-005-5526-z.
Full textSato, M., W. H. Schwartz, S. C. Selden, and T. D. Pollard. "Mechanical properties of brain tubulin and microtubules." Journal of Cell Biology 106, no. 4 (April 1, 1988): 1205–11. http://dx.doi.org/10.1083/jcb.106.4.1205.
Full textXue, Ye, Samuel Lofland, and Xiao Hu. "Thermal Conductivity of Protein-Based Materials: A Review." Polymers 11, no. 3 (March 11, 2019): 456. http://dx.doi.org/10.3390/polym11030456.
Full textDissertations / Theses on the topic "Mechanical properties of protein materials"
Keten, Sinan. "Size-dependent mechanical properties of beta-structures in protein materials." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/60792.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 199-217).
Protein materials such as spider silk can be exceptionally strong, and they can stretch tremendously before failure. Notably, silks are made entirely of proteins, which owe their structure and stability to weak molecular interactions, in particular, hydrogen bonds (H-bonds). Beta-structures, a class of protein folds that employ dense arrays of H-bonds, are universal in strong protein materials such as silks, amyloids, muscle fibers and virulence factors. The biological recipe for creating strong, tough materials from weak bonds, however, has so far remained a secret. In this dissertation, size, geometry and deformation rate dependent properties of beta-structures are investigated, in order to provide a link between the nanostructure and mechanics of protein materials at multiple length scales. Large-scale molecular dynamics (MD) simulations show that beta-structures reinforce protein materials such as silk by forming H-bonded crystalline regions that cross-link polypeptide chains. A key finding is that superior strength and toughness can only be achieved if the size of the beta-sheet crystals is reduced to a few nanometers. Upon confinement into orderly nanocrystals, H-bond arrays achieve a strong character through cooperation under uniform shear deformation. Moreover, the size-dependent emergence of a molecular stick-slip failure mechanism enhances toughness of the material. Based on replica-exchange MD simulations, the first representative atomistic model for spider silk is proposed. The computational, bottom-up approach predicts a multi-phase material with beta-sheet nanocrystals dispersed within semi-amorphous domains, where the large-deformation and failure of silk is governed by the beta-structures. These findings explain a wide range of observations from single molecule experiments on proteins, as well as characterization studies on silks. Results illustrate how nano-scale confinement of weak bond clusters may lead to strong, tough polymer materials that self-assemble from common, simple building blocks.
by Sinan Keten.
Ph.D.
Kappiyoor, Ravi. "Mechanical Properties of Elastomeric Proteins." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/54563.
Full textPh. D.
Guan, Juan. "Investigations on natural silks using dynamic mechanical thermal analysis (DMTA)." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:c16d816c-84e3-4186-8d6d-45071b9a7067.
Full textSilva, Nuno Hélder da Cruz Simões. "Production of protein nanofibers and their application in the development of innovative materials." Doctoral thesis, Universidade de Aveiro, 2018. http://hdl.handle.net/10773/23348.
Full textAs nanofibras proteicas, também conhecidas como fibrilas amilóide, estão a ganhar muito interesse devido às suas propriedades únicas, nomeadamente elevada resistência mecânica e propriedades funcionais. Estas nanofibras caracterizam-se por depósitos proteicos que resultam de um processo onde a molécula proteica adquire uma conformação estrutural em folhas-β. Dadas as suas propriedades, estas nanofibras têm sido estudadas como elementos estruturais e funcionais no desenvolvimento de materiais inovadores para aplicação em diferentes áreas como, por exemplo, em biosensores, membranas bioactivas e estruturas tridimensionais (scaffolds) para engenharia de tecidos. No entanto, uma das principais limitações na exploração de nanofibras proteicas está relacionada com o tempo necessário para a sua produção, uma vez que a fibrilação é um processo moroso que pode levar horas, dias ou até mesmo semanas. A utilização de solventes alternativos como agentes promotores de fibrilação, nomeadamente líquidos iónicos (ILs), foi recentemente demonstrada como uma via para reduzir o tempo de fibrilação. Estes resultados serviram de inspiração para estudarmos o processo de fibrilação de uma proteína modelo, a lisozima, em soluções aquosas de líquidos iónicos baseados nos catiões imidazólio ou colina com diferentes aniões derivados de ácidos orgânicos. A presença de qualquer um dos ILs testados no meio de fibrilação demonstrou ser muito eficiente obtendo-se taxas de conversão superiores a 80% de fibrilas. Seguindo uma abordagem semelhante, estudou-se também um solvente eutéctico profundo (DES) baseado em cloreto de colina e ácido acético (1:1) como possível promotor da fibrilação da lisozima, diminuindo-se o tempo de fibrilação de 8-15 h para apenas 2-3 h. Foi também demonstrado que a temperatura tem um papel fundamental na aceleração da fibrilação e tanto a temperatura como o pH influenciam significativamente as dimensões das nanofibras, nomeadamente em termos de comprimento e largura. Com o objectivo de ajustar a razão de aspecto das nanofibras (razão comprimento/largura), foram ainda estudados vários DES baseados em cloreto de colina e com ácidos mono-, di- e tri-carboxílicos, tendo-se observado que o ácido carboxílico do DES desempenha um papel fundamental no comprimento das nanofibras produzidas, sendo as razões de aspecto sempre superiores às obtidas por fibrilação apenas com cloreto de colina. O potencial das nanofibras proteicas como elementos de reforço em materiais compósitos foi avaliado pela preparação de filmes nanocompósitos à base de pululano com nanofibras de lisozima em diferentes proporções. Foram obtidos filmes transparentes com maior resistência mecânica à tracção, particularmente para as nanofibras com razões de aspecto mais elevadas. Além disso, a incorporação de nanofibras de lisozima nos filmes de pululano conferiu propriedades bioativas aos filmes, nomeadamente capacidade antioxidante e atividade antibacteriana contra a Staphylococcus aureus. O aumento do conteúdo de nanofibras nos filmes promoveu um aumento das propriedades antioxidante e antibacteriano dos filmes, sugerindo-se como possível aplicação a utilização destes nanocompósitos como filmes comestíveis e ecológicos para embalagens alimentares bioactivas. As nanofibras de lisozima foram também misturadas com fibras de nanocelulose com o objectivo de produzir um filme sustentável para a remoção de mercúrio (II) de águas naturais. Os filmes foram obtidos por filtração sob vácuo e mostraram-se homogéneos e translúcidos. A incorporação das nanofibras de lisozima nos filmes de nanocelulose promoveu um reforço mecânico significativo. Em termos da capacidade de remoção de mercúrio (II) a partir de água natural, a presença das nanofibras de lisozima proporcionou um aumento muito expressivo com eficiências de 82% (pH 7) < 89% (pH 9) < 93% (pH 11), utilizando concentrações de mercúrio (II) de acordo com o limite estabelecido nos regulamentos da União Europeia (50 μg L-1). Em suma, foi demonstrado nesta tese que o uso de líquidos iónicos e de solventes eutécticos profundos assume um papel fundamental na formação de nanofibras de lisozima morfologicamente alongadas e finas, que podem ser exploradas no desenvolvimento de bionanocompósitos para diversas aplicações desde embalagens bioactivas a sistemas de purificação de água.
Protein nanofibers, also known as amyloid fibrils, are gaining much attention due to their peculiar morphology, mechanical strength and functionalities. These nanofibers are characterized as fibrillar assemblies of monomeric proteins or peptides that underwent unfolding-refolding transition into stable β-sheet structures and are emerging as building nanoblocks for the development of innovative functional materials for application in distinct fields, for instance, in biosensors, bioactive membranes and tissue engineering scaffolds. However, one of the main limitations pointed out for the exploitation of protein nanofibers is their high production time since fibrillation is a time-consuming process that can take hours, days, and even weeks. The use of alternative solvents, such as ionic liquids (ILs), as fibrillation agents has been recently reported with considerable reduction in the fibrillation time. This fact encouraged us to study the fibrillation of a model protein, hen egg white lysozyme (HEWL), in the presence of several ILs based on imidazolium and cholinium cations combined with different anions derived from organic acids. All ILs used were shown to fibrillate HEWL within a few hours with conversion ratios over than 80% and typically worm-like nanofibers were obtained. In another study, a deep eutectic solvent (DES) based on cholinium chloride and acetic acid (1:1) was studied as a possible promoter of HEWL fibrillation, and a considerably reduction of the fibrillation time from 8-15 h to just 2-3 h was also observed. Temperature has a key role in the acceleration of the fibrillation and both temperature and pH significantly influence the nanofibers dimensions, in terms of length and width. In what concerns the nanofibers aspect-ratio, several DES combining cholinium chloride and mono-, di- and tri-carboxylic acids were studied. It was observed that carboxylic acid plays an important role on the length of the nanofibers produced with aspect-ratios always higher than those obtained by fibrillation with cholinium chloride alone. The potential of the obtained protein nanofibers as reinforcing elements was evaluated by preparing pullulan-based nanocomposite films containing lysozyme nanofibers with different aspect-ratios, resulting in highly homogenous and transparent films with improved mechanical performance, particularly for the nanofibers with higher aspect-ratios. Furthermore, the incorporation of lysozyme nanofibers in the pullulan films imparted them also with bioactive functionalities, namely antioxidant capacity and antibacterial activity against Staphylococcus aureus. The results showed that the antioxidant and antibacterial effectiveness increased with the content of nanofibers, supporting the use these films as, for example, eco-friendly edible films for active packaging. Lysozyme nanofibers were also blended with nanocellulose fibers to produce a sustainable sorbent film to be used in the removal of mercury (II) from natural waters. Homogenous and translucent films were obtained by vacuum filtration and the incorporation of these nanofibers in a nanocellulose film promoted a considerable mechanical reinforcement. In terms of the capacity to remove mercury (II) from natural water, the presence of lysozyme nanofibers demonstrated to increase expressively the mercury (II) removal with efficiencies of 82% (pH 7) < 89% (pH 9) < 93% (pH 11), using realistic concentrations of mercury (II) under the limit established in the European Union regulations (50 μg L-1). In sum, it was demonstrated in this thesis that the use of ionic liquids and deep eutectic solvents can accelerate the formation of long and thin lysozyme nanofibers that can be explored as nanosized reinforcing elements for the development of bionanocomposites with applications ranging from food packaging to water purification systems and nanotechnology
Clemments, Alden Michael. "A Study Of The Physicochemical Properties Of Dense And Mesoporous Silica Nanoparticles That Impact Protein Adsorption From Biological Fluids." ScholarWorks @ UVM, 2016. http://scholarworks.uvm.edu/graddis/639.
Full textKopuletá, Ema. "Struktura a vlastnosti nanokompozitních sítí kolagen/HAP." Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2014. http://www.nusl.cz/ntk/nusl-233390.
Full textChopra, Prateek. "Effective mechanical properties of lattice materials." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/39436.
Full textLawson, Nathaniel C. "Mechanical properties of dental impression materials." Birmingham, Ala. : University of Alabama at Birmingham, 2007. https://www.mhsl.uab.edu/dt/2008r/lawson.pdf.
Full textAjwani, Anita. "Mechanical properties of bio-absorbable materials." Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-12042009-020133/.
Full textCalvo, de la Rosa Jaume. "Mechanical and functional properties in magnetic materials." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/667865.
Full textEsta Tesis Doctoral se centra en el estudio de materiales magnéticos en su conjunto, tanto desde la síntesis hasta sus propiedades mecánicas y funcionales finales. Además, ha habido un especial interés en el estudio de las propiedades funcionales en un amplio rango frecuencial. De este modo, en el primer capítulo, el lector puede encontrar una introducción al campo de investigación, así como también el estado del arte de aquellos materiales que se han sintetizado y desarrollado en esta Tesis. Por otro lado, en el Capítulo II se aportan todos los conceptos teóricos necesarios para el siguiente desarrollo de la Tesis. Además, los materiales, dispositivos, software y condiciones experimentales utilizados durante el desarrollo de esta investigación están descritos en el Capítulo III. El Capítulo IV es la primera parte experimental de la Tesis, y en la que se describe la síntesis de nanopartículas de ferrita de cobre vía sol-gel y coprecipitación. Además, se estudian las propiedades magnéticas y mecánicas en bulk, y se analiza su correlación empírica. El Capítulo V está dedicado al estudio de un nuevo material: un nanocompuesto magnético basado en nanotubos de carbono. Inicialmente se caracteriza química y estructuralmente para después centrarse en las propiedades magnéticas. Se realiza, además, un detallado estudio de su relajación magnética. Por otro lado, en el Capítulo VI, se investigan materiales magnéticos blandos. Inicialmente se analizan los materiales actualmente utilizados, mientras que en una segunda parte se desarrollan nuevas formulaciones con interesantes propiedades tecnológicas. En el Capítulo VII se presenta el estudio de las propiedades ópticas y dieléctricas en el rango de los THz. Se describe detalladamente el método, análisis de señal, y efecto de las características físicas de la muestra sobre la medida. Finalmente, también se propone un método para cuantificar el efecto de la porosidad de las muestras. Por último, el Capítulo VIII se investiga la manipulación del momento magnético mediante estímulos mecánicos como las ondas acústicas superficiales (SAW, en inglés). Se observa una clara variación experimental con la aplicación de las SAWs, y se relaciona matemáticamente esta variación con la frecuencia y potencia de las SAWs.
Books on the topic "Mechanical properties of protein materials"
Khataee, A. R. Mechanical and dynamical principles of protein nanomotors: The key to nano-engineering applications. New York: Nova Science Publishers, 2010.
Find full textKhataee, A. R. Mechanical and dynamical principles of protein nanomotors: The key to nano-engineering applications. Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full textPelleg, Joshua. Mechanical Properties of Materials. Dordrecht: Springer Netherlands, 2013.
Find full textPelleg, Joshua. Mechanical Properties of Materials. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-4342-7.
Full textMechanical properties of nanocrystalline materials. Singapore: Pan Stanford Pub., 2011.
Find full textHosford, William F. Mechanical behavior of materials. 2nd ed. Cambridge: Cambridge University Press, 2010.
Find full textDominique, François. Mechanical behavior of materials. Dordrecht: Kluwer Academic Publishers, 1998.
Find full textBook chapters on the topic "Mechanical properties of protein materials"
Juarez-Martinez, Gabriela, Alessandro Chiolerio, Paolo Allia, Martino Poggio, Christian L. Degen, Li Zhang, Bradley J. Nelson, et al. "Mechanical Properties of Hierarchical Protein Materials." In Encyclopedia of Nanotechnology, 1285–95. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_330.
Full textBuehler, Markus J., and Graham Bratzel. "Mechanical Properties of Hierarchical Protein Materials." In Encyclopedia of Nanotechnology, 1915–26. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_330.
Full textWang, Xiao-Wei, Dong Liu, Guang-Zhong Yin, and Wen-Bin Zhang. "Tuning Mechanical Properties of Protein Hydrogels." In Bioinspired Materials Science and Engineering, 295–309. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119390350.ch15.
Full textTarakanova, Anna, Shu-Wei Chang, and Markus J. Buehler. "Computational Materials Science of Bionanomaterials: Structure, Mechanical Properties and Applications of Elastin and Collagen Proteins." In Handbook of Nanomaterials Properties, 941–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-31107-9_14.
Full textAnderson, J. C., K. D. Leaver, R. D. Rawlings, and J. M. Alexander. "Mechanical Properties." In Materials Science, 181–244. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-6826-5_9.
Full textLacroix, Damien, and Josep A. Planell. "Mechanical Properties." In Biomedical Materials, 303–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49206-9_8.
Full textDasari, Aravind, Zhong-Zhen Yu, and Yiu-Wing Mai. "Mechanical Properties." In Engineering Materials and Processes, 133–60. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-6809-6_6.
Full textWhite, Mary Anne. "Mechanical Properties." In Physical Properties of Materials, 397–446. Third edition. | Boca Raton : Taylor & Francis, CRC Press, 2019.: CRC Press, 2018. http://dx.doi.org/10.1201/9780429468261-19.
Full textWesolowski, Robert A., Anthony P. Wesolowski, and Roumiana S. Petrova. "Mechanical Properties." In The World of Materials, 39–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-17847-5_6.
Full textGottstein, Günter. "Mechanical Properties." In Physical Foundations of Materials Science, 197–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09291-0_7.
Full textConference papers on the topic "Mechanical properties of protein materials"
Teng, Weibing, Joseph Cappello, and Xiaoyi Wu. "Viscoelastic Properties of Genetically Engineered Silk-Elastin-Like Protein Polymers." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192252.
Full textDurbaca, Ion, Radu Iatan, Elena Surdu, and Dana-Claudia Farcas-Flamaropol. "Approaches to the evaluation of the mechanical properties of single-layer composite plates made of recyclable polymeric and protein materials." In The 8th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2020. http://dx.doi.org/10.24264/icams-2020.i.8.
Full textKeten, Sinan, and Markus J. Buehler. "Elasticity and Strength of Beta-Sheet Protein Materials: Geometric Confinement and Size Effects." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-205464.
Full textChun, Keyoung Jin, Hyun Ho Choi, and Jong Yeop Lee. "A Comparative Study of Mechanical Properties of Tooth Reconstruction Materials." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63106.
Full textMunro, Troy, Changhu Xing, Andrew Marquette, Heng Ban, Cameron Copeland, and Randolph Lewis. "Description of Test Setup and Approach to Measure Thermal Properties of Natural and Synthetic Spider Silks at Cryogenic Temperatures." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66630.
Full textKaruppiah, K. S. Kanaga, Sriram Sundararajan, Zhi-Hui Xu, and Xiaodong Li. "The Effect of Surface Processing on the Protein Adsorption and Tribomechanical Properties of Ultra-High-Molecular Weight Polyethylene." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15187.
Full textZamiri, Amir Reza, and Suvranu De. "Multiscale Modeling of Protein Crystals: Application to Tetragonal Lysozyme." In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13170.
Full textEsmaeilzadeh, Hamed, George Cernigliaro, Junwei Su, Lin Gong, Iman Mirzaee, Majid Charmchi, and Hongwei Sun. "The Effects of Material Properties on Pillar-Based QCM Sensors." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52533.
Full textRosa, Isamar, Henning Roedel, Michael D. Lepech, and David J. Loftus. "Creation of Statistically Equivalent Periodic Unit Cells for Protein-Bound Soils." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52029.
Full textCuppoletti, John. "Composite Synthetic Membranes Containing Native and Engineered Transport Proteins." In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-449.
Full textReports on the topic "Mechanical properties of protein materials"
Byun, T. S. Temperature Effects on the Mechanical Properties of Candidate SNS Target Container Materials after Proton and Neutron Irradiation. Office of Scientific and Technical Information (OSTI), November 2001. http://dx.doi.org/10.2172/814075.
Full textSolem, J. C., and J. K. Dienes. Mechanical Properties of Cellular Materials. Office of Scientific and Technical Information (OSTI), July 1999. http://dx.doi.org/10.2172/759178.
Full textSiegel, R. W., and G. E. Fougere. Mechanical properties of nanophase materials. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10110297.
Full textTretiak, Sergei, Benjamin Tyler Nebgen, Justin Steven Smith, Nicholas Edward Lubbers, and Andrey Lokhov. Machine Learning for Quantum Mechanical Materials Properties. Office of Scientific and Technical Information (OSTI), February 2019. http://dx.doi.org/10.2172/1498000.
Full textHardy, Robert Douglas, David R. Bronowski, Moo Yul Lee, and John H. Hofer. Mechanical properties of thermal protection system materials. Office of Scientific and Technical Information (OSTI), June 2005. http://dx.doi.org/10.2172/923159.
Full textWilliam D. Nix. Mechanical Properties of Materials with Nanometer Scale Microstructures. US: Stanford University, October 2004. http://dx.doi.org/10.2172/833870.
Full textNix, W. D. Mechanical properties of materials with nanometer scale microstructures. Office of Scientific and Technical Information (OSTI), July 1991. http://dx.doi.org/10.2172/5951104.
Full textNix, William D. Mechanical properties of materials with nanometer scale dimensions and microstructures. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1235947.
Full textClark, Elizabeth J. Molecular and microstructural factors affecting mechanical properties of polymeric cover plate materials. Gaithersburg, MD: National Bureau of Standards, 1985. http://dx.doi.org/10.6028/nbs.ir.85-3197.
Full textWestbrook, J. H. Standards and metadata requirements for computerization of selected mechanical properties of metallic materials. Gaithersburg, MD: National Bureau of Standards, 1985. http://dx.doi.org/10.6028/nbs.sp.702.
Full text