Journal articles on the topic 'Mechanism of aromatic substitution reactions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Mechanism of aromatic substitution reactions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mąkosza, Mieczysław. "How Does Nucleophilic Aromatic Substitution in Nitroarenes Really Proceed: General Mechanism." Synthesis 49, no. 15 (2017): 3247–54. http://dx.doi.org/10.1055/s-0036-1588444.
Full textHarsanyi, MC, PA Lay, RK Norris, and PK Witting. "Substitution of Bridgehead Halogens by a Free-Radical Electron-Transfer Mechanism." Australian Journal of Chemistry 49, no. 5 (1996): 581. http://dx.doi.org/10.1071/ch9960581.
Full textGazitúa, Marcela, Ricardo A. Tapia, Renato Contreras, and Paola R. Campodónico. "Mechanistic pathways of aromatic nucleophilic substitution in conventional solvents and ionic liquids." New J. Chem. 38, no. 6 (2014): 2611–18. http://dx.doi.org/10.1039/c4nj00130c.
Full textPrins, H. J. "The mechanism of substitution reactions in the aromatic nucleus." Recueil des Travaux Chimiques des Pays-Bas 44, no. 2 (2010): 166–72. http://dx.doi.org/10.1002/recl.19250440212.
Full textDmitrieva, A., and A. Stepacheva. "Friedel-Krafts alkylation." Bulletin of Science and Practice, no. 8 (August 15, 2017): 43–48. https://doi.org/10.5281/zenodo.842942.
Full textElias, Gracy, Bruce J. Mincher, Stephen P. Mezyk, Thomas D. Cullen, and Leigh R. Martin. "Anisole nitration during gamma-irradiation of aqueous nitrite and nitrate solutions: free radical versus ionic mechanisms." Environmental Chemistry 7, no. 2 (2010): 183. http://dx.doi.org/10.1071/en09109.
Full textKinzel, Daniel, Shmuel Zilberg, and Leticia González. "Gas-phase electrophilic aromatic substitution mechanism with strong electrophiles explained by ab initio non-adiabatic dynamics." Phys. Chem. Chem. Phys. 16, no. 35 (2014): 18686–89. http://dx.doi.org/10.1039/c4cp01456a.
Full textde Barry Barnett, Edward, and James Wilfred Cook. "Note on the mechanism of substitution reactions in the aromatic nucleus." Recueil des Travaux Chimiques des Pays-Bas 43, no. 4 (2010): 262–65. http://dx.doi.org/10.1002/recl.19240430405.
Full textde Barry Barnett, Edward, and Marcus A. Matthews. "The mechanism of substitution reactions in the aromatic nucleus. Part I." Recueil des Travaux Chimiques des Pays-Bas 43, no. 8 (2010): 530–41. http://dx.doi.org/10.1002/recl.19240430803.
Full textde Barry Barnett, Edward, and James Wilfred Cook. "Note on the mechanism of substitution reactions in the aromatic nucleus." Recueil des Travaux Chimiques des Pays-Bas 43, no. 12 (2010): 897–98. http://dx.doi.org/10.1002/recl.19240431209.
Full textde Barry Barnett, Edward, James Wilfred Cook, and Marcus Aurelius Matthews. "The mechanism of substitution reactions in the aromatic nucleus. Part III." Recueil des Travaux Chimiques des Pays-Bas 44, no. 8 (2010): 728–39. http://dx.doi.org/10.1002/recl.19250440807.
Full textde Barry Barnett, Edward, James Wilfred Cook, and Marcus Aurelius Matthews. "The mechanism of substitution reactions in the aromatic nucleus. Part IV." Recueil des Travaux Chimiques des Pays-Bas 44, no. 9 (2010): 818–26. http://dx.doi.org/10.1002/recl.19250440914.
Full textde Barry Barnett, Edward, James Wilfred Cook, and Marcus Aurelius Matthews. "The mechanism of substitution reactions in the aromatic nucleus. Part V." Recueil des Travaux Chimiques des Pays-Bas 44, no. 10 (2010): 894–99. http://dx.doi.org/10.1002/recl.19250441010.
Full textde Barry Barnett, E., M. A. Matthews, and J. L. Wiltshire. "The mechanism of substitution reactions in the aromatic nucleus. Part VII." Recueil des Travaux Chimiques des Pays-Bas 45, no. 8 (2010): 558–63. http://dx.doi.org/10.1002/recl.19260450805.
Full textTanaka, Kiyoshi, Makoto Deguchi, and Satoru Iwata. "Ab initio Study of Nucleophilic Aromatic Substitution of Polyfluorobenzene." Journal of Chemical Research 23, no. 9 (1999): 528–29. http://dx.doi.org/10.1177/174751989902300905.
Full textCao, Liwei, Mikhail Kabeshov, Steven V. Ley, and Alexei A. Lapkin. "In silico rationalisation of selectivity and reactivity in Pd-catalysed C–H activation reactions." Beilstein Journal of Organic Chemistry 16 (June 25, 2020): 1465–75. http://dx.doi.org/10.3762/bjoc.16.122.
Full textBakke, J. M. "Nitropyridines: Synthesis and reactions." Pure and Applied Chemistry 75, no. 10 (2003): 1403–15. http://dx.doi.org/10.1351/pac200375101403.
Full textŠket, Boris, Marko Zupan, Nataša Zupančič, and Barbara Pahor. "Photosubstitution reactions on aromatic and heteroaromatic rings evidence for addition and substitution mechanism." Tetrahedron 47, no. 27 (1991): 5029–42. http://dx.doi.org/10.1016/s0040-4020(01)80966-2.
Full textDomingo, Luis R., María José Aurell, and Mar Ríos-Gutiérrez. "A Molecular Electron Density Theory Study of the Domino Reaction of N-Phenyl Iminoboranes with Benzaldehyde Yielding Fused Bicyclic Compounds." Molecules 28, no. 17 (2023): 6211. http://dx.doi.org/10.3390/molecules28176211.
Full textChavan, Arun B., Sanjeev M. Reddy, and G. Krishna Chaitanya. "Elucidating Reaction Mechanism of Gefitinib- An Anticancer Drug by Computational Technique." Oriental Journal Of Chemistry 40, no. 3 (2024): 835–40. http://dx.doi.org/10.13005/ojc/400327.
Full textIbrahim, Mahmoud F., Hanaa A. Abdel-Reheem, and Ezzat A. Hamed. "NUCLEOPHILIC SUBSTITUTION REACTIONS OF 2, 4-DINITTROPHENYL ACETATE WITH HYDRAZINE AND METHANOL SOLVENT EFFECT." EPH - International Journal of Applied Science 6, no. 1 (2020): 23–26. http://dx.doi.org/10.53555/eijas.v6i1.106.
Full textMcLure, FI, and RK Norris. "The Stereochemistry of SRN1 Reactions in Nitroacenaphthenes." Australian Journal of Chemistry 40, no. 3 (1987): 523. http://dx.doi.org/10.1071/ch9870523.
Full textLee, Eunsung, and Ewa Pietrasiak. "Activation of C–F, Si–F, and S–F Bonds by N-Heterocyclic Carbenes and Their Isoelectronic Analogues." Synlett 31, no. 14 (2020): 1349–60. http://dx.doi.org/10.1055/s-0040-1707106.
Full textSharma, Nishant, Rupayan Biswas, and Upakarasamy Lourderaj. "Dynamics of a gas-phase SNAr reaction: non-concerted mechanism despite the Meisenheimer complex being a transition state." Physical Chemistry Chemical Physics 22, no. 45 (2020): 26562–67. http://dx.doi.org/10.1039/d0cp05567k.
Full textShakhmurzova, Kamila T., Zhanna I. Kurdanova, Azamat Zhansitov, Marina Balagova, and Svetlana Khashirova. "Synthesis of Aromatic Polyether Ketones by Electrophilic Substitution." Key Engineering Materials 869 (October 2020): 456–65. http://dx.doi.org/10.4028/www.scientific.net/kem.869.456.
Full textAkinyele, Elizabeth T., Ikenna Onyido, and J. Hirst. "Mechanisms of aromatic nucleophilic substitution reactions in ethyl acetate and tetrahydrofuran." Journal of Physical Organic Chemistry 3, no. 1 (1990): 41–47. http://dx.doi.org/10.1002/poc.610030109.
Full textNudelman, Norma Sbarbati, Cecilia E. Silvana Alvaro, Monica Savini, Viviana Nicotra, and Jeannette Yankelevich. "Effects of the Nucleophile Structure on the Mechanisms of Reaction of 1-Chloro-2,4-dinitrobenzene with Aromatic Amines in Aprotic Solvents." Collection of Czechoslovak Chemical Communications 64, no. 10 (1999): 1583–93. http://dx.doi.org/10.1135/cccc19991583.
Full textSKET, B., M. ZUPAN, N. ZUPANCIC, and B. PAHOR. "ChemInform Abstract: Photosubstitution Reactions on Aromatic and Heteroaromatic Rings. Evidence for Addition and Substitution Mechanism." ChemInform 22, no. 41 (2010): no. http://dx.doi.org/10.1002/chin.199141071.
Full textGalli, Carlo, and Silvia Di Giammarino. "Studies of substrate selectivity in aromatic iodination and other substitution reactions reinforce previous conclusions about the nature of the mechanism of electrophilic aromatic substitutions." Journal of the Chemical Society, Perkin Transactions 2, no. 6 (1994): 1261. http://dx.doi.org/10.1039/p29940001261.
Full textZonozi, Fatemeh, Mehdi Pordel, S. Ali Beyramabadi, and Ali Morsali. "Theoretical Investigation on the Kinetics and Mechanism of the Synthesis of Fluorescent 3,8-Disubstituted-3H-Imidazo [4,5-a] Acridine-11-Carbonitriles." Progress in Reaction Kinetics and Mechanism 41, no. 4 (2016): 365–70. http://dx.doi.org/10.3184/146867816x14720534560565.
Full textKochetova, Ludmila B., and Tatiana P. Kustova. "Kinetics and mechanism of acyl transfer reactions. Part 15. Quantumchemicalsimulation of mechanisms of reactions of N-ethylaniline sulfonation." Butlerov Communications 57, no. 2 (2019): 19–27. http://dx.doi.org/10.37952/roi-jbc-01/19-57-2-19.
Full textGuerrero Zúñiga, Leonor Angélica, Ana Cristina Ramirez-Gallardo, Maria Fernanda López Sánchez, and Isidoro Garcia-Cruz. "Hydrodeoxygenation of anisole to produce value-added products: ortho-, meta-, para-cresol." Renewable energy, biomass & sustainability 7, no. 1 (2025): 11–21. https://doi.org/10.56845/rebs.v7i1.451.
Full textBerthelot, Jacques, Catherine Guette, Paul-Louis Desbène, Jean-Jacques Basselier, Patrick Chaquin, and Daniel Masure. "Bromation régiosélective en série aromatique. I: Monobromation en position para de phénols et d'aminés aromatiques par le tribromure de tétrabutylammonium." Canadian Journal of Chemistry 67, no. 12 (1989): 2061–66. http://dx.doi.org/10.1139/v89-320.
Full textEngell, Karen M., Robert A. McClelland, and Poul E. Sørensen. "The decomposition of methyl hemiacetals of benzaldehyde in aqueous solution: a study of the effect of aromatic substitution." Canadian Journal of Chemistry 77, no. 5-6 (1999): 978–89. http://dx.doi.org/10.1139/v99-102.
Full textJi, Pengju, John H. Atherton, and Michael I. Page. "The Kinetics and Mechanisms of Aromatic Nucleophilic Substitution Reactions in Liquid Ammonia." Journal of Organic Chemistry 76, no. 9 (2011): 3286–95. http://dx.doi.org/10.1021/jo200170z.
Full textSanecki, Przemyslaw, and Edward Rokaszewski. "Kinetics of hydrolysis of aromatic mono- and disulfonyl chlorides." Canadian Journal of Chemistry 65, no. 9 (1987): 2263–67. http://dx.doi.org/10.1139/v87-377.
Full textOsipov, Dmitry V., Kirill S. Korzhenko та Vitaly A. Osyanin. "Three-Component Condensation of β-Ketonitriles, 4-Fluorobenzaldehyde, and Secondary Cyclic Amines". Reactions 3, № 4 (2022): 625–33. http://dx.doi.org/10.3390/reactions3040042.
Full textMajek, Michal, Fabiana Filace, and Axel Jacobi von Wangelin. "On the mechanism of photocatalytic reactions with eosin Y." Beilstein Journal of Organic Chemistry 10 (April 30, 2014): 981–89. http://dx.doi.org/10.3762/bjoc.10.97.
Full textChupakhin, Oleg N., and Valery N. Charushin. "Nucleophilic C–H functionalization of arenes: a new logic of organic synthesis." Pure and Applied Chemistry 89, no. 8 (2017): 1195–208. http://dx.doi.org/10.1515/pac-2017-0108.
Full textLiu, Shiqi, Shuxun Sang, Tian Wang, Yi Du, Jinlong Jia, and Huihuang Fang. "The effects of CO2 on organic groups in bituminous coal and high-rank coal via Fourier transform infrared spectroscopy." Energy Exploration & Exploitation 36, no. 6 (2018): 1566–92. http://dx.doi.org/10.1177/0144598718764752.
Full textYamato, Takehiko, Kiwamu Tokuhisa, and Hirohisa Tsuzuki. "Medium-sized cyclophanes. part 51. Acylation of [2.2]metaparacyclophanes: through-space electronic interactions between two benzene rings." Canadian Journal of Chemistry 78, no. 2 (2000): 238–47. http://dx.doi.org/10.1139/v00-006.
Full textMazal, Ctibor, та Jaroslav Jonas. "Nucleophilic Vinylic Substitution on α-Tosyloxymethylene Lactones". Collection of Czechoslovak Chemical Communications 58, № 7 (1993): 1607–23. http://dx.doi.org/10.1135/cccc19931607.
Full textEmokpae, Thomas A., Patrick U. Uwakwe, and Jack Hirst. "The mechanisms of nucleophilic substitution reactions of aromatic ethers with amines in benzene." Journal of the Chemical Society, Perkin Transactions 2, no. 4 (1991): 509. http://dx.doi.org/10.1039/p29910000509.
Full textLiang, Dingcheng, Deqian Liu, Shuai Yang, Changyu Lu, Qiang Xie, and Jinchang Liu. "Effects of Bromination-Dehydrobromination on the Microstructure of Isotropic Pitch Precursors for Carbon Fibers." Polymers 12, no. 12 (2020): 3059. http://dx.doi.org/10.3390/polym12123059.
Full textMasuya, Yoshihiro, Yuki Kawashima, Takuya Kodama, Naoto Chatani, and Mamoru Tobisu. "Thiolate-Initiated Synthesis of Dibenzothiophenes from 2,2′-Bis(methylthio)-1,1′-Biaryl Derivatives through Cleavage of Two Carbon–Sulfur Bonds." Synlett 30, no. 17 (2019): 1995–99. http://dx.doi.org/10.1055/s-0037-1611974.
Full textDuvauchelle, Valentin, David Bénimélis, Patrick Meffre та Zohra Benfodda. "Catalyst-Free Site Selective Hydroxyalkylation of 5-Phenylthiophen-2-amine with α-Trifluoromethyl Ketones through Electrophilic Aromatic Substitution". Molecules 27, № 3 (2022): 925. http://dx.doi.org/10.3390/molecules27030925.
Full textEmokpae, Thomas A., Patrick U. Uwakwe, and Jack Hirst. "The effect of ortho substituents on the mechanism of aromatic nucleophilic substitution reactions in dipolar aprotic solvents." Journal of the Chemical Society, Perkin Transactions 2, no. 1 (1993): 125. http://dx.doi.org/10.1039/p29930000125.
Full textPatskovsky, Yury, Larysa Patskovska, Steven C. Almo, and Irving Listowsky. "Transition State Model and Mechanism of Nucleophilic Aromatic Substitution Reactions Catalyzed by Human GlutathioneS-Transferase M1a-1a†." Biochemistry 45, no. 12 (2006): 3852–62. http://dx.doi.org/10.1021/bi051823+.
Full textKochetova, Ludmila B., and Tatiana P. Kustova. "Kinetics and mechanism of acyl transfer reactions. Part 16. Quantum chemical simulation of mechanism of N-methylaniline sulfonation in aqueous 1,4-dioxane." Butlerov Communications 61, no. 1 (2020): 1–8. http://dx.doi.org/10.37952/roi-jbc-01/20-61-1-1.
Full textDomingo, Luis R., Mar Ríos-Gutiérrez, Eduardo Chamorro, and Patricia Pérez. "Are one-step aromatic nucleophilic substitutions of non-activated benzenes concerted processes?" Organic & Biomolecular Chemistry 17, no. 35 (2019): 8185–93. http://dx.doi.org/10.1039/c9ob01589b.
Full text