Dissertations / Theses on the topic 'Medical Medical Imaging'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Medical Medical Imaging.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Carlak, Hamza Feza. "Medical Electro-thermal Imaging." Phd thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614168/index.pdf.
Full texts health by imaging tissue conductivity distribution. Due to metabolic heat generation values and thermal characteristics that differ from tissue to tissue, thermal imaging has started to play an important role in medical diagnosis. To increase the temperature contrast in thermal images, the characteristics of the two imaging modalities can be combined. This is achieved by implementing thermal imaging applying electrical currents from the body surface within safety limits (i.e., thermal imaging in active mode). Electrical conductivity of tissues changes with frequency, so it is possible to obtain more than one thermal image for the same body. Combining these images, more detailed information about the tumor tissue can be acquired. This may increase the accuracy in diagnosis while tumor can be detected at deeper locations. Feasibility of the proposed technique is investigated with analytical and numerical simulations and experimental studies. 2-D and 3-D numerical models of the female breast are developed and feasibility work is implemented in the frequency range of 10 kHz and 800 MHz. Temporal and spatial temperature distributions are obtained at desired depths. Thermal body-phantoms are developed to simulate the healthy breast and tumor tissues in experimental studies. Thermograms of these phantoms are obtained using two different infrared cameras (microbolometer uncooled and cooled Quantum Well Infrared Photodetectors). Single and dual tumor tissues are determined using the ratio of uniform (healthy) and inhomogeneous (tumor) images. Single tumor (1 cm away from boundary) causes 55 °
mC temperature increase and dual tumor (2 cm away from boundary) leads to 50 °
mC temperature contrast. With multi-frequency current application (in the range of 10 kHz-800 MHz), the temperature contrast generated by 3.4 mm3 tumor at 9 mm depth can be detected with the state-of-the-art thermal imagers.
Winder, Robert John. "Medical imaging : tissue volume measurement & medical rapid prototyping." Thesis, University of Ulster, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399689.
Full textSmith, Rhodri. "Motion correction in medical imaging." Thesis, University of Surrey, 2017. http://epubs.surrey.ac.uk/841883/.
Full textYe, Luming. "Perception Metrics in Medical Imaging." Thesis, KTH, Medicinsk teknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-102186.
Full textFonseca, Francisco Xavier dos Santos. "GPU power for medical imaging." Master's thesis, Universidade de Aveiro, 2011. http://hdl.handle.net/10773/7853.
Full textA aplicação CapView utiliza um algoritmo de classificação baseado em SVM (Support Vector Machines) para automatizar a segmentação topográfica de vídeos do trato intestinal obtidos por cápsula endoscópica. Este trabalho explora a aplicação de processadores gráficos (GPU) para execução paralela desse algoritmo. Após uma etapa de otimização da versão sequencial, comparou-se o desempenho obtido por duas abordagens: (1) desenvolvimento apenas do código do lado do host, com suporte em bibliotecas especializadas para a GPU, e (2) desenvolvimento de todo o código, incluindo o que é executado no GPU. Ambas permitiram ganhos (speedups) significativos, entre 1,4 e 7 em testes efetuados com GPUs individuais de vários modelos. Usando um cluster de 4 GPU do modelo de maior capacidade, conseguiu-se, em todos os casos testados, ganhos entre 26,2 e 27,2 em relação à versão sequencial otimizada. Os métodos desenvolvidos foram integrados na aplicação CapView, utilizada em rotina em ambientes hospitalares.
The CapView application uses a classification algorithm based on SVMs (Support Vector Machines) for automatic topographic segmentation of gastrointestinal tract videos obtained through capsule endoscopy. This work explores the use graphic processors (GPUs) to parallelize the segmentation algorithm. After an optimization phase of the sequential version, two new approaches were analyzed: (1) development of the host code only, with support of specialized libraries for the GPU, and (2) development of the host and the device’s code. The two approaches caused substantial gains, with speedups between 1.4 and 7 times in tests made with several different individual GPUs. In a cluster of 4 GPUs of the most capable model, speedups between 26.2 and 27.2 times were achieved, compared to the optimized sequential version. The methods developed were integrated in the CapView application, used in routine in medical environments.
Zhang, Hongbin. "Signal detection in medical imaging." Diss., The University of Arizona, 2001. http://hdl.handle.net/10150/290512.
Full textCarr, Jonathan. "Surface reconstruction in 3D medical imaging." Thesis, University of Canterbury. Electrical Engineering, 1996. http://hdl.handle.net/10092/6533.
Full textSilva, Luís António Bastião. "Medical imaging services supported on cloud." Master's thesis, Universidade de Aveiro, 2011. http://hdl.handle.net/10773/7245.
Full textHoje em dia, as instituições de cuidados de saúde, utilizam a telemedicina para suportar ambientes colaborativos. Na área da imagem médica digital, a quantidade de dados tem crescido substancialmente nos últimos anos, requerendo mais infraestruturas para fornecer um serviço com a qualidade desejada. Os computadores e dispositivos com acesso à Internet estão acessíveis em qualquer altura e em qualquer lugar, criando oportunidades para partilhar e utilizar recursos online. Uma enorme quantidade de processamento computacional e armazenamento são utilizados como uma comodidade no quotidiano. Esta dissertação apresenta uma plataforma para suportar serviços de telemedicina sobre a cloud, permitindo que aplicações armazenem e comuniquem facilmente, utilizando qualquer fornecedor de cloud. Deste modo, os programadores não necessitam de se preocupar onde os recursos vão ser instalados a as suas aplicações não ficam limitadas a um único fornecedor. Foram desenvolvidas duas aplicações para tele-imagiologia com esta plataforma: repositório de imagens médicas e uma infraestrutura de comunicações entre centros hospitalares. Finalmente, a arquitetura desenvolvida é genérica e flexível permitindo facilmente a sua expansão para outras áreas aplicacionais e outros serviços de cloud.
Healthcare institutions resort largely, nowadays, to telemedicine in order to support collaborative environments. In the medical imaging area, the huge amount of medical volume data has increased over the past few years, requiring high-performance infrastructures to provide services with required quality. Computing devices and Internet access are now available anywhere and at anytime, creating new opportunities to share and use online resources. A tremendous amount of ubiquitous computational power and an unprecedented number of Internet resources and services are used every day as a normal commodity. This thesis presents a telemedicine service platform over the Cloud that allows applications to store information and to communicate easier, using any Internet cloud provider. With this platform, developers do not concern where the resources will be deployed and the applications will not be restricted to a specific cloud vendor. Two tele-imagiologic applications were developed along with this platform: a medical imaging repository and an interinstitutional communications infrastructure. Lastly, the architecture developed is generic and flexible to expand to other application areas and cloud services.
Alzubaidi, Laith. "Deep learning for medical imaging applications." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/227812/1/Laith_Alzubaidi_Thesis.pdf.
Full textMARCO, M. S. DI. "TOWARDS AN EPISTEMOLOGY OF MEDICAL IMAGING." Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/274203.
Full textThe objective of this dissertation is to contribute to the development of an epistemology of medical imaging. My central thesis is that medical imaging does not merely produce more or less accurate pictures of the inner organs, it rather transforms the living body into a scientific object by changing its very visibility. The imaging apparatus turns the body into a visual object that can be observed under experimental conditions: unlike the real body, it can be filed, retrieved, shared, measured and manipulated in several ways. This main thesis is accompanied by two others: first, diagnostic images, as all scientific images, are actual cognitive instruments, epistemic objects inscribed within theoretical contexts and experimental practices. Second, an image of the inner body has diagnostic meaning and value only in the scope of a specific conceptualization of the body and its ailments. Accordingly, if we are to develop an epistemology of medical imaging, we cannot limit our analysis to diagnostic images qua images, we also have to understand them qua diagnostic instruments. This is why at in the first chapter of the dissertation I take into examination the historical and conceptual conditions of possibility of radiography -- the first medical imaging technology, invented in 1895. My aim is to understand what medical theories and practices had to be at work in the nineteenth century, for those shadow-images produced by the X-ray apparatus to be perceived and employed as diagnostic devices. I argue that the diagnostic relevance of radiography is rooted in the conceptualization of body, disease and diagnosis put forward by clinical anatomy already at the end of the eighteenth century. I also defend the idea that the stethoscope, developed in 1816, was the material and intellectual predecessor of medical imaging, because it introduced a primitive form of mediated perception in medical diagnosis, and allowed the clinician to explore from the outside the inner body of the living patient, extracting signs of illness. The stethoscope was only the first of a vast array of instruments invented in the nineteenth century to visualize different aspects of the inner morphology and physiology of the living body. Each of these instruments fulfilled specific diagnostic aims and posed distinct epistemological problems, but all of them shared some commonalities: they were meant to replace the subjective sensations of patients and doctors with objective indices of health and disease; they created visual records of the inner body that could be filed, retrieved and shared among physicians; they required the development of a specialized language agreed upon by a community of experts; they created a progressive physical separation between the body of the patient and the body of the physician. It was in this complex scenario of medical practices, objects, images and ideas that radiography appeared and progressively acquired its diagnostic function. In the second chapter I take into account the early developments of medical photography in order to understand how the first technology for the production of mechanical images entered and influenced the domain of medicine. The main theoretical references in this chapter are Charles Sanders Peirce's semiotics, in particular, his classification of signs in indices, icons and symbols, and Walter Benjamin's reflections on the photographic series (mechanical production and reproduction of an image and of the body it represents), on the intrinsic analytic and dissecting potential of photography (the photographer as a surgeon), and on the optical unconscious (photography as a prosthesis that enriches and transforms our sensorial experience). Drawing on these authors, and analyzing the works of early physicians-photographers in psychiatry, dermatology, neurology and physiology, I show that the photographic series collected in medical journals, manuals and hospital archives, produced a clinical gaze in the Foucauldian sense. I also argue that the photographic series was part of a larger experimental apparatus, which encompassed the patient, the camera and the observer, and whose aim was to turn the body and disease into a visual object available for scientific analysis. In the third chapter I discuss the problem of the invisible referent, that is, I analyze the processes whereby photographs that reveal invisible phenomena are endowed with meaning. This is likely to be the fundamental problem of all scientific imaging. When the referent of a picture is invisible, the iconic mode of signification fails, because in this case the image produced by the mechanical or electronic apparatus does not look like anything we already know, it resembles nothing. So, how do we know that the object we see in the photograph -- e.g., a cell or a tubercular lesion -- is really there and does really look like that? Drawing on the theoretical analysis developed in the previous chapter, I maintain that the visualization of the invisible entails a peculiar combination of the indexical, iconic and symbolic modes of signification. My reasoning opposes Lorraine Daston and Peter Galison's idea of mechanical objectivity, and demonstrates that their notion of mechanical objectivity as the moralizing suppression of subjectivity is a caricature of the actual ideas and practices developed by the scientists of the nineteenth century to deal with the problem of visualizing the invisible. The argument is articulated in three moments, corresponding to the analysis of the problem of objectivity and image signification in microphotography, chronophotography, and radiography. In the fourth chapter I argue that images are cognitive tools and that representation and observation are never an act of automated repetition, they always entail a creative component. As in the previous chapter, part of my discourse is built in contrast with Daston and Galison, challenging their claims concerning the passive nature of representation. For these authors, until the development of digital technologies for image manipulation, scientific images were mere re-presentations of the world, focused on copying nature. Computer images, on the contrary, are presentations, because the observer can virtually manipulate them so that they show the object in ever changing ways. I criticize this classification of scientific images with historical and theoretical arguments. From the historical point of view, I show that at least since the sixteenth century there have been attempts to create images that can be actually manipulated by the observer. From the theoretical perspective, I draw on a variety of literature spanning from art theory to neuroscience, to demonstrate that the very notion of a passive representation is unsustainable, because images always engage the observer in an embodied act of perception, which elicits not only visual, but also tactile sensations and motor reactions. Moreover, I argue that Daston and Galison's emphasis on nanoimaging as the only technology that allows manipulating the object of study during the process of image production is misleading. In fact, even when they do not reach the peaks of technological sophistication that characterizes nanoimages, scientific images are the result of some manipulation of the natural object they represent. A scientific image cannot be a passive copy of nature, because it is part of an experimental praxis, whose goal is to understand natural phenomena, not just to reproduce them. To corroborate this idea I explore actual scientific practices of image signification, taking into account written documents (semiotic analysis of a radiology article) and material practices (laboratory ethnography describing the interpretation of electrophoresis images in a molecular biology laboratory, and description of an example of signification of electron microscopy pictures). From this analysis three remarks can be put forward: (1) the process of signification of scientific images has a distributed character, because it can involve different persons, objects and activities; (2) scientific images can be considered experimental tools, in the sense that scientists and physicians handle them in several forms in order to explore different aspects of their object of study; (3) scientific images are to be understood as controlled, artificial phenomena produced with the aim of redefining the visibility of natural objects. In order to clarify this latter idea, in the final chapter I introduce Gaston Bachelard's concept of phenomenotechnique. Although the idea of phenomenotechnique cannot be directly applied to medical imaging, there are two characterizing elements of this concept that provide important insights for conceptualizing medical imaging. The first is the idea that in order to study a natural phenomenon, scientists must previously transform it into a scientific object. The second, closely related to the former, is that scientific experience is by necessity mediated, and such mediation has both an intellectual and material character. This means that the development of instruments and new technologies is not a second-order product of science, it is part and parcel of the scientific process. Technology is embedded into science, because our scientific grasping of the world is necessarily mediated by instruments; scientific instruments, in turn, are materializations of a vast body of scientific knowledge and practices (in the case of digital imaging this knowledge has an eminently mathematical character). Thus, science and technology are reciprocally constituted. On these grounds I propose a description of medical imaging in terms of phenomenotechnique, using this concept as a key-word around which to reorganize the ideas previously discussed. Firstly, I resort to the concept of phenomenotechnique to gain insights into how diagnostic images mediate the physician's sensory and intellectual experience. Second, I give an account of diagnostic images as artificial phenomena (visual reconfigurations of non-visual signals) that work as simulations of the patient's body, and that reify different domains of knowledge (from medicine to physics and engineering). Finally, I argue that the proper and efficient signification of a diagnostic image requires a phenomenotechnique of the observer. To recognize the signs of disease in an image of the inner body, one has to master the explicit and implicit rules necessary to make sense of the novel sensory domain produced by the technological apparatus. This implies abandoning spontaneous modes of perception and signification to engage in a process of educated perception. The expert viewer goes through a formal and informal training that deeply transforms natural vision, by placing the act of watching within a wide epistemic network that encompasses both theoretical and practical knowledge.
Alomari, Zainab Rami Saleh. "Plane wave imaging beamforming techniques for medical ultrasound imaging." Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/18127/.
Full textRajanayagam, Vasanthakumar. "Non-medical applications of imaging techniques : multi-dimensional NMR imaging." Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/27513.
Full textScience, Faculty of
Chemistry, Department of
Graduate
Mata, Miquel Christian. "Web-based application for medical imaging management." Doctoral thesis, Universitat de Girona, 2015. http://hdl.handle.net/10803/323093.
Full textEn aquesta tesi es realitza una revisió bibliogràfica de les principals publicacions recents en els últims anys en aplicacions mèdiques basades en web. Aquest estudi analitza els avantatges i inconvenients dels treballs d’investigació en el camp de la imatge mèdica, així com les arquitectures de base de dades per a la gestió d’imatges digitals. La part principal d’aquesta tesi és la implementació d’una eina basada en la web amb la finalitat de demostrar la integritat i aplicació en diferents disciplines mediques. En aquest sentit, l’aplicació proposada en aquest projecte de tesis ha sigut implementada com a eina d’ajuda al diagnòstic de càncer de mama i pròstata. L’objectiu és facilitar el diagnòstic proporcionant un conjunt d’eines de processat d’imatge que permetin una millor visualització de les imatges, i un conjunt d’eines d’anotació de regions sospitoses o malignes (superposicions). Cada anotació permet incloure tots els atributs i especificacions considerades pels experts a l’emetre el diagnòstic final. S’han dissenyat diferents arquitectures per a la gestió de base de dades (per exemple PACS per emmagatzemar imatges monogràfiques). Per altra banda, el conjunt global d’anotacions s’emmagatzemen en una base de dades d’arxius XML associats a les imatges originals. Conseqüentment, aquesta nova arquitectura es presenta amb l’objectiu d’obtenir una base de dades de casos diagnosticats i validats per radiòlegs experts per a la formació de radiòlegs novells. Finalment, conclusions i noves línies d’investigació associades al projecte com a treball futur són presentades en aquesta tesi.
Varslot, Trond. "Wavefront aberration correction in medical ultrasound imaging." Doctoral thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2004. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1906.
Full textMedisinsk ultralydavbildning er et relativt rimelig verktøy som er i utstrakte bruk på dagens sykehus og tildels også legekontor. En underliggende antakelse ved dagens avbildningsteknikker er at vevet som skal avbildes i grove trekk er homogent. Det vil i praksis si at de akustiske egenskapene varierer lite. I tilfeller der denne forutsetningen ikke holder vil resultatet bli betraktlig reduksjon av bildekvaliteten. Prosjektet har fokusert på hvordan man best mulig kan korrigere for denne kvalitetsforringelsen. Arbeidet har resultert i et styrket teoretisk rammeverk for modellering, programvare for numerisk simulering. Rammeverket gir en felles forankring for tidligere publiserte metoder som "time-reversal mirror", "beamsum-correlation" og "speckle brightness", og gir derfor en utvidet forståelse av disse metodene. Videre har en ny metode blitt utviklet basert på egenfunksjonsanalyse av et stokastisk tilbakespredt lydfelt. Denne metoden vil potensielt kunne håndtere sterk spredning fra områder utenfor hovedaksen til ultralydstrålen på en bedre måte enn tidligere metoder. Arbeidet er utført ved Institutt for matematiske fag, NTNU, med professor Harald Krogstad, Institutt for matematiske fag, som hovedveileder og professor Bjørn Angelsen, Institutt for sirkulasjon og bildediagnostikk, som medveileder.
Robinson, Matthew D. "A novel fluorinated probe for medical imaging." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:3f9e6bbf-bbda-45c3-9ff9-826463ff011e.
Full textJavanmard, Mehdi. "Inverse problem approach to ultrasound medical imaging." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0001/NQ31933.pdf.
Full textHemmendorff, Magnus. "Motion estimation and compensation in medical imaging /." Linköping : Univ, 2001. http://www.bibl.liu.se/liupubl/disp/disp2001/tek703s.pdf.
Full textSmith, David Peter Thomas. "High-Intensity Contrast Agents in Medical Imaging." Thesis, Open University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.504300.
Full textGhavami, Navid. "Ultra-wideband imaging techniques for medical applications." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:6f590d26-ee7c-41d7-a89b-393c864c9d82.
Full textFerreira, Carlos André Marques Viana. "Peer-to-peer network for medical imaging." Master's thesis, Universidade de Aveiro, 2010. http://hdl.handle.net/10773/5004.
Full textNos últimos anos, a imagem médica em formato digital tem sido uma ferramenta cada vez mais importante quer para o diagnóstico médico quer para o auxílio ao tratamento. Assim, equipamentos de aquisição digital e repositórios de imagem médica são cada vez mais comuns em instituições de saúde, podendo até haver mais que um repositório numa instituição. No entanto, esta proliferação de repositórios leva a que a informação esteja dispersa nos vários locais. Esta dispersão da informação juntamente com as diferenças no armazenamento entre instituições são claros obstáculos à pesquisa e acesso integrado a essa informação. Esta dissertação visa o estudo da tecnologia Peer-to-Peer de forma a minimizar os problemas associados à dispersão e heterogeneidade da informação.
In the last years, digital medical imaging has been an increasingly important tool for both medical diagnostic and treatment assistance. Therefore, digital image acquisition equipments and medical imaging repositories are more and more common in a healthcare institution, being possible even more than one repository in one institution. However, this proliferation of repositories leads to dispersion of data between many places. This data dispersion associated with differences in the data storage between institutions are evident obstacles to the search for medical data. This dissertation aims to the study of the Peer-to- Peer technology in order to minimize the problems related to the dispersion and heterogeneity of medical data.
Lebre, Rui André Cruz. "Accounting mechanism for shared medical imaging repositories." Master's thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/23615.
Full textA imagem médica em formato digital é um elemento presente nas mais variadas instituições prestadoras de cuidados de saúde, afirmando-se como um imprescindível elemento de suporte ao diagnóstico e terapêutica médica. Nesta área, os formatos e processos de armazenamento e transmissão são definidos pela norma internacional DICOM. Um ficheiro deste tipo contempla, para além da imagem (ou vídeo), um conjunto de meta-dados que incluem informação dos pacientes, dados técnicos relativos ao estudo, dose de radiação, relatório clínico, etc. Um dos maiores problemas associados aos repositórios de imagem médica está relacionado com a grande quantidade de dados produzidos que impõe desafios acrescidos ao armazenamento e transporte da informação, em particular em cenários distribuídos e de grande produção de estudos imagiológicos. Esta dissertação tem como objetivo estudar e explorar soluções que permitam a integração do conceito de pertença e controlo de acesso em arquivos de imagem médica, possibilitando a centralização de múltiplas instâncias de arquivos. A solução desenvolvida permite associar permissões a recursos e delegação a terceiras entidades. Foi desenvolvida uma interface programática de gestão da solução proposta, disponibilizada através de web services, com a capacidade de criação, leitura, atualização e remoção de todos os componentes resultantes da arquitetura.
The production of medical images in digital format has been growing in the most varied health care providers, representing at this moment an important and indispensable element for supporting medical decisions. In medical imaging area, the formats and transmission processes are defined by the international DICOM standard. A file in this format contains image pixel data but also a set of metadata, including information about the patient, technical data related to the study, dose of radiation, clinical report, etc. One of the biggest problems associated with medical imaging repositories is related to the large amount of data produced that poses additional challenges to the transport and archive of information, particularly in distributed environments and laboratories with huge volume of examinations. This dissertation aims to study and explore solutions for the integration of ownership concept and access control over medical imaging resources, making possible the centralization of multiple instances of repositories. The proposed solution allows the association of permissions to repository resources and delegation of rights to third entities. It was developed a programmatic interface for management of proposed services, made available through web services, with the ability to create, read, update and remove all components resulting from the architecture.
Khan, Zein A. "Medical imaging using the acousto-electromagnetic technique." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:017c096e-c2fc-462a-9266-2b8731ff31b3.
Full textLee, Tin Man. "Mathematical models and techniques for medical imaging." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1619104261&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textHarput, Sevan. "Use of chirps in medical ultrasound imaging." Thesis, University of Leeds, 2012. http://etheses.whiterose.ac.uk/4436/.
Full textRolland, Jannick Paule Yvette. "Factors influencing lesion detection in medical imaging." Diss., The University of Arizona, 1990. http://hdl.handle.net/10150/185096.
Full textGomersall, William Henry. "Deconvolution of three-dimensional medical ultrasound." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609431.
Full textJones, Jonathan-Lee. "2D and 3D segmentation of medical images." Thesis, Swansea University, 2015. https://cronfa.swan.ac.uk/Record/cronfa42504.
Full textThomas, Kristine A. "Image Processing as Applied to Medical Diagnostics." Thesis, University of Oregon, 2010. http://hdl.handle.net/1794/10724.
Full textImage processing is a powerful tool for increasing the reliability and reproducibility of disease diagnostics. In the hands of pathologists, image processing provides quantitative data from histological images which supplement the qualitative data currently used by specialists. This thesis presents a novel method for analyzing digitized images of hematoxylin and eosin (H&E) stained histology slides to detect and quantify inflammatory polymorphonuclear leukocytes to aid in the grading of acute inflammation of the placenta as an example of the use of image processing in aid of diagnostics. Methods presented in this thesis include segmentation, a novel threshold selection technique and shape analysis. The most significant contribution is the automated color threshold selection algorithm for H&E stained histology slides which is the only unsupervised method published to date.
Committee in charge: Dr. John Conery, Chair; Dr. Matthew J. Sottile
Lester, Hava. "Non-linear registration of medical images." Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325162.
Full textPuybareau, Elodie. "Motion analysis for Medical and Bio-medical applications." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1063/document.
Full textMotion analysis, or the analysis of image sequences, is a natural extension of image analysis to time series of images. Many methods for motion analysis have been developed in the context of computer vision, including feature tracking, optical flow, keypoint analysis, image registration, and so on. In this work, we propose a toolbox of motion analysis techniques suitable for biomedical image sequence analysis. We particularly study ciliated cells. These cells are covered with beating cilia. They are present in humans in areas where fluid motion is necessary. In the lungs and the upper respiratory tract, Cilia perform the clearance task, which means cleaning the lungs of dust and other airborne contaminants. Ciliated cells are subject to genetic or acquired diseases that can compromise clearance, and in turn cause problems in their hosts. These diseases can be characterized by studying the motion of cilia under a microscope and at high temporal resolution. We propose a number of novel tools and techniques to perform such analyses automatically and with high precision, both ex-vivo on biopsies, and in-vivo. We also illustrate our techniques in the context of eco-toxicity by analysing the beating pattern of the heart of fish embryo
Kirkhorn, Tomas. "Continuous ink jet printing of medical images." Lund : Dept. of Electrical Measurements, Lund Institute of Technology, 1993. http://books.google.com/books?id=YiJrAAAAMAAJ.
Full textQuartararo, John David. "Semi-automated segmentation of 3D medical ultrasound images." Worcester, Mass. : Worcester Polytechnic Institute, 2008. http://www.wpi.edu/Pubs/ETD/Available/etd-020509-161314/.
Full textKeywords: 3d ultrasound; ultrasound; image processing; image segmentation; 3d image segmentation; medical imaging Includes bibliographical references (p.142-148).
Syvertson, Tracey L. "Cost effectiveness analysis comparing two medical imaging technologies." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1995. http://handle.dtic.mil/100.2/ADA302992.
Full textThesis advisor(s): William R. Gates, John Robert Barrios-Choplin. "June 1995." Bibliography: p. 51-52. Also available online. Mode of access: World Wide Web. System requirements: Adobe Acrobat Reader.
Xiberta, Pau. "Medical imaging applied to teaching and meat science." Doctoral thesis, Universitat de Girona, 2018. http://hdl.handle.net/10803/668808.
Full textLa imatge mèdica ha progressat a bastament per convertir-se en una tecnologia imprescindible en els processos clínics actuals. Tanmateix, els avenços en la imatge per al diagnòstic no s'han aprofitat de la mateixa manera en altres camps com ara l'educació o la ciència de la carn. En aquesta tesi es presenten dues plataformes d'aprenentatge en línia per a millorar els processos d'aprenentatge en la docència mèdica i veterinària, centrant-se sobretot en la facilitat per a la creació de contingut i en la interacció amb la imatge, i donant suport a múltiples recursos gràfics com ara models 3D. També es presenta un algorisme de processament d'imatge per millorar el procés de classificació de la qualitat d'animals de producció calculant el percentatge de carn magra, ja sigui a partir d'imatges de canals o d'animals vius, proposant dos algorismes de segmentació per eliminar els òrgans interns en aquest últim cas
Kiziloz, Cemil. "Real Time Image Processing For Medical Infrared Imaging." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/2/12607112/index.pdf.
Full textmK if it is to be used for biomedical applications. Using a black body system with a precise temperature control, it is shown that this specification is satisfied. Clinical evaluations for a few patients reveal that the implemented medical infrared system can be used for biomedical applications.
Zacharopoulos, Athanasios Dimitriou. "Three-dimensional shape-based reconstructions in medical imaging." Thesis, University College London (University of London), 2005. http://discovery.ucl.ac.uk/1446822/.
Full textPéchaud, Mickaël. "Shortest paths calculations, and applications to medical imaging." Phd thesis, Ecole Normale Supérieure de Paris - ENS Paris, 2009. http://tel.archives-ouvertes.fr/tel-00843997.
Full textCannon, Cormac. "Motion-compensation for complementary-coded medical ultrasonic imaging." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/3768.
Full textMeng, Ling-Jian. "Advances in medical imaging and gamma ray spectroscopy." Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342654.
Full textSchnabel, Julia Anne. "Multi-scale active shape description in medical imaging." Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286180.
Full textDallimore, Matthew. "Gamma ray imaging in industrial and medical applications." Thesis, University of Southampton, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246854.
Full textOwda, Amani Yousef. "Medical applications of microwave and millimetre-wave imaging." Thesis, Manchester Metropolitan University, 2018. http://e-space.mmu.ac.uk/622096/.
Full textChen, Suelin Ph D. Massachusetts Institute of Technology. "Polymer-coated iron oxide nanoparticles for medical imaging." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59004.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 144-157).
One of the most versatile and safe materials used in medicine are polymer-coated iron oxide nanoparticles. This dissertation describes several formulations for in vivo imaging applications. The paramagnetic polymer-coated iron oxide nanoparticle aminoSPARK is used as a fluorescence-mediated tomography (FMT) imaging agent for stratification of prostate cancer tumors. This is achieved by conjugating it to a peptide that targets SPARC (secreted protein acidic rich in cysteine), a biomarker protein associated with aggressive forms of prostate cancer. Several types of polymer coatings for iron oxide nanoparticles have been systematically explored using a novel high-throughput screening technique to optimize coating chemistries and synthetic conditions to produce nanoparticles with maximum stability and ability to lower T2 contrast for MR imaging (R2, or relaxivity). Carboxymethyl dextran emerged from the screen as an ideal coating for superparamagnetic iron oxide nanoparticles. A commercially available, FDA-approved nanoparticle with similar surface chemistry, Feraheme, was chosen as a platform nanoparticle for further development. This work presents the first instance of chemical modification of Feraheme, making it more amenable to bioconjugation by converting its free carboxyl groups to free amine groups. This amine-functionalized Feraheme nanoparticle (amino-FH) is then used as a base nanoparticle to which various targeting and reporting functionalities can be added. A FH-based nanoparticle that can be used for cell loading is synthesized by covalently combining Feraheme with protamine, a pharmaceutical that also acts as a membrane translocating agent. A rhodamine-protamine conjugate is synthesized and then covalently bound to amino-FH using carbodiimide (CDI) chemistry. This results in a magnetofluorescent cell-labeling nanoparticle (ProRho-FH) that is readily taken up by mouse mesenchymal stem cells and U87 glioma cells. ProRho-FH can be used to non-invasively track cells for development and monitoring of cell-based therapies or for further investigation of biological mechanisms such as cell migration, tumor growth, and metastasis. This combination of two FDA-approved, commercially available materials to yield a superparamagnetic and fluorescent cell labeling nanoparticle is an excellent alternative to the recently discontinued Feridex. All polymer-coated iron oxide nanoparticles used in this dissertation were thoroughly characterized to fully understand their physicochemical and magnetic properties.
by Suelin Chen.
Ph.D.
Smyth, Katherine Marie. "Piezoelectric micro-machined ultrasonic transducers for medical imaging." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/108938.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 175-184).
Next generation medical imaging technology hinges on the development of cost effective and array compatible transducers making piezoelectric micro-machined ultrasonic transducers (pMUTs) an attractive alternative to the current bulk piezoelectric technology. This thesis aims to realize pMUT potential starting with the development of an effective single cell model that is further scaled to optimize multi-cell elements in a 1D array. In the first half of this work, a transverse mode, lead zirconate titanate (PZT) pMUT plate cell is fabricated using common micro-fabrication techniques and a PZT sol-gel deposition process. Through derivation using a novel Greens function solution technique, an equivalent circuit model with explicitly defined lumped parameters is presented and validated through electrical impedance measurements of fabricated devices and finite element modeling. The equivalent circuit is a crucial design tool as transducer performance metrics, including experimentally validated acoustic domain values, are shown to be defined directly from the lumped parameters. In the second half, figures of merit are identified from these performance metrics and an expanded multi-cell model is employed to strategically target improvements in both bandwidth and coupling while maintaining high pressure output. The resulting, optimized multicell elements in a 1D array are fabricated via a commercially viable, wafer-scale manufacturing process including a novel PZT dry etch. A top-down fabrication approach facilitates achievement of the largest active area of a multi-cell pMUT to date consisting of over 1000 cells in a 200pm x 4mm element footprint, and more substantially, results in the highest electromechanical coupling recorded for a pMUT to date measured at 9 ± 1.4% per element.
by Katherine Marie Smyth.
Ph. D.
Esposito, Michela. "CMOS active pixel sensors in bio-medical imaging." Thesis, University of Surrey, 2015. http://epubs.surrey.ac.uk/808360/.
Full textRolo, Manuel Dionísio da Rocha. "A low-noise CMOS amplifier for medical imaging." Master's thesis, Universidade de Aveiro, 2010. http://hdl.handle.net/10773/4394.
Full textA presente dissertação aborda o projecto de um frontend analógico integrado para sincronização e amplificação de sinais produzidos por um fotomultiplicador de silício. A solução proposta pretende possibilitar medidas de tempo com resoluções na ordem dos picosegundos, para implementação em equipamentos compactos dedicados à Tomografia por Emissão de Positrões, com capacidade para medida do tempo de voo de fotões (TOFPET). O canal de frontend completo foi implementado em tecnologia CMOS 130nm, e compreende blocos de préamplificação, integração de carga, equilíbrio dinâmico do ponto de operação, bem como circuitos geradores de correntes de referência, para uma área total em silício de 500x90 μm. A discussão de resultados é baseada em simulações póslayout, e as linhas de investigação futuras são propostas.
An analogue CMOS frontend for triggering and amplification of signals produced by a silicon photomultiplier (SiPM) is proposed. The solution intends to achieve picosecond resolution timing measurements for compact timeofflight Positron Emission Tomography (TOFPET) medical imaging equipments. A 130nm technology was used to implement such frontend, and the design includes preamplification, shaping, baseline holder and biasing circuitry, for a total silicon area of 500x90 μm. Postlayout simulation results are discussed, and ways to optimize the design are proposed.
Deshpande, Hrishikesh. "Dictionary learning for pattern classification in medical imaging." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S032/document.
Full textMost natural signals can be approximated by a linear combination of a few atoms in a dictionary. Such sparse representations of signals and dictionary learning (DL) methods have received a special attention over the past few years. While standard DL approaches are effective in applications such as image denoising or compression, several discriminative DL methods have been proposed to achieve better image classification. In this thesis, we have shown that the dictionary size for each class is an important factor in the pattern recognition applications where there exist variability difference between classes, in the case of both the standard and discriminative DL methods. We validated the proposition of using different dictionary size based on complexity of the class data in a computer vision application such as lips detection in face images, followed by more complex medical imaging application such as classification of multiple sclerosis (MS) lesions using MR images. The class specific dictionaries are learned for the lesions and individual healthy brain tissues, and the size of the dictionary for each class is adapted according to the complexity of the underlying data. The algorithm is validated using 52 multi-sequence MR images acquired from 13 MS patients
Jung, Younhyun. "Feature-driven Volume Visualization of Medical Imaging Data." Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14040.
Full textJha, Abhinav K. "Retrieving Information from Scattered Photons in Medical Imaging." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/301705.
Full textPilutti, David [Verfasser], Thomas [Akademischer Betreuer] Brox, and Jürgen [Akademischer Betreuer] Hennig. "Non-parametric Bayesian Spatial Normalization in Medical Imaging." Freiburg : Universität, 2016. http://d-nb.info/1122594194/34.
Full text