To see the other types of publications on this topic, follow the link: Megabase.

Journal articles on the topic 'Megabase'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Megabase.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

McCormick, Douglas. "New Tricks Tame Megabase DNA Fragments." Nature Biotechnology 4, no. 12 (December 1986): 1054. http://dx.doi.org/10.1038/nbt1286-1054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kovacic, Roger T., Luca Comal, and Arnold J. Bendich. "Protection of megabase DNA from shearing." Nucleic Acids Research 23, no. 19 (1995): 3999–4000. http://dx.doi.org/10.1093/nar/23.19.3999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bailey, Nathanael G. "Visualization of the Effect of Assay Size on the Error Profile of Tumor Mutational Burden Measurement." Genes 13, no. 3 (February 26, 2022): 432. http://dx.doi.org/10.3390/genes13030432.

Full text
Abstract:
Tumor mutational burden (TMB) refers to the number of somatic mutations in a tumor per megabase and is a biomarker for response to immune checkpoint inhibitor therapy. Immune checkpoint inhibitors are currently approved for tumors with TMB greater than or equal to 10 mutations/megabase. Many laboratories are currently reporting TMB values based upon targeted resequencing panels with limited genomic coverage. Due to sampling variation, this leads to significant uncertainty in the assay’s TMB result, particularly at relatively low TMB levels near the 10 mutation per megabase therapeutic threshold. In order to allow clinicians and laboratorians to explore this uncertainty, we built a novel web application that allows a user to view the potential error of a TMB result given the sequencing panel size. This application also allows the user to explore the effect of incorporating knowledge of a specific tumor type’s typical TMB distribution on the error profile of the TMB result.
APA, Harvard, Vancouver, ISO, and other styles
4

Gunderson, K., and G. Chu. "Pulsed-field electrophoresis of megabase-sized DNA." Molecular and Cellular Biology 11, no. 6 (June 1991): 3348–54. http://dx.doi.org/10.1128/mcb.11.6.3348-3354.1991.

Full text
Abstract:
Success in constructing a physical map of the human genome will depend on two capabilities: rapid resolution of very large DNA and identification of migration anomalies. To address these issues, a systematic exploration of pulsed-field electrophoresis conditions for separating multimegabase-sized DNA was undertaken. Conditions were found for first liberating and then separating DNA up to 6 megabases at higher field strengths and more rapidly than previously reported. In addition, some conditions for transversely pulsed fields produced mobility inversion, in which increased size was accompanied by faster rather than slower migration. Importantly, anomalous migration could be identified by the presence of lateral band spreading, in which the DNA band remained sharply defined but spread laterally while moving down the gel. These results have implications for both practical applications and theoretical models of pulsed-field electrophoresis.
APA, Harvard, Vancouver, ISO, and other styles
5

Obukhov, S. P., and M. Rubinstein. "Scaling of megabase DNA undergoing gel electrophoresis." Journal de Physique II 3, no. 10 (October 1993): 1455–59. http://dx.doi.org/10.1051/jp2:1993212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Duke, T. A. J., and J. L. Viovy. "Simulation of megabase DNA undergoing gel electrophoresis." Physical Review Letters 68, no. 4 (January 27, 1992): 542–45. http://dx.doi.org/10.1103/physrevlett.68.542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gunderson, K., and G. Chu. "Pulsed-field electrophoresis of megabase-sized DNA." Molecular and Cellular Biology 11, no. 6 (June 1991): 3348–54. http://dx.doi.org/10.1128/mcb.11.6.3348.

Full text
Abstract:
Success in constructing a physical map of the human genome will depend on two capabilities: rapid resolution of very large DNA and identification of migration anomalies. To address these issues, a systematic exploration of pulsed-field electrophoresis conditions for separating multimegabase-sized DNA was undertaken. Conditions were found for first liberating and then separating DNA up to 6 megabases at higher field strengths and more rapidly than previously reported. In addition, some conditions for transversely pulsed fields produced mobility inversion, in which increased size was accompanied by faster rather than slower migration. Importantly, anomalous migration could be identified by the presence of lateral band spreading, in which the DNA band remained sharply defined but spread laterally while moving down the gel. These results have implications for both practical applications and theoretical models of pulsed-field electrophoresis.
APA, Harvard, Vancouver, ISO, and other styles
8

Raoult, D. "The 1.2-Megabase Genome Sequence of Mimivirus." Science 306, no. 5700 (November 19, 2004): 1344–50. http://dx.doi.org/10.1126/science.1101485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hahn, Peter J., Leanna Giddings, John Longo, Michael J. Lane, Jane Scalzi, and John Hozier. "Double-minute chromosomes as megabase cloning vehicles." Genetic Analysis: Biomolecular Engineering 9, no. 1 (February 1992): 17–25. http://dx.doi.org/10.1016/1050-3862(92)90025-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Hong-Bin, Xinping Zhao, Xiaoling Ding, Andrew H. Paterson, and Rod A. Wing. "Preparation of megabase-size DNA from plant nuclei." Plant Journal 7, no. 1 (January 1995): 175–84. http://dx.doi.org/10.1046/j.1365-313x.1995.07010175.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Guidet, François, Peter Rogowsky, and Peter Langridge. "A rapid method of preparing megabase plant DNA." Nucleic Acids Research 18, no. 16 (1990): 4955. http://dx.doi.org/10.1093/nar/18.16.4955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Mills, Alea A., and Allan Bradley. "From mouse to man: generating megabase chromosome rearrangements." Trends in Genetics 17, no. 6 (June 2001): 331–39. http://dx.doi.org/10.1016/s0168-9525(01)02321-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Baym, Michael, Sergey Kryazhimskiy, Tami D. Lieberman, Hattie Chung, Michael M. Desai, and Roy Kishony. "Inexpensive Multiplexed Library Preparation for Megabase-Sized Genomes." PLOS ONE 10, no. 5 (May 22, 2015): e0128036. http://dx.doi.org/10.1371/journal.pone.0128036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Goundaroulis, Dimos, Erez Lieberman Aiden, and Andrzej Stasiak. "Chromatin Is Frequently Unknotted at the Megabase Scale." Biophysical Journal 118, no. 9 (May 2020): 2268–79. http://dx.doi.org/10.1016/j.bpj.2019.11.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Chen, D. L., M. Swe, and K. H. Sit. "G-Band Expression and Megabase Fragmentations in Apoptosis." Experimental Cell Research 240, no. 2 (May 1998): 293–304. http://dx.doi.org/10.1006/excr.1998.3945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Vollger, Mitchell R., Peter Kerpedjiev, Adam M. Phillippy, and Evan E. Eichler. "StainedGlass: interactive visualization of massive tandem repeat structures with identity heatmaps." Bioinformatics 38, no. 7 (January 10, 2022): 2049–51. http://dx.doi.org/10.1093/bioinformatics/btac018.

Full text
Abstract:
Abstract Summary The visualization and analysis of genomic repeats is typically accomplished using dot plots; however, the emergence of telomere-to-telomere assemblies with multi-megabase repeats requires new visualization strategies. Here, we introduce StainedGlass, which can generate publication-quality figures and interactive visualizations that depict the identity and orientation of multi-megabase tandem repeat structures at a genome-wide scale. The tool can rapidly reveal higher-order structures and improve the inference of evolutionary history for some of the most complex regions of genomes. Availability and implementation StainedGlass is implemented using Snakemake and available open source under the MIT license at https://mrvollger.github.io/StainedGlass/. Supplementary information Supplementary data are available at Bioinformatics online.
APA, Harvard, Vancouver, ISO, and other styles
17

Wild, Peter J. "Stellenwert der Testung der Tumormutationslast." Der Pathologe 40, S3 (December 2019): 366–68. http://dx.doi.org/10.1007/s00292-019-00717-3.

Full text
Abstract:
ZusammenfassungDie seit kurzem verfügbare Therapie mit Immun-Checkpoint-Inhibitoren (ICI) für Patienten mit nichtkleinzelligem Lungenkarzinom (NSCLC) bietet zwar einen Überlebensvorteil im Vergleich zur Chemotherapie, die Gesamtansprechrate beträgt aber nur etwa 20 %. Um Patienten zu identifizieren, die von einer ICI-Therapie profitieren, werden Biomarker zunehmend wichtiger. Die PD-L1-Expression war der erste entwickelte prädiktive Biomarker, konnte jedoch die Wirksamkeit von ICI nicht ausreichend vorhersagen. Ein weiterer Biomarker, die Tumormutationslast (TMB), ist definiert als die Anzahl der Mutationen pro Megabase analysierte DNA. Auch die Mikrosatelliteninstabilität (MSI) fungiert als prädiktiver Marker für ein Ansprechen auf ICI-Therapie. Viele Tumorentitäten weisen eine hohe Korrelation von MSI und hoher TMB auf. Studien zeigten für Patienten mit NSCLC und einer TMB von mindestens 10 Mutationen pro Megabase einen Vorteil für das progressionsfreie Überleben.
APA, Harvard, Vancouver, ISO, and other styles
18

Okada, Kazuhisa, Wirongrong Natakuathung, Mathukorn Na-Ubol, Amonrattana Roobthaisong, Warawan Wongboot, Fumito Maruyama, Ichiro Nakagawa, Siriporn Chantaroj, and Shigeyuki Hamada. "Characterization of 3 Megabase-Sized Circular Replicons fromVibrio cholerae." Emerging Infectious Diseases 21, no. 7 (July 2015): 1262–63. http://dx.doi.org/10.3201/eid2107.141055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Nóbrega, Marcelo A., Yiwen Zhu, Ingrid Plajzer-Frick, Veena Afzal, and Edward M. Rubin. "Megabase deletions of gene deserts result in viable mice." Nature 431, no. 7011 (October 2004): 988–93. http://dx.doi.org/10.1038/nature03022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Dervan, Peter B. "Reagents for the site-specific cleavage of megabase DNA." Nature 359, no. 6390 (September 1992): 87–88. http://dx.doi.org/10.1038/359087a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Mir, Kalim, Liqin Dong, David Bauer, and Giuseppe Scozzafava. "Visualization, mapping and sequencing of megabase lengths of DNA." Genome Biology 11, Suppl 1 (2010): P28. http://dx.doi.org/10.1186/gb-2010-11-s1-p28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Zhang, Weimin, Guanghou Zhao, Zhouqing Luo, Yicong Lin, Lihui Wang, Yakun Guo, Ann Wang, et al. "Engineering the ribosomal DNA in a megabase synthetic chromosome." Science 355, no. 6329 (March 9, 2017): eaaf3981. http://dx.doi.org/10.1126/science.aaf3981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Moreira, D. "Comment on "The 1.2-Megabase Genome Sequence of Mimivirus"." Science 308, no. 5725 (May 20, 2005): 1114a. http://dx.doi.org/10.1126/science.1110820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Weichhold, Gottfried M., H. Gustav Klobeck, Rita Ohnheiser, Gabriele Combriato, and Hans G. Zachau. "Megabase inversions in the human genome as physiological events." Nature 347, no. 6288 (September 1990): 90–92. http://dx.doi.org/10.1038/347090a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Beck, Christine R., Claudia M. B. Carvalho, Zeynep C. Akdemir, Fritz J. Sedlazeck, Xiaofei Song, Qingchang Meng, Jianhong Hu, et al. "Megabase Length Hypermutation Accompanies Human Structural Variation at 17p11.2." Cell 176, no. 6 (March 2019): 1310–24. http://dx.doi.org/10.1016/j.cell.2019.01.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Jordan, Bertrand R. "Megabase methods: A quantum jump in recombinant DNA techniques." BioEssays 8, no. 5 (May 1988): 140–45. http://dx.doi.org/10.1002/bies.950080503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Reugels, Alexander M., Roman Kurek, Ulrich Lammermann, and Hans Bünemann. "Mega-introns in the Dynein Gene DhDhc7(Y) on the Heterochromatic Y Chromosome Give Rise to the Giant Threads Loops in Primary Spermatocytes of Drosophila hydei." Genetics 154, no. 2 (February 1, 2000): 759–69. http://dx.doi.org/10.1093/genetics/154.2.759.

Full text
Abstract:
Abstract The heterochromatic Y chromosomes of several Drosophila species harbor a small number of male fertility genes (fertility factors) with several unusual features. Expression of their megabase-sized loci is restricted to primary spermatocytes and correlates with the unfolding of species-specific lampbrush loop-like structures resulting from huge transcripts mainly derived from clusters of loop-specific Y chromosomal satellites. Otherwise, there is evidence from genetic mapping and biochemical experiments that at least two of these loops, Threads in Drosophila hydei and kl-5 in D. melanogaster, colocalize with the genes for the axonemal dynein β heavy chain proteins DhDhc7(Y) and Dhc-Yh3, respectively. Here, we make use of particular Threads mutants with megabase-sized deletions for direct mapping of DhDhc7(Y)-specific exons among the large clusters of satellite DNA within the 5.1-Mb Threads transcription unit. PCR experiments with exon-specific primer pairs, in combination with hybridization experiments with exon- and satellite-specific probes on filters with large PFGE-generated DNA fragments, offer a simple solution for the long-lasting paradox between megabase-sized loops and protein-encoding transcription units; the lampbrush loops Threads and the DhDhc7(Y) gene are one and the same transcription unit, and the giant size of the DhDhc7(Y) gene as well as its appearance as a giant lampbrush loop are merely the result of transcription of huge clusters of satellite DNA within some of its 20 introns.
APA, Harvard, Vancouver, ISO, and other styles
28

Chang, Howard Y. "Abstract IA018: Reading and writing extrachromosomal DNA." Cancer Research 82, no. 23_Supplement_2 (December 1, 2022): IA018. http://dx.doi.org/10.1158/1538-7445.cancepi22-ia018.

Full text
Abstract:
Abstract Cancer patients face an extraordinary challenge when oncogenes unleash themselves from chromosomes. Extrachromosomal DNA (ecDNA) are large, megabase-sized circular episomes containing oncogenes and regulatory DNA elements. EcDNAs have a remarkable transcriptional advantage and rapidly change copy number–a moving target driving accelerated evolution in cancer. We present a method for targeted purification of megabase-sized ecDNA by combining in-vitro CRISPR-Cas9 treatment and pulsed field gel electrophoresis of agarose-entrapped genomic DNA (CRISPR-CATCH). Targeted purification of ecDNA versus chromosomal DNA enabled phasing of genetic variants and provided definitive proof of oncogenic mutations exclusively on ecDNAs, discovery of ecDNA-specific demethylation with single molecule resolution, and accurate reconstruction of megabase- sized ecDNA structures with base-pair resolution. We model and test the impact of non-chromosomal oncogene inheritance—random identity by descent—on ecDNA on variation and selection. Integrating mathematical modeling, unbiased image analysis, CRISPR-based ecDNA generation, and live-cell imaging, we identify a set of basic “rules” for how random ecDNA inheritance drives oncogene copy number and distribution, resulting in extensive intratumoral ecDNA copy number heterogeneity and rapid adaptation to metabolic stress and targeted cancer treatment. These new tool kits for reading and writing ecDNAs promise to unravel the genetic and epigenetic landscapes of ecDNA biogenesis, dynamics, and function. Citation Format: Howard Y. Chang. Reading and writing extrachromosomal DNA. [abstract]. In: Proceedings of the AACR Special Conference: Cancer Epigenomics; 2022 Oct 6-8; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2022;82(23 Suppl_2):Abstract nr IA018.
APA, Harvard, Vancouver, ISO, and other styles
29

Reicher, Andreas, Antoneicka L. Harris, Felix Prinz, Tobias Kiesslich, Miaoyan Wei, Rupert Öllinger, Roland Rad, Martin Pichler, and Lawrence N. Kwong. "Generation of An Endogenous FGFR2–BICC1 Gene Fusion/58 Megabase Inversion Using Single-Plasmid CRISPR/Cas9 Editing in Biliary Cells." International Journal of Molecular Sciences 21, no. 7 (April 2, 2020): 2460. http://dx.doi.org/10.3390/ijms21072460.

Full text
Abstract:
Fibroblast growth factor receptor 2 (FGFR2) gene fusions are bona fide oncogenic drivers in 10–15% of intrahepatic cholangiocarcinoma (CCA), yet currently there are no cell lines publically available to study endogenous FGFR2 gene fusions. The ability of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 to generate large yet precise chromosomal rearrangements has presented the possibility of engineering endogenous gene fusions for downstream studies. In this technical report, we describe the generation of an endogenous FGFR2–Bicaudal family RNA binding protein 1 (BICC1) fusion in multiple independent cholangiocarcinoma and immortalized liver cell lines using CRISPR. BICC1 is the most common FGFR2 fusion partner in CCA, and the fusion arises as a consequence of a 58-megabase-sized inversion on chromosome 10. We replicated this inversion to generate a fusion product that is identical to that seen in many human CCA. Our results demonstrate the feasibility of generating large megabase-scale inversions that faithfully reproduce human cancer aberrations.
APA, Harvard, Vancouver, ISO, and other styles
30

Fang, Zhou, Tanja Pyhäjärvi, Allison L. Weber, R. Kelly Dawe, Jeffrey C. Glaubitz, José de Jesus Sánchez González, Claudia Ross-Ibarra, John Doebley, Peter L. Morrell, and Jeffrey Ross-Ibarra. "Megabase-Scale Inversion Polymorphism in the Wild Ancestor of Maize." Genetics 191, no. 3 (April 27, 2012): 883–94. http://dx.doi.org/10.1534/genetics.112.138578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bennett-Baker, Pamela E., and Jacob L. Mueller. "CRISPR-mediated isolation of specific megabase segments of genomic DNA." Nucleic Acids Research 45, no. 19 (August 22, 2017): e165-e165. http://dx.doi.org/10.1093/nar/gkx749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Wei, H., W. F. Fan, H. Xu, S. Parimoo, H. Shukla, D. D. Chaplin, and S. M. Weissman. "Genes in one megabase of the HLA class I region." Proceedings of the National Academy of Sciences 90, no. 24 (December 15, 1993): 11870–74. http://dx.doi.org/10.1073/pnas.90.24.11870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Schwessinger, Ron, Matthew Gosden, Damien Downes, Richard C. Brown, A. Marieke Oudelaar, Jelena Telenius, Yee Whye Teh, Gerton Lunter, and Jim R. Hughes. "DeepC: predicting 3D genome folding using megabase-scale transfer learning." Nature Methods 17, no. 11 (October 12, 2020): 1118–24. http://dx.doi.org/10.1038/s41592-020-0960-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Hellmann, I. "Why do human diversity levels vary at a megabase scale?" Genome Research 15, no. 9 (August 18, 2005): 1222–31. http://dx.doi.org/10.1101/gr.3461105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Manuelidis, L. "Heterochromatic features of an 11-megabase transgene in brain cells." Proceedings of the National Academy of Sciences 88, no. 3 (February 1, 1991): 1049–53. http://dx.doi.org/10.1073/pnas.88.3.1049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wheway, Joanna M., and Roland G. Roberts. "The dystrophin lymphocyte promoter revisited: 4.5-megabase intron, or artefact?" Neuromuscular Disorders 13, no. 1 (January 2003): 17–20. http://dx.doi.org/10.1016/s0960-8966(02)00195-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Pontes, Olga, Richard J. Lawrence, Manuela Silva, Sasha Preuss, Pedro Costa-Nunes, Keith Earley, Nuno Neves, Wanda Viegas, and Craig S. Pikaard. "Postembryonic Establishment of Megabase-Scale Gene Silencing in Nucleolar Dominance." PLoS ONE 2, no. 11 (November 7, 2007): e1157. http://dx.doi.org/10.1371/journal.pone.0001157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Fulton, T. R., A. M. Bowcock, D. R. Smith, L. Daneshvar, P. Green, L. L. Cavalli-Sforza, and H. Donis-Keller. "A 12 megabase restriction map at the cystic fibrosis locus." Nucleic Acids Research 17, no. 1 (1989): 271–84. http://dx.doi.org/10.1093/nar/17.1.271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Gurrieri, S., S. B. Smith, and C. Bustamante. "Trapping of megabase-sized DNA molecules during agarose gel electrophoresis." Proceedings of the National Academy of Sciences 96, no. 2 (January 19, 1999): 453–58. http://dx.doi.org/10.1073/pnas.96.2.453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Songsivilai, Sirirurg, and Tararaj Dharakul. "Multiple replicons constitute the 6.5-megabase genome of Burkholderia pseudomallei." Acta Tropica 74, no. 2-3 (February 2000): 169–79. http://dx.doi.org/10.1016/s0001-706x(99)00067-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kim, Yongseong, and Michael D. Morris. "Rapid Pulsed Field Capillary Electrophoretic Separation of Megabase Nucleic Acids." Analytical Chemistry 67, no. 5 (March 1995): 784–86. http://dx.doi.org/10.1021/ac00101a002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

de O. Sandes, Edans F., Guillermo Miranda, Alba C. M. A. Melo, Xavier Martorell, and Eduard Ayguade. "Fine-grain parallel megabase sequence comparison with multiple heterogeneous GPUs." ACM SIGPLAN Notices 49, no. 8 (November 26, 2014): 383–84. http://dx.doi.org/10.1145/2692916.2555280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zhao, Xinping, Hong-Bin Zhang, Rod A. Wing, and Andrew H. Paterson. "A simple method for isolation of megabase DNA from cotton." Plant Molecular Biology Reporter 12, no. 2 (June 1994): 110–15. http://dx.doi.org/10.1007/bf02668372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Pal, Sumanta K., Siraj Mahamed Ali, Riley Ennis, Julia Andrea Elvin, JoAnn Vergilio, James Suh, Roman Yelensky, et al. "Characterization of mutational load in patients with advanced urothelial cancer." Journal of Clinical Oncology 34, no. 2_suppl (January 10, 2016): 460. http://dx.doi.org/10.1200/jco.2016.34.2_suppl.460.

Full text
Abstract:
460 Background: The efficacy of novel immunotherapeutic agents (e.g., PD-1/PD-L1 and CTLA4 inhibitors) in advanced cancer is linked to tumor mutational load. We assessed mutational load via comprehensive genomic profiling (CGP) performed in the course of clinical care for patients with advanced urothelial cancer (UC). Methods: DNA was extracted from 40 microns of FFPE sections from 760 consecutive patients with relapsed/metastatic UC. CGP was performed on hybridization-captured, adaptor ligation based libraries to a mean coverage depth of 646X for at least 3,230 exons of 182 cancer-related genes plus 37 introns from 14 genes frequently rearranged in cancer. Mutational load was characterized as the number of such SUBs or INDELs per megabase (Mb) after filtering to remove known somatic and deleterious mutations, given that these are selected for with hybrid capture. Results: The median age of the patients was 66 years old with a 3:1 male:female ratio. Mean mutations per megabase were assessed as a range of 0 to 79, and the 25th, median, and 75th quartile thresholds were 3.2, 5.5, and 8.8. MSH6 alterations in 0.8% cases had a median of 15.2 mutations per megabase. However, the ten most frequently altered genes in this series- TERT (64%), TP53 (54%), CDKN2A (35%), CDKN2B (28%), KDM6A (24%), ARID1A (23%), MLL2 (22%), PIK3CA (21%), RB1 (21%) and FGFR3 (19%) - were not associated with differences in mutational load. Conclusions: A highly variable mutational load was seen in patients with advanced UC. A subpopulation of MSH6-altered UC had very high mutational loads relative to other UCs. Further correlation to clinical outcomes will be investigated to assess the correlation between mutational load and response to immunotherapy.
APA, Harvard, Vancouver, ISO, and other styles
45

Puvabanditsin, Surasak, Miry Shim, Jeffrey Suell, Jeffrey Manzano, Kristin Blackledge, Avram Bursky-Tammam, and Rajeev Mehta. "Prune Belly Syndrome Associated with Interstitial 17q12 Microdeletion." Case Reports in Urology 2022 (February 14, 2022): 1–4. http://dx.doi.org/10.1155/2022/7364286.

Full text
Abstract:
We report a term male neonate presenting with a “prune belly,” bilateral hydronephrosis, hydroureter, posterior urethral obstruction, and bilateral undescended testes. Analysis with the whole genome SNP microarray revealed an interstitial deletion of about 1.49 megabase (MB) at chromosome 17q12. We present a rare association of prune belly syndrome with a chromosomal deletion in this same region.
APA, Harvard, Vancouver, ISO, and other styles
46

Zinchenko, Anatoly, Nikolay V. Berezhnoy, Sai Wang, William M. Rosencrans, Nikolay Korolev, Johan R. C. van der Maarel, and Lars Nordenskiöld. "Single-molecule compaction of megabase-long chromatin molecules by multivalent cations." Nucleic Acids Research 46, no. 2 (November 14, 2017): 635–49. http://dx.doi.org/10.1093/nar/gkx1135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Rogakou, Emmy P., Chye Boon, Christophe Redon, and William M. Bonner. "Megabase Chromatin Domains Involved in DNA Double-Strand Breaks in Vivo." Journal of Cell Biology 146, no. 5 (September 6, 1999): 905–16. http://dx.doi.org/10.1083/jcb.146.5.905.

Full text
Abstract:
The loss of chromosomal integrity from DNA double-strand breaks introduced into mammalian cells by ionizing radiation results in the specific phosphorylation of histone H2AX on serine residue 139, yielding a specific modified form named γ-H2AX. An antibody prepared to the unique region of human γ-H2AX shows that H2AX homologues are phosphorylated not only in irradiated mammalian cells but also in irradiated cells from other species, including Xenopus laevis, Drosophila melanogaster, and Saccharomyces cerevisiae. The antibody reveals that γ-H2AX appears as discrete nuclear foci within 1 min after exposure of cells to ionizing radiation. The numbers of these foci are comparable to the numbers of induced DNA double-strand breaks. When DNA double-strand breaks are introduced into specific partial nuclear volumes of cells by means of a pulsed microbeam laser, γ-H2AX foci form at these sites. In mitotic cells from cultures exposed to nonlethal amounts of ionizing radiation, γ-H2AX foci form band-like structures on chromosome arms and on the end of broken arms. These results offer direct visual confirmation that γ-H2AX forms en masse at chromosomal sites of DNA double-strand breaks. The results further suggest the possible existence of units of higher order chromatin structure involved in monitoring DNA integrity.
APA, Harvard, Vancouver, ISO, and other styles
48

Grothues, Dietmar, Charles R. Cantor, and Cassandra L. Smith. "PCR amplification of megabase DNA with tagged random primers (T-PCR)." Nucleic Acids Research 21, no. 5 (1993): 1321–22. http://dx.doi.org/10.1093/nar/21.5.1321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kawasaki, K., S. Minoshima, E. Nakato, K. Shibuya, A. Shintani, J. L. Schmeits, J. Wang, and N. Shimizu. "One-megabase sequence analysis of the human immunoglobulin lambda gene locus." Genome Research 7, no. 3 (March 1997): 250–61. http://dx.doi.org/10.1101/gr.7.3.250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ogata, H. "Response to Comment on "The 1.2-Megabase Genome Sequence of Mimivirus"." Science 308, no. 5725 (May 20, 2005): 1114b. http://dx.doi.org/10.1126/science.1111195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography