Academic literature on the topic 'Mel Frequency Cepstral Coefficients (MFCC)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mel Frequency Cepstral Coefficients (MFCC).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mel Frequency Cepstral Coefficients (MFCC)"
Eskidere, Ömer, and Ahmet Gürhanlı. "Voice Disorder Classification Based on Multitaper Mel Frequency Cepstral Coefficients Features." Computational and Mathematical Methods in Medicine 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/956249.
Full textVarma, V. Sai Nitin, and Abdul Majeed K.K. "Advancements in Speaker Recognition: Exploring Mel Frequency Cepstral Coefficients (MFCC) for Enhanced Performance in Speaker Recognition." International Journal for Research in Applied Science and Engineering Technology 11, no. 8 (August 31, 2023): 88–98. http://dx.doi.org/10.22214/ijraset.2023.55124.
Full textKasim, Anita Ahmad, Muhammad Bakri, Irwan Mahmudi, Rahmawati Rahmawati, and Zulnabil Zulnabil. "Artificial Intelligent for Human Emotion Detection with the Mel-Frequency Cepstral Coefficient (MFCC)." JUITA : Jurnal Informatika 11, no. 1 (May 6, 2023): 47. http://dx.doi.org/10.30595/juita.v11i1.15435.
Full textChen, Young-Long, Neng-Chung Wang, Jing-Fong Ciou, and Rui-Qi Lin. "Combined Bidirectional Long Short-Term Memory with Mel-Frequency Cepstral Coefficients Using Autoencoder for Speaker Recognition." Applied Sciences 13, no. 12 (June 10, 2023): 7008. http://dx.doi.org/10.3390/app13127008.
Full textKoolagudi, Shashidhar G., Deepika Rastogi, and K. Sreenivasa Rao. "Identification of Language using Mel-Frequency Cepstral Coefficients (MFCC)." Procedia Engineering 38 (2012): 3391–98. http://dx.doi.org/10.1016/j.proeng.2012.06.392.
Full textH. Mohd Johari, N., Noreha Abdul Malik, and K. A. Sidek. "Distinctive features for normal and crackles respiratory sounds using cepstral coefficients." Bulletin of Electrical Engineering and Informatics 8, no. 3 (September 1, 2019): 875–81. http://dx.doi.org/10.11591/eei.v8i3.1517.
Full textINDRAWATY, YOULLIA, IRMA AMELIA DEWI, and RIZKI LUKMAN. "Ekstraksi Ciri Pelafalan Huruf Hijaiyyah Dengan Metode Mel-Frequency Cepstral Coefficients." MIND Journal 4, no. 1 (June 1, 2019): 49–64. http://dx.doi.org/10.26760/mindjournal.v4i1.49-64.
Full textMahalakshmi, P. "A REVIEW ON VOICE ACTIVITY DETECTION AND MEL-FREQUENCY CEPSTRAL COEFFICIENTS FOR SPEAKER RECOGNITION (TREND ANALYSIS)." Asian Journal of Pharmaceutical and Clinical Research 9, no. 9 (December 1, 2016): 360. http://dx.doi.org/10.22159/ajpcr.2016.v9s3.14352.
Full textDadula, Cristina P., and Elmer P. Dadios. "Fuzzy Logic System for Abnormal Audio Event Detection Using Mel Frequency Cepstral Coefficients." Journal of Advanced Computational Intelligence and Intelligent Informatics 21, no. 2 (March 15, 2017): 205–10. http://dx.doi.org/10.20965/jaciii.2017.p0205.
Full textRamashini, Murugaiya, P. Emeroylariffion Abas, Kusuma Mohanchandra, and Liyanage C. De Silva. "Robust cepstral feature for bird sound classification." International Journal of Electrical and Computer Engineering (IJECE) 12, no. 2 (April 1, 2022): 1477. http://dx.doi.org/10.11591/ijece.v12i2.pp1477-1487.
Full textDissertations / Theses on the topic "Mel Frequency Cepstral Coefficients (MFCC)"
Alvarenga, Rodrigo Jorge. "Reconhecimento de comandos de voz por redes neurais." Universidade de Taubaté, 2012. http://www.bdtd.unitau.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=587.
Full textSystems for speech recognition have widespread use in the industrial universe, in the improvement of human operations and procedures and in the area of entertainment and recreation. The specific objective of this study was to design and develop a voice recognition system, capable of identifying voice commands, regardless of the speaker. The main purpose of the system is to control movement of robots, with applications in industry and in aid of disabled people. We used the approach of decision making, by means of a neural network trained with the distinctive features of the speech of 16 speakers. The samples of the voice commands were collected under the criterion of convenience (age and sex), to ensure a greater discrimination between the voice characteristics and to reach the generalization of the neural network. Preprocessing consisted in the determination of the endpoints of each command signal and in the adaptive Wiener filtering. Each speech command was segmented into 200 windows with overlapping of 25%. The features used were the zero crossing rate, the short-term energy and the mel-frequency ceptral coefficients. The first two coefficients of the linear predictive coding and its error were also tested. The neural network classifier was a multilayer perceptron, trained by the backpropagation algorithm. Several experiments were performed for the choice of thresholds, practical values, features and neural network configurations. Results were considered very good, reaching an acceptance rate of 89,16%, under the `worst case conditions for the sampling of the commands.
Larsson, Alm Kevin. "Automatic Speech Quality Assessment in Unified Communication : A Case Study." Thesis, Linköpings universitet, Programvara och system, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-159794.
Full textLarsson, Joel. "Optimizing text-independent speaker recognition using an LSTM neural network." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-26312.
Full textUlrich, Natalja. "Linguistic and speaker variation in Russian fricatives." Electronic Thesis or Diss., Lyon 2, 2022. http://www.theses.fr/2022LYO20031.
Full textThis thesis represents an acoustic-phonetic investigation of phonetic details in Russian fricatives. The main aim was to detect acoustic correlates that carry linguistic and idiosyncratic information. The questions addressed were whether the place of articulation, speakers' gender and ID can be predicted by a set of acoustic cues and which acoustic measures represent the most reliable indicators. Furthermore, the distribution of speaker-specific characteristics and inter- and intra-speaker variation across acoustic cues were studied in more detail.The project started with the generation of a large audio database of Russian fricatives. Then, two follow-up analyses were conducted. Acoustic recordings were collected from 59 native Russian speakers. The resulting dataset consists of 22,561 tokens including the fricatives [f], [s], [ʃ], [x], [v], [z], [ʒ], [sj], [ɕ], [vʲ], [zʲ].The first study employed a data sample of 6320 tokens (from 40 speakers). Temporal and spectral measurements were extracted using three acoustic cue extraction techniques (full sound, the noise part, and the middle 30ms windows). Furthermore, 13 Mel Frequency Cepstral Coefficients were computed from the middle 30ms window.Classifiers based on single decision trees, random forests, support vector machines, and neural networks were trained and tested to distinguish between the three non-palatalized fricatives [f], [s] and [ʃ].The results demonstrate that machine learning techniques are very successful at classifying the Russian voiceless non-palatalized fricatives [f], [s] and [ʃ] by using the centre of gravity and the spectral spread irrespective of contextual and speaker variation. The three acoustic cue extraction techniques performed similarly in terms of classification accuracy (93% and 99%), but the spectral measurements extracted from the noise parts resulted in slightly better accuracy. Furthermore, Mel Frequency Cepstral Coefficients show marginally higher predictive power over spectral cues (< 2%).This suggests that both spectral measures and Mel Frequency Cepstral provide sufficient information for the classification of these fricatives and their choice depends on the particular research question or application. The second study's dataset consists of 15812 tokens (59 speakers) that contain [f], [s], [ʃ], [x], [v], [z], [ʒ], [sj], [ɕ]. As in the first study, two types of acoustic cues were extracted including 11 acoustic speech features (spectral cues, duration and HNR measures) and 13 Mel Frequency Cepstral Coefficients. Classifiers based on single decision trees and random forests were trained and tested to predict speakers' gender and ID
Darch, Jonathan J. A. "Robust acoustic speech feature prediction from Mel frequency cepstral coefficients." Thesis, University of East Anglia, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445206.
Full textOkuyucu, Cigdem. "Semantic Classification And Retrieval System For Environmental Sounds." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12615114/index.pdf.
Full textAssaad, Firas Souhail. "Biometric Multi-modal User Authentication System based on Ensemble Classifier." University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1418074931.
Full textEdman, Sebastian. "Radar target classification using Support Vector Machines and Mel Frequency Cepstral Coefficients." Thesis, KTH, Optimeringslära och systemteori, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214794.
Full textI radar applikationer räcker det ibland inte med att veta att systemet observerat ett mål när en reflekted signal dekekteras, det är ofta också utav stort intresse att veta vilket typ av föremål som signalen reflekterades mot. Detta projekt undersöker möjligheterna att utifrån rå radardata transformera de reflekterade signalerna och använda sina mänskliga sinnen, mer specifikt våran hörsel, för att skilja på olika mål och också genom en maskininlärnings approach där med hjälp av mönster och karaktärsdrag för dessa signaler används för att besvara frågeställningen. Mer ingående avgränsas denna undersökning till två typer av mål, mindre obemannade flygande farkoster (UAV) och fåglar. Genom att extrahera komplexvärd radar video även känt som I/Q data från tidigare nämnda typer av mål via signalbehandlingsmetoder transformera denna data till reella signaler, därefter transformeras dessa signaler till hörbara signaler. För att klassificera dessa typer av signaler används typiska särdrag som också används inom taligenkänning, nämligen, Mel Frequency Cepstral Coefficients tillsammans med två modeller av en Support Vector Machine klassificerings metod. Med den linjära modellen uppnåddes en prediktions noggrannhet på 93.33%. Individuellt var noggrannheten 93.33 % korrekt klassificering utav UAV:n och 93.33 % på fåglar. Med radial bas modellen uppnåddes en prediktions noggrannhet på 98.33%. Individuellt var noggrannheten 100 % korrekt klassificering utav UAV:n och 96.76% på fåglar. Projektet är delvis utfört med J. Clemedson [2] vars fokus är att, som tidigare nämnt, transformera dessa signaler till hörbara signaler.
Yang, Chenguang. "Security in Voice Authentication." Digital WPI, 2014. https://digitalcommons.wpi.edu/etd-dissertations/79.
Full textPešek, Milan. "Detekce logopedických vad v řeči." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-218106.
Full textBook chapters on the topic "Mel Frequency Cepstral Coefficients (MFCC)"
Suman, Preetam, Subhdeep Karan, Vrijendra Singh, and R. Maringanti. "Algorithm for Gunshot Detection Using Mel-Frequency Cepstrum Coefficients (MFCC)." In Lecture Notes in Electrical Engineering, 155–66. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1823-4_15.
Full textSulistijono, Indra Adji, Renita Chulafa Urrosyda, and Zaqiatud Darojah. "Mel-Frequency Cepstral Coefficient (MFCC) for Music Feature Extraction for the Dancing Robot Movement Decision." In Intelligent Robotics and Applications, 283–94. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43518-3_28.
Full textSueur, Jérôme. "Mel-Frequency Cepstral and Linear Predictive Coefficients." In Sound Analysis and Synthesis with R, 381–98. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77647-7_12.
Full textKarahoda, Bertan, Krenare Pireva, and Ali Shariq Imran. "Mel Frequency Cepstral Coefficients Based Similar Albanian Phonemes Recognition." In Human Interface and the Management of Information: Information, Design and Interaction, 491–500. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40349-6_47.
Full textSrivastava, Sumit, Mahesh Chandra, and G. Sahoo. "Phase Based Mel Frequency Cepstral Coefficients for Speaker Identification." In Advances in Intelligent Systems and Computing, 309–16. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2757-1_31.
Full textMashika, Mpho, and Dustin van der Haar. "Mel Frequency Cepstral Coefficients and Support Vector Machines for Cough Detection." In Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management, 250–59. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-35748-0_18.
Full textPalo, Hemanta Kumar, Mahesh Chandra, and Mihir Narayan Mohanty. "Recognition of Human Speech Emotion Using Variants of Mel-Frequency Cepstral Coefficients." In Advances in Systems, Control and Automation, 491–98. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4762-6_47.
Full textEzeiza, Aitzol, Karmele López de Ipiña, Carmen Hernández, and Nora Barroso. "Combining Mel Frequency Cepstral Coefficients and Fractal Dimensions for Automatic Speech Recognition." In Advances in Nonlinear Speech Processing, 183–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25020-0_24.
Full textTraboulsi, Ahmad, and Michel Barbeau. "Identification of Drone Payload Using Mel-Frequency Cepstral Coefficients and LSTM Neural Networks." In Proceedings of the Future Technologies Conference (FTC) 2020, Volume 1, 402–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63128-4_30.
Full textBenkedjouh, Tarak, Taha Chettibi, Yassine Saadouni, and Mohamed Afroun. "Gearbox Fault Diagnosis Based on Mel-Frequency Cepstral Coefficients and Support Vector Machine." In Computational Intelligence and Its Applications, 220–31. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89743-1_20.
Full textConference papers on the topic "Mel Frequency Cepstral Coefficients (MFCC)"
Ramirez, Angel David Pedroza, Jose Ismael de la Rosa Vargas, Rogelio Rosas Valdez, and Aldonso Becerra. "A comparative between Mel Frequency Cepstral Coefficients (MFCC) and Inverse Mel Frequency Cepstral Coefficients (IMFCC) features for an Automatic Bird Species Recognition System." In 2018 IEEE Latin American Conference on Computational Intelligence (LA-CCI). IEEE, 2018. http://dx.doi.org/10.1109/la-cci.2018.8625230.
Full textMartinez, Jorge, Hector Perez, Enrique Escamilla, and Masahisa Mabo Suzuki. "Speaker recognition using Mel frequency Cepstral Coefficients (MFCC) and Vector quantization (VQ) techniques." In 2012 22nd International Conference on Electrical Communications and Computers (CONIELECOMP). IEEE, 2012. http://dx.doi.org/10.1109/conielecomp.2012.6189918.
Full textNurahmad, Chairunissa Atimas, and Mirna Adriani. "Identifying traditional music instruments on polyphonic Indonesian folksong using mel-frequency cepstral coefficients (MFCC)." In the 10th International Conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2428955.2428967.
Full textChauhan, Paresh M., and Nikita P. Desai. "Mel Frequency Cepstral Coefficients (MFCC) based speaker identification in noisy environment using wiener filter." In 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE). IEEE, 2014. http://dx.doi.org/10.1109/icgccee.2014.6921394.
Full textRahmandani, Muhammad, Hanung Adi Nugroho, and Noor Akhmad Setiawan. "Cardiac Sound Classification Using Mel-Frequency Cepstral Coefficients (MFCC) and Artificial Neural Network (ANN)." In 2018 3rd International Conference on Information Technology, Information System and Electrical Engineering (ICITISEE). IEEE, 2018. http://dx.doi.org/10.1109/icitisee.2018.8721007.
Full textA. Lopes Neto, Guilherme, Rui Bertho Jr, and Hermes M. G. Castelo Branco. "Localização de Faltas em Redes VSC-HVDC por RNA e Coeficientes de Frequência Mel Cepstrais." In Congresso Brasileiro de Automática - 2020. sbabra, 2020. http://dx.doi.org/10.48011/asba.v2i1.1174.
Full textYuan, Jianjian, Hua Shao, and Hongcheng Huang. "Recognition Types of Cracked Material under Uniaxial Tension Based on Improved Mel Frequency Cepstral Coefficients (MFCC)." In 2022 IEEE 5th International Conference on Electronics and Communication Engineering (ICECE). IEEE, 2022. http://dx.doi.org/10.1109/icece56287.2022.10048667.
Full textMuheidat, Fadi, W. Harry Tyrer, and Mihail Popescu. "Walk Identification using a smart carpet and Mel-Frequency Cepstral Coefficient (MFCC) features." In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018. http://dx.doi.org/10.1109/embc.2018.8513340.
Full textMawadda Warohma, Ayu, Puspa Kurniasari, Suci Dwijayanti, Irmawan, and Bhakti Yudho Suprapto. "Identification of Regional Dialects Using Mel Frequency Cepstral Coefficients (MFCCs) and Neural Network." In 2018 International Seminar on Application for Technology of Information and Communication (iSemantic). IEEE, 2018. http://dx.doi.org/10.1109/isemantic.2018.8549731.
Full textSurovi, Nowrin Akter, Audelia G. Dharmawan, and Gim Song Soh. "A Study on the Acoustic Signal Based Frameworks for the Real-Time Identification of Geometrically Defective Wire Arc Bead." In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-69573.
Full text