To see the other types of publications on this topic, follow the link: Mellin de.

Journal articles on the topic 'Mellin de'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Mellin de.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Butzer, P. L., and S. Jansche. "Mellin-Fourier series and the classical Mellin transform." Computers & Mathematics with Applications 40, no. 1 (2000): 49–62. http://dx.doi.org/10.1016/s0898-1221(00)00139-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Čučković, Željko. "Berezin versus Mellin." Journal of Mathematical Analysis and Applications 287, no. 1 (2003): 234–43. http://dx.doi.org/10.1016/s0022-247x(03)00546-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hoyles, Celia, and Marilyn Nickson. "Stieg Mellin-Olsen." Educational Studies in Mathematics 28, no. 4 (1995): 335–36. http://dx.doi.org/10.1007/bf01274077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mirjalili, A., M. M. Yazdanpanah, and Z. Moradi. "Extracting the QCD Cutoff Parameter Using the Bernstein Polynomials and the Truncated Moments." Advances in High Energy Physics 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/304369.

Full text
Abstract:
Since there are not experimental data over the whole range ofx-Bjorken variable, that is,0<x<1, we are inevitable in practice to do the integration for Mellin moments over the available range of experimental data. Among the methods of analysing DIS data, there are the methods based on application of Mellin moments. We use the truncated Mellin moments rather than the usual moments to analyse the EMC collaboration data for muon-nucleon and WA25 data for neutrino-deuterium DIS scattering. How to connect the truncated Mellin moments to usual ones is discussed. Following that we combine the t
APA, Harvard, Vancouver, ISO, and other styles
5

YANG, JIANWEI, LIANG ZHANG, and ZHENGDA LU. "THE MELLIN CENTRAL PROJECTION TRANSFORM." ANZIAM Journal 58, no. 3-4 (2017): 256–64. http://dx.doi.org/10.1017/s1446181116000341.

Full text
Abstract:
The central projection transform can be employed to extract invariant features by combining contour-based and region-based methods. However, the central projection transform only considers the accumulation of the pixels along the radial direction. Consequently, information along the radial direction is inevitably lost. In this paper, we propose the Mellin central projection transform to extract affine invariant features. The radial factor introduced by the Mellin transform, makes up for the loss of information along the radial direction by the central projection transform. The Mellin central p
APA, Harvard, Vancouver, ISO, and other styles
6

Klusch, Dieter. "On Mellin-Ramanujan expansions." Acta Arithmetica 52, no. 3 (1989): 283–92. http://dx.doi.org/10.4064/aa-52-3-283-292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Heng-Yu, En-Jui Kuo, and Hideki Kyono. "Towards spinning Mellin amplitudes." Nuclear Physics B 931 (June 2018): 291–323. http://dx.doi.org/10.1016/j.nuclphysb.2018.04.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Monakov, Andrei. "The Mellin Matched Filter." IEEE Journal of Selected Topics in Signal Processing 9, no. 8 (2015): 1451–59. http://dx.doi.org/10.1109/jstsp.2015.2465309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Twamley, J., and G. J. Milburn. "The quantum Mellin transform." New Journal of Physics 8, no. 12 (2006): 328. http://dx.doi.org/10.1088/1367-2630/8/12/328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Staunton, Mike. "Crossing the Mellin Road." Wilmott 2011, no. 56 (2011): 62–63. http://dx.doi.org/10.1002/wilm.10055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Flajolet, Philippe, and Mordecai Golin. "Mellin transforms and asymptotics." Acta Informatica 31, no. 7 (1994): 673–96. http://dx.doi.org/10.1007/bf01177551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ji, Xiao Qiang, Jie Zhang Cheng, Lei Jiang, Ting Ting Zhang, and Mei Jiao Wang. "An Improved Fourier-Mellin Algorithm Based on the Image Amplitude Spectrum." Applied Mechanics and Materials 687-691 (November 2014): 3773–76. http://dx.doi.org/10.4028/www.scientific.net/amm.687-691.3773.

Full text
Abstract:
This paper proposes an improved amplitude spectrum based Fourier-Mellin algorithm Fourier by studying the nature of the Fourier transform image of the amplitude spectrum and the application of phase spectrum in estimation for image motion vector according to the shortcomings of traditional Fourier-Mellin algorithm when the video image translation, rotation and scaling of the situation exist. Experimental results show that the algorithm can estimate the rotation, translation and other vector parameters of a complicated motion model .The complexity of the algorithm has greatly improved comparing
APA, Harvard, Vancouver, ISO, and other styles
13

Bardaro, Carlo, Paul L. Butzer, Ilaria Mantellini, and Gerhard Schmeisser. "Integration of polar-analytic functions and applications to Boas’ differentiation formula and Bernstein’s inequality in Mellin setting." Bollettino dell'Unione Matematica Italiana 13, no. 4 (2020): 503–14. http://dx.doi.org/10.1007/s40574-020-00226-9.

Full text
Abstract:
Abstract We establish a general version of Cauchy’s integral formula and a residue theorem for polar-analytic functions, employing the new notion of logarithmic poles. As an application, a Boas-type differentiation formula in Mellin setting and a Bernstein-type inequality for polar Mellin derivatives are deduced.
APA, Harvard, Vancouver, ISO, and other styles
14

Lamb, George, and O. P. Lossers. "Integral by Mellin Transform: 11067." American Mathematical Monthly 112, no. 9 (2005): 843. http://dx.doi.org/10.2307/30037618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Friedberg, Solomon, and Dorian Goldfeld. "Mellin transforms of Whittaker functions." Bulletin de la Société mathématique de France 121, no. 1 (1993): 91–107. http://dx.doi.org/10.24033/bsmf.2201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Deitmar, Anton. "Mellin Transforms of Whittaker Functions." Canadian Mathematical Bulletin 45, no. 3 (2002): 364–77. http://dx.doi.org/10.4153/cmb-2002-039-5.

Full text
Abstract:
AbstractIn this note we show that for an arbitrary reductive Lie group and any admissible irreducible Banach representation the Mellin transforms of Whittaker functions extend to meromorphic functions. We locate the possible poles and show that they always lie along translates of walls of Weyl chambers.
APA, Harvard, Vancouver, ISO, and other styles
17

Blümlein, Johannes. "Harmonic sums and mellin transforms." Nuclear Physics B - Proceedings Supplements 79, no. 1-3 (1999): 166–68. http://dx.doi.org/10.1016/s0920-5632(99)00664-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Panini, R., and R. P. Srivastav. "Option pricing with Mellin transnforms." Mathematical and Computer Modelling 40, no. 1-2 (2004): 43–56. http://dx.doi.org/10.1016/j.mcm.2004.07.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Venkataramanan, Lalitha, Fred K. Gruber, Tarek M. Habashy, and Denise E. Freed. "Mellin transform of CPMG data." Journal of Magnetic Resonance 206, no. 1 (2010): 20–31. http://dx.doi.org/10.1016/j.jmr.2010.05.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Yang, Jianwei, Liang Zhang, and Zhengda Lu. "The Mellin central projection transform." ANZIAM Journal 58 (July 20, 2017): 256. http://dx.doi.org/10.21914/anziamj.v58i0.10980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Yonggong Peng, Yixian Wang, Xiangwu Zuo, and Lihua Gong. "Properties of Fractional Mellin Transform." INTERNATIONAL JOURNAL ON Advances in Information Sciences and Service Sciences 5, no. 5 (2013): 90–96. http://dx.doi.org/10.4156/aiss.vol5.issue5.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Antipova, I. A., and T. V. Zykova. "Mellin transforms and algebraic functions." Integral Transforms and Special Functions 26, no. 10 (2015): 753–67. http://dx.doi.org/10.1080/10652469.2015.1050390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Antipova, I. A. "Inversion of multidimensional Mellin transforms." Russian Mathematical Surveys 62, no. 5 (2007): 977–79. http://dx.doi.org/10.1070/rm2007v062n05abeh004459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Schipp, F., and W. R. Wade. "Mellin Transforms on Binary Fields." Applied and Computational Harmonic Analysis 9, no. 1 (2000): 54–71. http://dx.doi.org/10.1006/acha.2000.0308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Birmingham, D., and S. Sen. "A Mellin transform summation technique." Journal of Physics A: Mathematical and General 20, no. 13 (1987): 4557–60. http://dx.doi.org/10.1088/0305-4470/20/13/054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Rogov, V. B. K. "The mellin-whittaker integral transform." Mathematical Notes of the Academy of Sciences of the USSR 39, no. 6 (1986): 434–37. http://dx.doi.org/10.1007/bf01157027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Bessis, D., G. Servizi, G. Turchetti, and S. Vaienti. "Mellin transforms and correlation dimensions." Physics Letters A 119, no. 7 (1987): 345–47. http://dx.doi.org/10.1016/0375-9601(87)90611-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ninham, Barry W., Barry D. Hughes, Norman E. Frankel, and M. Lawrence Glasser. "Möbius, Mellin, and mathematical physics." Physica A: Statistical Mechanics and its Applications 186, no. 3-4 (1992): 441–81. http://dx.doi.org/10.1016/0378-4371(92)90210-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Passare, Mikael, and August Tsikh. "Residue Integrals and their Mellin Transforms." Canadian Journal of Mathematics 47, no. 5 (1995): 1037–50. http://dx.doi.org/10.4153/cjm-1995-055-4.

Full text
Abstract:
AbstractGiven an almost arbitrary holomorphic map we study the structure of the associated residue integral and its Mellin transform, and the relation between these two objects. More precisely, we relate the limit behaviour of the residue integral to the polar structure of the Mellin transform. We consider also ideals connected to nonisolated singularities.
APA, Harvard, Vancouver, ISO, and other styles
30

Choie, Youngju, and Min Ho Lee. "Mellin Transforms of Mixed Cusp Forms." Canadian Mathematical Bulletin 42, no. 3 (1999): 263–73. http://dx.doi.org/10.4153/cmb-1999-032-3.

Full text
Abstract:
AbstractWe define generalized Mellin transforms of mixed cusp forms, show their convergence, and prove that the function obtained by such a Mellin transform of a mixed cusp form satisfies a certain functional equation. We also prove that a mixed cusp form can be identified with a holomorphic form of the highest degree on an elliptic variety.
APA, Harvard, Vancouver, ISO, and other styles
31

HASEGAWA, YASUKO, and TAKUYA MIYAZAKI. "TWISTED MELLIN TRANSFORMS OF A REAL ANALYTIC RESIDUE OF SIEGEL–EISENSTEIN SERIES OF DEGREE 2." International Journal of Mathematics 20, no. 08 (2009): 1011–27. http://dx.doi.org/10.1142/s0129167x09005625.

Full text
Abstract:
We study a residual form of a real analytic Siegel–Eisenstein series, which generates a certain derived functor module occurring in a degenerate principal series representation. We compute its Mellin transforms twisted by various Maass wave forms to get explicit formulas as our results. We apply them to prove meromorphic continuations together with functional equations which are satisfied by those twisted Mellin transforms.
APA, Harvard, Vancouver, ISO, and other styles
32

Bardaro, Carlo, Paul L. Butzer, Ilaria Mantellini, and Gerhard Schmeisser. "Valiron’s Interpolation Formula and a Derivative Sampling Formula in the Mellin Setting Acquired via Polar-Analytic Functions." Computational Methods and Function Theory 20, no. 3-4 (2020): 629–52. http://dx.doi.org/10.1007/s40315-020-00341-w.

Full text
Abstract:
AbstractIn this paper, we first recall some recent results on polar-analytic functions. Then we establish Mellin analogues of a classical interpolation of Valiron and of a derivative sampling formula. As consequences a new differentiation formula and an identity theorem in Mellin–Bernstein spaces are obtained. The main tool in the proofs is a residue theorem for polar-analytic functions.
APA, Harvard, Vancouver, ISO, and other styles
33

Barmak Honarvar Shakibaei, Barmak Honarvar Shakibaei, and Raveendran Paramesran Raveendran Paramesran. "Fourier–Mellin expansion coefficients of scaled pupils." Chinese Optics Letters 11, no. 8 (2013): 080101–80104. http://dx.doi.org/10.3788/col201311.080101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Mezrag, C. "Modeling the Pion Generalized Parton Distribution." International Journal of Modern Physics: Conference Series 40 (January 2016): 1660048. http://dx.doi.org/10.1142/s201019451660048x.

Full text
Abstract:
We compute the pion Generalized Parton Distribution (GPD) in a valence dressed quarks approach. We model the Mellin moments of the GPD using Ansätze for Green functions inspired by the numerical solutions of the Dyson-Schwinger Equations (DSE) and the Bethe-Salpeter Equation (BSE). Then, the GPD is reconstructed from its Mellin moment using the Double Distribution (DD) formalism. The agreement with available experimental data is very good.
APA, Harvard, Vancouver, ISO, and other styles
35

LI, T. RAY, and MARIANITO R. RODRIGO. "Alternative results for option pricing and implied volatility in jump-diffusion models using Mellin transforms." European Journal of Applied Mathematics 28, no. 5 (2016): 789–826. http://dx.doi.org/10.1017/s0956792516000516.

Full text
Abstract:
In this article, we use Mellin transforms to derive alternative results for option pricing and implied volatility estimation when the underlying asset price is governed by jump-diffusion dynamics. The current well known results are restrictive since the jump is assumed to follow a predetermined distribution (e.g., lognormal or double exponential). However, the results we present are general since we do not specify a particular jump-diffusion model within the derivations. In particular, we construct and derive an exact solution to the option pricing problem in a general jump-diffusion framework
APA, Harvard, Vancouver, ISO, and other styles
36

Sinclair, Christopher D. "The distribution of Mahler's measures of reciprocal polynomials." International Journal of Mathematics and Mathematical Sciences 2004, no. 52 (2004): 2773–86. http://dx.doi.org/10.1155/s0161171204312469.

Full text
Abstract:
We study the distribution of Mahler's measures of reciprocal polynomials with complex coefficients and bounded even degree. We discover that the distribution function associated to Mahler's measure restricted to monic reciprocal polynomials is a reciprocal (or antireciprocal) Laurent polynomial on[1,∞)and identically zero on[0,1). Moreover, the coefficients of this Laurent polynomial are rational numbers times a power ofπ. We are led to this discovery by the computation of the Mellin transform of the distribution function. This Mellin transform is an even (or odd) rational function with poles
APA, Harvard, Vancouver, ISO, and other styles
37

Mohan, N. L., L. Anandababu, and S. V. Seshagiri Rao. "Gravity interpretation using the Mellin transform." GEOPHYSICS 51, no. 1 (1986): 114–22. http://dx.doi.org/10.1190/1.1442024.

Full text
Abstract:
The Mellin transform of the gravity effect of a buried sphere and two‐dimensional horizontal circular cylinder, and the first horizontal derivative of the gravity effect of a two‐dimensional thin fault layer are derived. The transformed functions are bounded by two asymptotes. They are analyzed and procedures are formulated excluding the asymptotic regions for the extraction of the body parameters. The application of the Mellin transform is tested on simulated models as well as on two field examples: (1) the Humble Dome gravity anomaly near Houston, USA; and (2) the Louga gravity anomaly, USA.
APA, Harvard, Vancouver, ISO, and other styles
38

Poroshina, N. I., and V. M. Ryabov. "Evaluation of the Riemann-Mellin integral." Vestnik St. Petersburg University: Mathematics 42, no. 4 (2009): 293–98. http://dx.doi.org/10.3103/s1063454109040074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

ZHENG SHI-HAI, CHEN YAN-SONG, and LI DE-HUA. "REALIZATION OF TWO-DIMENSIONAL MELLIN TRANSFORM." Acta Physica Sinica 39, no. 5 (1990): 749. http://dx.doi.org/10.7498/aps.39.749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Łysik, Grzegorz. "On the structure of Mellin distributions." Annales Polonici Mathematici 51, no. 1 (1990): 219–28. http://dx.doi.org/10.4064/ap-51-1-219-228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Mainardi, F., G. Pagnini, and R. Gorenflo. "Mellin Convolution for Subordinated Stable Processes." Journal of Mathematical Sciences 132, no. 5 (2006): 637–42. http://dx.doi.org/10.1007/s10958-006-0008-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

López, José L. "Asymptotic Expansions of Mellin Convolution Integrals." SIAM Review 50, no. 2 (2008): 275–93. http://dx.doi.org/10.1137/060653524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

VERMASEREN, J. A. M. "HARMONIC SUMS, MELLIN TRANSFORMS AND INTEGRALS." International Journal of Modern Physics A 14, no. 13 (1999): 2037–76. http://dx.doi.org/10.1142/s0217751x99001032.

Full text
Abstract:
This paper describes algorithms to deal with nested symbolic sums over combinations of harmonic series, binomial coefficients and denominators. In addition it treats Mellin transforms and the inverse Mellin transformation for functions that are encountered in Feynman diagram calculations. Together with results for the values of the higher harmonic series at infinity the presented algorithms can be used for the symbolic evaluation of whole classes of integrals that were thus far intractable. Also many of the sums that had to be evaluated seem to involve new results. Most of the algorithms have
APA, Harvard, Vancouver, ISO, and other styles
44

Ravichandran, G., and M. M. Trivedi. "Circular-Mellin features for texture segmentation." IEEE Transactions on Image Processing 4, no. 12 (1995): 1629–40. http://dx.doi.org/10.1109/83.475513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Dines, N., and B. W. Schulze. "Mellin-edge representations of elliptic operators." Mathematical Methods in the Applied Sciences 28, no. 18 (2005): 2133–72. http://dx.doi.org/10.1002/mma.643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Deitmar, Anton. "Mellin transforms ofp-adic Whittaker functions." Mathematische Nachrichten 261-262, no. 1 (2003): 37–46. http://dx.doi.org/10.1002/mana.200310111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Flajolet, Philippe, Peter Grabner, Peter Kirschenhofer, Helmut Prodinger, and Robert F. Tichy. "Mellin transforms and asymptotics: digital sums." Theoretical Computer Science 123, no. 2 (1994): 291–314. http://dx.doi.org/10.1016/0304-3975(92)00065-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Flajolet, Philippe, Xavier Gourdon, and Philippe Dumas. "Mellin transforms and asymptotics: Harmonic sums." Theoretical Computer Science 144, no. 1-2 (1995): 3–58. http://dx.doi.org/10.1016/0304-3975(95)00002-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ravichandran, Gopalan, and Mohan M. Trivedi. "Circular-Mellin features for texture segmentation." IEEE Transactions on Image Processing 4, no. 12 (1995): 1629–40. http://dx.doi.org/10.1109/tip.1995.8876000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Lyudkovskii, S. V. "Mellin transforms over Cayley-Dickson algebras." Doklady Mathematics 77, no. 2 (2008): 249–53. http://dx.doi.org/10.1134/s1064562408020233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!