Journal articles on the topic 'MELTING CHARGE'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'MELTING CHARGE.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yamada, Ikuya, Hidenobu Etani, Makoto Murakami, et al. "Charge-Order Melting in Charge-Disproportionated Perovskite CeCu3Fe4O12." Inorganic Chemistry 53, no. 21 (2014): 11794–801. http://dx.doi.org/10.1021/ic502138v.
Full textVasiliu-Doloc, L., S. Rosenkranz, R. Osborn, et al. "Charge Melting and Polaron Collapse inLa1.2Sr1.8Mn2O7." Physical Review Letters 83, no. 21 (1999): 4393–96. http://dx.doi.org/10.1103/physrevlett.83.4393.
Full textCohen, Joel, and Andrew Ford. "Charge Melting of Liposome Colloidal Crystals." Biophysical Journal 116, no. 3 (2019): 507a. http://dx.doi.org/10.1016/j.bpj.2018.11.2738.
Full textKobayashi, Hisao, Yutaka Kazekami, Nobuhiko Sakai, Yasuo Ohishi, Makoto Shirakawa, and Aakira Ochiai. "Pressure-induced melting of charge order in Eu4As3without structural change." Journal of Physics: Condensed Matter 20, no. 41 (2008): 415217. http://dx.doi.org/10.1088/0953-8984/20/41/415217.
Full textYamada, Ikuya, and et al et al. "ChemInform Abstract: Charge-Order Melting in Charge-Disproportionated Perovskite CeCu3Fe4O12." ChemInform 46, no. 2 (2014): no. http://dx.doi.org/10.1002/chin.201502017.
Full textUgarte, Orlando, Jianghua Li, Jeff Haeberle, Thomas Frasz, Tyamo Okosun, and Chenn Q. Zhou. "CFD Modeling of HBI/scrap Melting in Industrial EAF and the Impact of Charge Layering on Melting Performance." Materials 17, no. 21 (2024): 5139. http://dx.doi.org/10.3390/ma17215139.
Full textGuloyan, Yu A., K. S. Katkova, T. I. Balandina, and A. G. Belyaeva. "Charge redox characteristics and container-glass melting." Glass and Ceramics 47, no. 11 (1990): 415–18. http://dx.doi.org/10.1007/bf00677522.
Full textSigarev, E., Y. Lobanov, S. Semiryagin, and A. Pohvalitiy. "MODELING THE MELTING OF SCRAP METAL OF DIFFERENT DENSITY IN A BOF SMELTING." Collection of scholarly papers of Dniprovsk State Technical University (Technical Sciences) 2, no. 37 (2021): 3–8. http://dx.doi.org/10.31319/2519-2884.37.2020.1.
Full textLevchenko, A. A., and L. P. Mezhov-Deglin. "Charge mobility in solid parahydrogen along the melting curve." Soviet Journal of Low Temperature Physics 15, no. 11 (1989): 672–73. https://doi.org/10.1063/10.0032298.
Full textLan, X. K., J. M. Khodadadi, P. D. Jones, and L. Wang. "Numerical Study of Melting of Large-Diameter Crystals Using an Orbital Solar Concentrator." Journal of Solar Energy Engineering 117, no. 2 (1995): 67–74. http://dx.doi.org/10.1115/1.2870868.
Full textMakarov, A. N., M. K. Galicheva, and A. V. Kuznetsov. "Changing the Arc Efficiency during Melting of a Charge in Arc Steel Melting Furnaces." Materials Science Forum 870 (September 2016): 441–45. http://dx.doi.org/10.4028/www.scientific.net/msf.870.441.
Full textAknazarov, Sestager Khusainovich, Alibek Zhumabekovich Mutushev, Juan Maria Gonzalez-Leal, et al. "Kinetics of the Synthesis of Aluminum Boride by the Self-Propagating High-Temperature Synthesis Method." Ceramics 5, no. 3 (2022): 435–46. http://dx.doi.org/10.3390/ceramics5030033.
Full textMuravyova, I. H., M. H. Ivancha, V. R. Shcherbachov, et al. "Method of determining the position and shape of the cohezive zone in a blast furnace using gas flow temperature distribution indicators." Fundamental and applied problems of ferrous metallurgy 36 (2022): 95–108. http://dx.doi.org/10.52150/2522-9117-2022-36-95-108.
Full textRapacioli, Mathias, Nathalie Tarrat, and Fernand Spiegelman. "Melting of the Au20Gold Cluster: Does Charge Matter?" Journal of Physical Chemistry A 122, no. 16 (2018): 4092–98. http://dx.doi.org/10.1021/acs.jpca.7b12522.
Full textMyrzakulov, Maxat K., Saltanat K. Dzhumankulova, Kassym K. Yelemessov, et al. "Analysis of the Effect of Fluxing Additives in the Production of Titanium Slags in Laboratory Conditions." Metals 14, no. 12 (2024): 1320. http://dx.doi.org/10.3390/met14121320.
Full textWang, Yonghong, Jiang Diao, Bing Xie, Chenglin Qi, and Ping Du. "Melting–Dropping Property of Blast Furnace Charge on the Basis of Its Slag Formation Behavior." Metals 12, no. 6 (2022): 987. http://dx.doi.org/10.3390/met12060987.
Full textPratheek, S. V. Bhat, and B. G. Hegde. "Growth of manganite nanoparticles with narrow size distribution using reverse micelle method." IOP Conference Series: Materials Science and Engineering 1221, no. 1 (2022): 012041. http://dx.doi.org/10.1088/1757-899x/1221/1/012041.
Full textKuvaldin, A. B., Maxim A. Fedin, A. O. Kuleshov, and I. Y. Zhmurko. "Development of Relay Control Systems of Power and Temperature Mode of Induction Crucible Furnaces with Use of Physical Modeling." Materials Science Forum 906 (September 2017): 8–15. http://dx.doi.org/10.4028/www.scientific.net/msf.906.8.
Full textBoczkal, G. "Melting Point Of Metals In Relation Io Electron Charge Density." Archives of Metallurgy and Materials 60, no. 3 (2015): 2457–60. http://dx.doi.org/10.1515/amm-2015-0399.
Full textMyrto, Zeneli, Malgarinos Ilias, Nikolopoulos Aristeidis, et al. "Numerical simulation of a silicon-based latent heat thermal energy storage system operating at ultra-high temperatures." Applied Energy 242 (May 15, 2019): 837–53. https://doi.org/10.1016/j.apenergy.2019.03.147.
Full textEriksson, L., and B. Alm. "Characterization of Activated Sludge and Conditioning with Cationic Polyelectrolytes." Water Science and Technology 28, no. 1 (1993): 203–12. http://dx.doi.org/10.2166/wst.1993.0048.
Full textLarsen, Amy E., and David G. Grier. "Melting of Metastable Crystallites in Charge-Stabilized Colloidal Suspensions." Physical Review Letters 76, no. 20 (1996): 3862–65. http://dx.doi.org/10.1103/physrevlett.76.3862.
Full textBoczkal, Grzegorz. "Electrons charge concentration and melting point of bcc metals." Materials Letters 134 (November 2014): 162–64. http://dx.doi.org/10.1016/j.matlet.2014.07.074.
Full textBerenshtein, P. I., and V. P. Il'ina. "Fritmaking (frit melting) during inclined flow of the charge." Glass and Ceramics 48, no. 11 (1991): 515–17. http://dx.doi.org/10.1007/bf00676642.
Full textDoi, Akira. "?Melting? of ionic charge carriers for conduction in glass." Journal of Materials Science Letters 8, no. 3 (1989): 271–72. http://dx.doi.org/10.1007/bf00725494.
Full textSeikh, Md Motin, Valérie Pralong, Vincent Caignaert, and Bernard Raveau. "Local Melting of Charge Ordering in CaBaCo4O7by Sr-Doping." Zeitschrift für anorganische und allgemeine Chemie 640, no. 6 (2014): 1141–46. http://dx.doi.org/10.1002/zaac.201300671.
Full textSenin, A. V., A. G. Ryazanov, and D. L. Zhuravlev. "Effect of Charge Fractional Composition and the Coke Amount on the Parameters of Manganese Ore Agglomeration." Solid State Phenomena 265 (September 2017): 945–51. http://dx.doi.org/10.4028/www.scientific.net/ssp.265.945.
Full textMatyukhin, V. I., A. V. Matyukhina, and A. V. Bolotov. "Selection of the composition of the initial charge during the rolling melting of the mineral melt." NOVYE OGNEUPORY (NEW REFRACTORIES), no. 9 (December 12, 2024): 12–15. https://doi.org/10.17073/1683-4518-2024-9-12-15.
Full textAdetunji, Onigbajumo, Seidu Saliu Ojo, Akinlabi Oyetunji, and Newton Itua. "Melting Time Prediction Model for Induction Furnace Melting Using Specific Thermal Consumption from Material Charge Approach." Journal of Minerals and Materials Characterization and Engineering 09, no. 01 (2021): 61–74. http://dx.doi.org/10.4236/jmmce.2021.91005.
Full textTurakulov, Murot, Nodirjon Tursunov, and Salokhiddin Yunusov. "New concept of cast iron melting technology in induction crucible furnace." E3S Web of Conferences 401 (2023): 01060. http://dx.doi.org/10.1051/e3sconf/202340101060.
Full textRasseko, D., and R. Lavrov. "MODIFICATION OF SYNTHETIC RAW MATERIAL BASED ON SODIUM HYDROXIDE FOR PRODUCING GLASS." Bulletin of Belgorod State Technological University named after. V. G. Shukhov 6, no. 8 (2021): 86–93. http://dx.doi.org/10.34031/2071-7318-2021-6-8-86-93.
Full textKim, Seong Jun, Ji Kyun Kim, Hyeon Seok Lee, Jeong Yeol Kwon, and Heon Yong Lee. "A Study on Improved Characteristics of Electric Charge Storage after Thermal Treatment Using Teflon FEP Film." Solid State Phenomena 124-126 (June 2007): 319–22. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.319.
Full textRamin, Ismetbey oglu Kerimov. "IMPROVING STEEL MELTING INTENSITY IN THE PROCESS OF ELECTROSMELTING FROM WASTE AND PELLETS (HBI)." Eastern-European Journal of Enterprise Technologies 3, no. 1 (99) (2019): 35–42. https://doi.org/10.15587/1729-4061.2019.168352.
Full textZhang, Y. Q., Y. L. Zhu, Z. D. Zhang, and J. Aarts. "Defect-induced charge-order melting in thin films of Pr0.5Ca0.5MnO3." Journal of Applied Physics 101, no. 6 (2007): 063919. http://dx.doi.org/10.1063/1.2710341.
Full textChen, C. H., S. Mori, and S.-W. Cheong. "Anomalous Melting Transition of the Charge-Ordered State in Manganites." Physical Review Letters 83, no. 23 (1999): 4792–95. http://dx.doi.org/10.1103/physrevlett.83.4792.
Full textAnuradha, K. N., S. S. Rao, and S. V. Bhat. "Complete 'Melting' of Charge Order in Hydrothermally Grown Pr0.57Ca0.41Ba0.02MnO3 Nanowires." Journal of Nanoscience and Nanotechnology 7, no. 6 (2007): 1775–78. http://dx.doi.org/10.1166/jnn.2007.713.
Full textItou, T., K. Miyagawa, K. Kanoda, et al. "Melting of charge order in (DI-DCNQI)2Ag by pressure." Synthetic Metals 154, no. 1-3 (2005): 273–76. http://dx.doi.org/10.1016/j.synthmet.2005.07.071.
Full textBaker, M. B., and J. G. Dash. "Charge transfer in thunderstorms and the surface melting of ice." Journal of Crystal Growth 97, no. 3-4 (1989): 770–76. http://dx.doi.org/10.1016/0022-0248(89)90581-2.
Full textPankova, N. A., S. I. Markov, N. A. Mamina, L. Ya Levitin, T. I. Shitova, and V. S. Eroshenko. "Melting behavior in a hydrothermal charge for opaque optical glass." Glass and Ceramics 45, no. 5 (1988): 175–78. http://dx.doi.org/10.1007/bf00674714.
Full textLee, S. H., and S.-W. Cheong. "Melting of Quasi-Two-Dimensional Charge Stripes inLa5/3Sr1/3NiO4." Physical Review Letters 79, no. 13 (1997): 2514–17. http://dx.doi.org/10.1103/physrevlett.79.2514.
Full textDmitriev, S. F., Vladimir Malikov, and Alexey V. Ishkov. "Investigation of Thermal Fields at Phase Boundaries in Powder Mixtures that are Subject to Melting and Chemical Transformation." Materials Science Forum 992 (May 2020): 1011–15. http://dx.doi.org/10.4028/www.scientific.net/msf.992.1011.
Full textRahman, R. A. "STUDY ON THE INFLUENCE OF RATING CHARGE ON TEMPERATURE AND PHASE BEHAVIOR OF STABILIZED MATRIX WAX-BASED THERMAL STORAGE." Eurasian Physical Technical Journal 21, no. 2(48) (2024): 14–21. http://dx.doi.org/10.31489/2024no2/14-21.
Full textKobegen, Ye, D. A. Yessengaliyev, B. M. Boranbaeva, N. B. Aitbaev, and G. M. Koishina. "Calculation of thermodynamic functions during agglomeration of heterogeneous charge components." Engineering Journal of Satbayev University 144, no. 3 (2022): 22–29. http://dx.doi.org/10.51301/ejsu.2022.i3.04.
Full textJavaherdeh, Kourosh, and Touraj Azarbarzin. "Numerical Investigation of Thermal Behavior of Nano-Phase Change Materials Due to Non-Newtonian Fluid Flow in the Porous Finned Tube." Journal of Nanofluids 12, no. 8 (2023): 2157–69. http://dx.doi.org/10.1166/jon.2023.2081.
Full textDavydov, A. G., and N. K. Tkachev. "CALCULATION OF THE MELTING POINTS OF ALKALI HALIDES USING THE THERMODYNAMIC PERTURBATION THEORY." Расплавы, no. 2 (March 1, 2023): 167–81. http://dx.doi.org/10.31857/s0235010623020032.
Full textSankha, Chattopadhyay, Shankar Sharma Hari, Ameta Rakshit, and Basu Navojit. "Replacement of Split Coke Charge in Cupola Operation: A Green Chemical Approach." European Journal of Advances in Engineering and Technology 5, no. 2 (2018): 118–21. https://doi.org/10.5281/zenodo.10702271.
Full textSinghal, Lokesh Kumar, and Sudipta Patra. "Energy Conservation Potential in Stainless Steel Making by use of Molten Pig Iron and Liquid Ferro-Chrome." Advanced Materials Research 794 (September 2013): 124–31. http://dx.doi.org/10.4028/www.scientific.net/amr.794.124.
Full textFarid, Mohammed M., and Atsushi Kanzawa. "Thermal Performance of a Heat Storage Module Using PCM’s With Different Melting Temperatures: Mathematical Modeling." Journal of Solar Energy Engineering 111, no. 2 (1989): 152–57. http://dx.doi.org/10.1115/1.3268301.
Full textGolovchenko, N. Yu, O. S. Bairakova, G. I. Ksandopulo, and S. Kh Aknazarov. "Reception Ferrotungsten from Wolframite Concentrate by Alumimotermic Method." Eurasian Chemico-Technological Journal 13, no. 3-4 (2011): 205. http://dx.doi.org/10.18321/ectj86.
Full textGudim, Yu A., and I. Yu Zinurov. "Steelmaking using a solid metallic charge. Electric or fuel melting units?" Russian Metallurgy (Metally) 2011, no. 12 (2011): 1079–83. http://dx.doi.org/10.1134/s0036029511120056.
Full text