Academic literature on the topic 'Melting process on the laser'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Melting process on the laser.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Melting process on the laser"
Sung, M. Y., B. D. Joo, S. H. Kim, and Y. H. Moon. "Process Analysis of Melting Behaviors in Selective Laser Melting Process." Transactions of Materials Processing 19, no. 8 (December 1, 2010): 517–22. http://dx.doi.org/10.5228/kstp.2010.19.8.517.
Full textHagedorn, Yves, and Felix Pastors. "Process Monitoring of Laser Beam Melting." Laser Technik Journal 15, no. 2 (April 2018): 54–57. http://dx.doi.org/10.1002/latj.201800009.
Full textvan Belle, Laurent, and Alban Agazzi. "Inverse Thermal Analysis of Melting Pool in Selective Laser Melting Process." Key Engineering Materials 651-653 (July 2015): 1519–24. http://dx.doi.org/10.4028/www.scientific.net/kem.651-653.1519.
Full textThombansen, Ulrich, Alexander Gatej, and Milton Pereira. "Process observation in fiber laser–based selective laser melting." Optical Engineering 54, no. 1 (October 8, 2014): 011008. http://dx.doi.org/10.1117/1.oe.54.1.011008.
Full textSakai, Yasunori, Wataru Ichikawa, and Tomohisa Tanaka. "Novel laser melting stir process for microwelding." Manufacturing Letters 25 (August 2020): 6–9. http://dx.doi.org/10.1016/j.mfglet.2020.05.004.
Full textSukumar, S., and S. P. Kar. "Parametric Analysis of Pulsed Laser Melting Process." IOP Conference Series: Materials Science and Engineering 338 (March 2018): 012009. http://dx.doi.org/10.1088/1757-899x/338/1/012009.
Full textXiao, Hai Bing. "Research on Laser Oxidation Melting Cutting Process of Automobile Carbon Parts." Applied Mechanics and Materials 778 (July 2015): 159–63. http://dx.doi.org/10.4028/www.scientific.net/amm.778.159.
Full textC. Tseng, W., and J. N. Aoh. "Experimental Validation of a Laser Heat Source Model for Laser Melting and Laser Cladding Processes." Open Mechanical Engineering Journal 8, no. 1 (October 9, 2014): 370–81. http://dx.doi.org/10.2174/1874155x01408010370.
Full textRidolfi, Maria Rita, Paolo Folgarait, and Andrea Di Schino. "MODELLING OF SELECTIVE LASER MELTING PROCESS FOR ADDITIVE MANUFACTURING." Acta Metallurgica Slovaca 26, no. 1 (March 18, 2020): 7–10. http://dx.doi.org/10.36547/ams.26.1.525.
Full textLykov, P. A., E. V. Safonov, and A. M. Akhmedianov. "Selective Laser Melting of Copper." Materials Science Forum 843 (February 2016): 284–88. http://dx.doi.org/10.4028/www.scientific.net/msf.843.284.
Full textDissertations / Theses on the topic "Melting process on the laser"
Ashton, I. "Investigations into process monitoring for selective laser melting." Thesis, University of Liverpool, 2016. http://livrepository.liverpool.ac.uk/3004532/.
Full textSuchý, Jan. "Zpracování vysokopevnostní hliníkové slitiny AlSi9Cu3 technologií selective laser melting." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-319259.
Full textKurian, Sachin. "Process-Structure-Property Relationship Study of Selective Laser Melting using Molecular Dynamics." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/104115.
Full textMaster of Science
Additive Manufacturing's (AM) rise as a modern manufacturing paradigm has led to the proliferation in the number of materials that can be processed, reduction in the cost and time of manufacturing, and realization of complicated part geometries that were beyond the capabilities of conventional manufacturing. Selective Laser Melting (SLM) is a laser-based AM technique which can produce metallic parts from the fusion of a powder-bed. The SLM processing parameters greatly influence the part's quality, microstructure, and properties. The process-structure-property relationship of the SLM process is not well-understood. In-situ experimental investigation of the physical phenomena taking place during the SLM process is limited because of the very small length and time scales. Computational methods are cost-effective alternatives to the challenging experimental techniques. But, the continuum-based computational models are ineffective in modeling some of the important physical processes such as melting, nucleation and growth of grains during solidification, and the deformation mechanisms at the atomistic scale. Atomistic simulation is a powerful method that can offset the limitations of the continuum models in elucidating the underlying physics of the SLM process. In this work, the influence of the SLM process parameters on the microstructure of the Aluminum nano-powder particles undergoing μ-SLM processing and the mechanical deformation characteristics of the unique cellular structures observed in the SLM-fabricated 316L stainless steel are studied using molecular dynamics simulations. Ten passes of the laser beam on three layers of Aluminum nano-powder particles have unfolded the formation mechanisms of a complex microstructure associated with the SLM process. The study on the deformation mechanisms of 316L stainless steel has revealed the contribution of the cellular structures to its superior mechanical properties.
Siva, Prasad Himani. "Selective Laser Melting of Ni-based Superalloys: High Speed Imaging and Process Optimisation." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-59857.
Full textLiu, Bochuan. "Further process understanding and prediction on selective laser melting of stainless steel 316L." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/13550.
Full textZvoníček, Josef. "Vývoj procesních parametrů pro zpracování hliníkové slitiny AlSi7 technologií Selective Laser Melting." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-444404.
Full textRobinson, Joseph. "Optimisation of the selective laser melting process for the production of hybrid orthopaedic devices." Thesis, University of Liverpool, 2014. http://livrepository.liverpool.ac.uk/18053/.
Full textWang, Xiqian. "Improving the microstructure, mechanical properties & process route in selective laser melting of nickel-superalloys." Thesis, University of Birmingham, 2017. http://etheses.bham.ac.uk//id/eprint/7671/.
Full textPrehradná, Jana. "Úprava oxidačních vlastností TiAl intermetalik přetavováním povrchu v řízené atmosféře." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231717.
Full textAris, Mohd Shiraz. "The development of active heat transfer enhancement devices from shape memory alloys in a selective laser melting process." Thesis, University of Liverpool, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526785.
Full textBooks on the topic "Melting process on the laser"
Lau, Marcus. Laser Fragmentation and Melting of Particles. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-14171-4.
Full textYao, Jianhua, Bo Li, and Liang Wang. Advanced Laser Process for Surface Enhancement. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9659-9.
Full textSing, Swee Leong. Selective Laser Melting of Novel Titanium-Tantalum Alloy as Orthopaedic Biomaterial. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-2724-7.
Full textZhu, Xu-Ran. Numerical study of the electromagnetic semi-levitation melting process. Birmingham: University of Birmingham, 1997.
Find full textMahamood, Rasheedat Modupe. Laser Metal Deposition Process of Metals, Alloys, and Composite Materials. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-64985-6.
Full textWinefordner, James D. Laser induced breakdown spectroscopy for elemental process monitoring of slurry streams: Final report. Bartow, Fla. (1855 W. Main St., Bartow 33830): Florida Institute of Phosphate Research, 2000.
Find full textMiller, R. E. Batch pretreatment process technology for abatement of emissions and conservation of energy in glass melting furnaces: Phase IIA, process design manual. Cincinnati, OH: U.S. Environmental Protection Agency, Water Engineering Research Laboratory, 1985.
Find full textBlunden, Simon. Melting down the steel town: Corby community and culture in the process of recovery 1980-1990. Sheffield: Sheffield City Polytechnic, Department of Historical and Critical Studies, 1990.
Find full textColloque international sur le soudage et la fusion par faisceaux d'électrons et laser (5e 1993 La Baule, Loire-Atlantique, France). 5ème Colloque international sur le soudage et la fusion par faisceaux d'électrons et laser =: 5th International Conference on Welding and Melting by Electron and Laser Beams, La Baule, 14-18 juin 1993. [Saclay]: Commissariat à l'énergie atomique, 1993.
Find full textInternational School of Coherent Optics. (9th 1989 Uzhgorod, USSR). Intense laser phenomena and related subjects: IX International School on Coherent Optics, Uzhgorod, USSR, 15-20 May 1989. Edited by Ivanov M. Yu and Kiyan I. Yu. Singapore: World Scientific, 1991.
Find full textBook chapters on the topic "Melting process on the laser"
Uhlmann, Eckart, Rodrigo Pastl Pontes, and André Bergmann. "High level process map for Selective Laser Melting / High level process map for Selective Laser Melting." In Rapid.Tech – International Trade Show & Conference for Additive Manufacturing, edited by Wieland Kniffka, Michael Eichmann, and Gerd Witt, 149–58. München: Carl Hanser Verlag GmbH & Co. KG, 2016. http://dx.doi.org/10.3139/9783446450608.012.
Full textAntony, Kurian, and T. R. Rakeshnath. "Study on Rayleigh–Bénard Convection in Laser Melting Process." In 3D Printing and Additive Manufacturing Technologies, 39–44. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0305-0_4.
Full textLü, L., J. Y. H. Fuh, and Y. S. Wong. "Metal-Based System via Laser Melting." In Laser-Induced Materials and Processes for Rapid Prototyping, 143–86. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1469-5_6.
Full textHuber, Marc, Jonas Ess, Martin Hartmann, Andreas Würms, Robin Rettberg, Thomas Kränzler, and Kaspar Löffel. "Process Setup for Manufacturing of a Pump Impeller by Selective Laser Melting." In Industrializing Additive Manufacturing - Proceedings of Additive Manufacturing in Products and Applications - AMPA2017, 252–63. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66866-6_24.
Full textClement, Catherine Dolly, Julie Masson, and Abu Syed Kabir. "On the Heat Treatment of AlSi10Mg Fabricated by Selective Laser Melting Process." In TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings, 425–34. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36296-6_40.
Full textKleszczynski, Stefan, Joschka zur Jacobsmühlen, Jan T. Sehrt, and Gerd Witt. "Mechanical Properties of Laser Beam Melting Components Depending on Various Process Errors." In IFIP Advances in Information and Communication Technology, 153–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41329-2_16.
Full textZhao, J. F., Yong Li, and L. Wang. "Nano-SiC Particles Reinforced Plasma Sprayed WC-Co Coating by Laser Melting Process." In Advances in Machining & Manufacturing Technology VIII, 575–78. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-999-7.575.
Full textHsu, Tzu-Hou, Kai-Chun Chang, Yao-Jen Chang, I.-Ting Ho, Sammy Tin, Chen-Wei Li, Koji Kakehi, et al. "Effect of Carbide Inoculants Additions in IN718 Fabricated by Selective Laser Melting Process." In Superalloys 2020, 982–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51834-9_96.
Full textDing, Linshan, Li Zhang, Chunhong Ruan, and Zaizhuo Jiang. "Transient Finite Elements Analysis of Thin-Walled Structure in Selective Laser Melting Process." In Advances in Intelligent Systems and Computing, 1231–40. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95588-9_106.
Full textLiu, Bin, Le Tan, Zhanyong Zhao, Hao Zhang, Jing Li, Peikang Bai, Jianhong Wang, and Yahui Cheng. "Temperature Distribution Laws During Selective Laser Melting Process of Nickel Base Alloy GH4169." In Lecture Notes in Mechanical Engineering, 335–43. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0107-0_31.
Full textConference papers on the topic "Melting process on the laser"
Brüning, Heiko. "Robusteness of the laser melting process." In ICALEO® 2013: 32nd International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2013. http://dx.doi.org/10.2351/1.5062978.
Full textThombansen, U., and P. Abels. "Process observation in selective laser melting (SLM)." In SPIE LASE, edited by Friedhelm Dorsch. SPIE, 2015. http://dx.doi.org/10.1117/12.2079475.
Full textМолотков, Андрей, Andrey Molotkov, Ольга Третьякова, and Ol'ga Tret'yakova. "Visualization of the process of selective laser melting." In 29th International Conference on Computer Graphics, Image Processing and Computer Vision, Visualization Systems and the Virtual Environment GraphiCon'2019. Bryansk State Technical University, 2019. http://dx.doi.org/10.30987/graphicon-2019-1-78-81.
Full textFateri, Miranda, Andreas Gebhardt, and Maziar Khosravi. "Numerical Investigation of Selective Laser Melting Process for 904L Stainless Steel." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86964.
Full textAsadi, Farshid, Alaa Olleak, Jingang Yi, and Yuebin Guo. "Gaussian Process (GP)-based Learning Control of Selective Laser Melting Process." In 2021 American Control Conference (ACC). IEEE, 2021. http://dx.doi.org/10.23919/acc50511.2021.9483137.
Full textPonticelli, Gennaro Salvatore, Simone Venettacci, Flaviana Tagliaferri, Oliviero Giannini, Fabrizio Patane, and Stefano Guarino. "Uncertainty assessment techniques for selective laser melting process control." In 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT). IEEE, 2021. http://dx.doi.org/10.1109/metroind4.0iot51437.2021.9488510.
Full textRafi, H. Khalid, Swee Sing Leong, An Jia, Wai Yee Yeong, and Kah Fai Leong. "A Comparative Study on Selective Laser Melting and Electron Beam Melting Process for Orthopedic Implants." In 1st International Conference on Progress in Additive Manufacturing. Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-0446-3_112.
Full textLiu, Xin, Mhamed Boutaous, Shihe Xin, and Dennis Siginer. "Numerical Simulation of Balling Phenomenon in Metallic Laser Melting Process." In ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/ht2016-1070.
Full textAlam, Nazmul, and Laurie Jarvis. "Study of melting characteristics of wire in laser cladding process." In PICALO 2006: 2nd Pacific International Conference on Laser Materials Processing, Micro, Nano and Ultrafast Fabrication. Laser Institute of America, 2006. http://dx.doi.org/10.2351/1.5056911.
Full textJang, Jeong-hwan, Byeong-don Joo, Sung-min Mun, Young-hoon Moona, F. Barlat, Y. H. Moon, and M. G. Lee. "Micropatterning of a Bipolar Plate Using Direct Laser Melting Process." In NUMIFORM 2010: Proceedings of the 10th International Conference on Numerical Methods in Industrial Forming Processes Dedicated to Professor O. C. Zienkiewicz (1921–2009). AIP, 2010. http://dx.doi.org/10.1063/1.3457523.
Full textReports on the topic "Melting process on the laser"
Gibson, Brian, and Richard Lowden. Process Development for Selective Laser Melting of Molybdenum. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1484987.
Full textVrancken, B. Influence of Process Parameters and Alloy Composition on Crack Mitigation in Selective Laser Melting. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1661041.
Full textFisher, Karl A., Jim V. Candy, Gabe Guss, and M. J. Mathews. Evaluating Acoustic Emission Signals as an in situ process monitoring technique for Selective Laser Melting (SLM). Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1342013.
Full textAnderson, A., and Jean-Pierre Delplanque. Development of Physics-Based Numerical Models for Uncertainty Quantification of Selective Laser Melting Processes - 2015 Annual Progress Report. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1226942.
Full textCampbell, J. H., T. Suratwala, S. krenitsky, and K. Takeuchi. Manufacturing laser glass by continuous melting. Office of Scientific and Technical Information (OSTI), July 2000. http://dx.doi.org/10.2172/15002236.
Full textHeestand, R. L., G. L. Copeland, and M. M. Martin. Consumable arc-melting, extruding, and rolling process for iridium sheet. Office of Scientific and Technical Information (OSTI), June 1986. http://dx.doi.org/10.2172/5702073.
Full textBuelt, J., C. Timmerman, and J. Westsik, Jr. In situ vitrification: Test results for a contaminated soil-melting process. Office of Scientific and Technical Information (OSTI), October 1989. http://dx.doi.org/10.2172/5201825.
Full textKnapp, Cameron M. Laser Engineered Net Shaping Process Characterization. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1089454.
Full textHodge, N., R. Ferencz, and J. Solberg. Implementation of a Thermomechanical Model in Diablo for the Simulation of Selective Laser Melting. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1108835.
Full textGupta, Mool C., Chen-Nan Sun, and Tyson Baldridge. Preparation of Oxidation-Resistant Ultra High Melting Temperature Materials and Structures Using Laser Method. Fort Belvoir, VA: Defense Technical Information Center, June 2009. http://dx.doi.org/10.21236/ada583075.
Full text