To see the other types of publications on this topic, follow the link: Mengenlehre.

Journal articles on the topic 'Mengenlehre'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 22 journal articles for your research on the topic 'Mengenlehre.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Fox, Dirk. "Mengenlehre." Datenschutz und Datensicherheit - DuD 31, no. 2 (February 2007): 74. http://dx.doi.org/10.1007/s11623-007-0040-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Biehl, Bernd. "Ehrliche Mengenlehre." Lebensmittel Zeitung 73, no. 39 (2021): 29–33. http://dx.doi.org/10.51202/0947-7527-2021-39-029.

Full text
Abstract:
Das Thema Foodwaste ist zu wichtig, als dass es zur Profilierung oder Schuldzuweisung genutzt wird. Realistische Zahlen, Maßnahmen und Erfolgskontrollen wären nach zehn Jahren Diskussion an der Zeit. Sonst wird zu viel politische Energie verschwendet. Reden wir nicht mehr von einem Drittel, sondern von dem Achtel der Lebensmittel, das wirklich weggeworfen wird. Bernd Biehl
APA, Harvard, Vancouver, ISO, and other styles
3

Stiefelhagen, Peter. "Medizinische Mengenlehre." MMW - Fortschritte der Medizin 159, no. 12 (June 2017): 9. http://dx.doi.org/10.1007/s15006-017-9813-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chowdhury, Munibur Rahman. "Hausdorff’s Grundz?ge der Mengenlehre." GANIT: Journal of Bangladesh Mathematical Society 34 (June 28, 2016): 1–4. http://dx.doi.org/10.3329/ganit.v34i0.28548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Franchella, Miriam. "Towards a Re-Evaluation of Julius König's Contribution to Logic." Bulletin of Symbolic Logic 6, no. 1 (March 2000): 45–66. http://dx.doi.org/10.2307/421075.

Full text
Abstract:
AbstractJulius König is famous for his mistaken attempt to demonstrate that the continuum hypothesis was false. It is also known that the only positive result that could have survived from his proof is the paradox which bears his name. Less famous is his 1914 book Neue Grundlagen der Logik, Arithmetik und Mengenlehre. Still, it contains original contributions to logic, like the concept of metatheory and the solution of paradoxes based on the refusal of the law of bivalence. We are going to discover them by analysing the content of the book.
APA, Harvard, Vancouver, ISO, and other styles
6

Schreiber, Peter. "Mengenlehre—Vom Himmel Cantors zur Theoria prima inter pares." NTM International Journal of History and Ethics of Natural Sciences, Technology and Medicine 4, no. 1 (March 1996): 129–43. http://dx.doi.org/10.1007/bf02913788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gray, Jeremy. "Book Review: Gesammelte Werke. \textup{Vol. II}, Grundzüge der Mengenlehre." Bulletin of the American Mathematical Society 44, no. 03 (January 22, 2007): 471–75. http://dx.doi.org/10.1090/s0273-0979-07-01137-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mathias, A. R. D. "Mengenlehre, edited by Ulrich Feigner, Wissenschaftliche Buchgesellschaft, Darmstadt1979, vii + 331 pp." Journal of Symbolic Logic 56, no. 1 (March 1991): 345–48. http://dx.doi.org/10.2307/2274939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Goetzmann, Luis. "Ein allgemeines Modell der mentalen Funktionsweise, basierend auf der Anwendung der Mengenlehre." Synthesis philosophica 37, no. 2 (December 29, 2022): 375–94. http://dx.doi.org/10.21464/sp37206.

Full text
Abstract:
Teorija skupova mogla bi ponuditi formalizaciju mišljenja i psihe. U ovom radu, najprije razvijam model mentalnog funkcioniranja koji povezuje Laplancheovu osnovnu antropološku situaciju sa zagonetnom porukom Drugoga, »enklavirano nesvjesno« i potonje prevođenje te poruke u misli i ideje. Ovaj model vidim kao oslonjen na Hegelovu teoriju uma i Lacanove paradigme R.S.I.: osjećaji su u enklaviranom nesvjesnom stvarni; oni su – osim određenih, neprikazivih ostataka (objekata a) – određeni imaginarnim i simboličkim. U drugom koraku, formuliram te odnose na temelju Badiouova filozofijskog modela u teoriji skupova. Slijedim Badiouov pristup »višemnožnosti« i »brojanju-kao-jedan«, koji je zacrtan u njegovom glavnom djelu, Bivstvovanje i događaj, te ispitujem različite skupove ili podskupove realnih, imaginarnih i simboličkih elemenata. U kontekstu realnog nesvjesnog, ideja o ‘praznom skupu’ i njegovom događajnom mjestu unutar psihološke situacije igra ključnu ulogu, i to ne samo iz terapeutske perspektive.
APA, Harvard, Vancouver, ISO, and other styles
10

Stammbach, Urs. "Zur Entstehung der Mengenlehre I: Aus Briefen zwischen Richard Dedekind und Georg Cantor." Elemente der Mathematik 73, no. 2 (April 9, 2018): 74–80. http://dx.doi.org/10.4171/em/355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Stammbach, Urs. "Zur Entstehung der Mengenlehre II: Aus Briefen zwischen Richard Dedekind und Georg Cantor." Elemente der Mathematik 73, no. 3 (July 11, 2018): 122–29. http://dx.doi.org/10.4171/em/361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Honda, Toshio. "Die philosophische Begründung der naiven Mengenlehre durch das Prinzip der späten Wissenschaftslehre Fichtes." Fichte-Studien 36 (2012): 111–28. http://dx.doi.org/10.5840/fichte20123648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Gray, Jeremy. "Book Review: Felix Hausdorff—Gesammelte Werke. Vol. IA, Allgemeine Mengenlehre; Felix Hausdorff—Gesammelte Werke. Vol. III, Deskriptive Mengenlehre und Topologie; Felix Hausdorff—Gesammelte Werke. Vol. VIII, Literarisches Werk; Felix Hausdorff—Gesammelte Werke. Vol. IX, Korrespondenz." Bulletin of the American Mathematical Society 51, no. 1 (July 12, 2013): 169–72. http://dx.doi.org/10.1090/s0273-0979-2013-01424-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Dalen, Dirk Van. "Brouwer and Fraenkel on Intuitionism." Bulletin of Symbolic Logic 6, no. 3 (September 2000): 284–310. http://dx.doi.org/10.2307/421057.

Full text
Abstract:
In the present paper the story is told of the brief and far from tranquil encounter of L.E.J. Brouwer and A. Fraenkel. The relationship which started in perfect harmony, ended in irritation and reproaches.The mutual appreciation at the outset is beyond question. All the more deplorable is the sudden outbreak of an emotional disagreement in 1927. Looking at the Brouwer–Fraenkel episode, one should keep in mind that at that time the so-called Grundlagenstreit was in full swing. An emotional man like Brouwer, who easily suffered under stress, was already on edgewhen Fraenkel's book Zehn Vorlesungen Über die Grundlegung der Mengenlehre, [Fraenkel 1927] was about to appear.With the Grundlagenstreit reaching (in print!) a level of personal abuse unusual in the quiet circles of pure mathematics, Brouwer was rather sensitive, where the expositions of his ideas were concerned. So when he thought that he detected instances of misconception and misrepresentation in the case of his intuitionism, he felt slighted. We will mainly look at Brouwer's reactions. since the Fraenkel letters have not been preserved.The late Mrs. Fraenkel kindly put the Brouwer letters that were in her possession at my disposal. I am grateful to the Fraenkel family for the permission to use the material.I am indebted to Andreas Blass for his valuable suggestions and corrections.Abraham Fraenkel (then still called Adolf) was one of the first non-partisan mathematicians, if not the first, who developed a genuine interest in intuitionism.
APA, Harvard, Vancouver, ISO, and other styles
15

Dalen, Dirk Van, and Heinz-Dieter Ebbinghaus. "Zermelo and the Skolem Paradox." Bulletin of Symbolic Logic 6, no. 2 (June 2000): 145–61. http://dx.doi.org/10.2307/421203.

Full text
Abstract:
On October 4, 1937, Zermelo composed a small note entitled “Der Relativismus in der Mengenlehre und der sogenannte Skolemsche Satz”(“Relativism in Set Theory and the So-Called Theorem of Skolem”) in which he gives a refutation of “Skolem's paradox”, i.e., the fact that Zermelo-Fraenkel set theory—guaranteeing the existence of uncountably many sets—has a countable model. Compared with what he wished to disprove, the argument fails. However, at a second glance, it strongly documents his view of mathematics as based on a world of objects that could only be grasped adequately by infinitary means. So the refutation might serve as a final clue to his epistemological credo.Whereas the Skolem paradox was to raise a lot of concern in the twenties and the early thirties, it seemed to have been settled by the time Zermelo wrote his paper, namely in favour of Skolem's approach, thus also accepting the noncategoricity and incompleteness of the first-order axiom systems. So the paper might be considered a late-comer in a community of logicians and set theorists who mainly followed finitary conceptions, in particular emphasizing the role of first-order logic (cf. [8]). However, Zermelo never shared this viewpoint: In his first letter to Gödel of September 21, 1931, (cf. [1]) he had written that the Skolem paradox rested on the erroneous assumption that every mathematically definable notion should be expressible by a finite combination of signs, whereas a reasonable metamathematics would only be possible after this “finitistic prejudice” would have been overcome, “a task I have made my particular duty”.
APA, Harvard, Vancouver, ISO, and other styles
16

Peckhaus, Volker. "Ernst Zermelo: Collected Works. Gesammelte Werke. Volume I: Set Theory, Miscellania. Mengenlehre, Varia, edited by H.-D. Ebbinghaus and A. Kanamori, Springer, Berlin and Heidelberg 2010, xxiv + 654 pp." Bulletin of Symbolic Logic 19, no. 4 (September 2013): 491–92. http://dx.doi.org/10.1017/s1079898600010581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Neuenschwander, Erwin. "Andor Kertész, Georg Cantor, 1845—1918. Schöpfer der Mengenlehre. Bearbeitet von Manfred Stern, Acta Histórica Leopoldina, Nummer 15, 1983, Deutsche Akademie der Naturforscher Leopoldina, Halle 1983. 118 S., 23 Abb." Gesnerus 42, no. 3-4 (November 19, 1985): 533–34. http://dx.doi.org/10.1163/22977953-0420304046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Pieper, H. "G. CANTOR: Über unendliche lineare Punktmannigfaltigkeiten. Arbeiten zur Mengenlehre aus den Jahren 1872–1884. Herausgegeben und komnientiert von G. ASSER. (Teubner-Archiv zur Mathematik, Band 2) 180 Seiten. Leipzig: BSR R. G. Teubner Verlagsgesellschaft 1984, M 29,—. BB 890." Astronomische Nachrichten: A Journal on all Fields of Astronomy 307, no. 5 (1986): 266. http://dx.doi.org/10.1002/asna.2113070504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Graf, Jürgen, and Uwe Janssens. "Mengenlehre – Mengenleere?!" Wiener klinische Wochenschrift 121, no. 1-2 (January 2009). http://dx.doi.org/10.1007/s00508-008-1067-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

"Forschung – Mengenlehre für Immunzellen." Aktuelle Rheumatologie 40, no. 02 (April 20, 2015): 107. http://dx.doi.org/10.1055/s-0035-1549500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Asperó, David, and Ralf Schindler. "Wieviele reelle Zahlen gibt es?" Mathematische Semesterberichte, November 8, 2022. http://dx.doi.org/10.1007/s00591-022-00331-0.

Full text
Abstract:
ZusammenfassungDie Arbeit [2] der gegenwärtigen Autoren amalgamierte zwei prominente Axiome der gegenwärtigen Mengenlehre, von denen vorher bekannt gewesen war, daß sie beide entscheiden, daß das Kontinuum die Größe $\aleph_2$ hat, nämlich Martins Maximum und Woodins $P_max$-Prinzip (*). Wir diskutieren dieses Resultat und seine Bedeutung für das Kontinuumsproblem.
APA, Harvard, Vancouver, ISO, and other styles
22

Jahnke, Thomas. "Tanja Hamann: Die „Mengenlehre“ im Anfangsunterricht. Historische Darstellung einer gescheiterten Unterrichtsreform in der Bundesrepublik Deutschland." Mathematische Semesterberichte, August 31, 2022. http://dx.doi.org/10.1007/s00591-022-00327-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography