Journal articles on the topic 'Mercury Ions - Detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Mercury Ions - Detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kanan, Sofian M., Imad A. Abu-Yousef, Nora Hassouneh, Ahmed Malkawi, Naser Abdo, and Marsha C. Kanan. "A Highly Selective Luminescent Sensor for Detecting Mercuric Ions in Water." Australian Journal of Chemistry 62, no. 12 (2009): 1593. http://dx.doi.org/10.1071/ch09048.
Full textKanan, Sofian, Aysha Shabnam, Ahmed A. Mohamed, and Imad A. Abu-Yousef. "Organic Luminescent Sensor for Mercury(II) and Iron(III) Ions in Aqueous Solutions." Chemosensors 11, no. 5 (2023): 308. http://dx.doi.org/10.3390/chemosensors11050308.
Full textShellaiah, Muthaiah, and Kien-Wen Sun. "Progress in Metal-Organic Frameworks Facilitated Mercury Detection and Removal." Chemosensors 9, no. 5 (2021): 101. http://dx.doi.org/10.3390/chemosensors9050101.
Full textGao, Yan, Li Han, Xing Gao, Wen He, Ranran Chu, and Yefei Ma. "Application of Carbon Quantum dot Fluorescent Materials in Metal Ions Detection." E3S Web of Conferences 245 (2021): 03080. http://dx.doi.org/10.1051/e3sconf/202124503080.
Full textDereka, Bogdan, Denis Svechkarev, and Andrey Doroshenko. "Facile ultrasensitive monitoring of mercury ions in water by fluorescent ratiometric detection." Open Chemistry 11, no. 4 (2013): 584–93. http://dx.doi.org/10.2478/s11532-012-0193-0.
Full textLiu, Chao, Hui Wang, Shengmin Xu, Hongbao Li, Yilin Lu, and Chuhong Zhu. "Recyclable Multifunctional Magnetic Fe3O4@SiO2@Au Core/Shell Nanoparticles for SERS Detection of Hg (II)." Chemosensors 11, no. 6 (2023): 347. http://dx.doi.org/10.3390/chemosensors11060347.
Full textWang, Zhankun, Yanqiu Hu, Xiaoxuan Zhou, and Yuguang Lv. "Construction of mercury ion fluorescence system in water samples and art materials and fluorescence detection method for rhodamine B derivatives." Green Processing and Synthesis 11, no. 1 (2022): 987–95. http://dx.doi.org/10.1515/gps-2022-0085.
Full textGaur, Mulayam Singh, Rajni Yadav, Mamta Kushwah, and Anna Nikolaevna Berlina. "Modern nanobiotechnologies for efficient detection and remediation of mercury." Sensor Review 41, no. 6 (2021): 461–80. http://dx.doi.org/10.1108/sr-12-2020-0290.
Full textHan, Jinglong, Huajun Liu, Ji Qi, et al. "A Simple and Effective Visual Fluorescent Sensing Paper-Based Chip for the Ultrasensitive Detection of Mercury Ions in Environmental Water." Sensors 23, no. 6 (2023): 3094. http://dx.doi.org/10.3390/s23063094.
Full textHe, Ying. "Application of Biomimetic Nanomaterials in Biological Detection and the Intelligent Recognition Method of Nanoparticle Images." Journal of Nanoelectronics and Optoelectronics 16, no. 1 (2021): 23–30. http://dx.doi.org/10.1166/jno.2021.2904.
Full textBalusamy, Brabu, Anitha Senthamizhan, and Tamer Uyar. "Functionalized Electrospun Nanofibers as Colorimetric Sensory Probe for Mercury Detection: A Review." Sensors 19, no. 21 (2019): 4763. http://dx.doi.org/10.3390/s19214763.
Full textXu, Jacob Ze Jia. "Application of fluorescent biosensors for heavy metal ions detection." Highlights in Science, Engineering and Technology 3 (July 8, 2022): 200–206. http://dx.doi.org/10.54097/hset.v3i.708.
Full textYasinzai, Maimoona, Ghulam Mustafa, Nazia Asghar, et al. "Ion-Imprinted Polymer-Based Receptors for Sensitive and Selective Detection of Mercury Ions in Aqueous Environment." Journal of Sensors 2018 (2018): 1–6. http://dx.doi.org/10.1155/2018/8972549.
Full textAli, Shahid, Muhammad Mansha, Nadeem Baig, and Safyan Akram Khan. "Cost-Effective and Selective Fluorescent Chemosensor (Pyr-NH@SiO2 NPs) for Mercury Detection in Seawater." Nanomaterials 12, no. 8 (2022): 1249. http://dx.doi.org/10.3390/nano12081249.
Full textSerebrennikova, K. V., A. N. Berlina, A. V. Zherdev, and B. B. Dzantiev. "A LATERAL FLOW TEST SYSTEM FOR THE SENSITIVE DETERMINATION OF MERCURY IONS IN WATER BODIES." BIOTECHNOLOGY: STATE OF THE ART AND PERSPECTIVES 1, no. 2022-20 (2022): 160–61. http://dx.doi.org/10.37747/2312-640x-2022-20-160-161.
Full textJuárez-Gómez, J., E. S. Rosas-Tate, G. Roa-Morales, P. Balderas-Hernández, M. Romero-Romo, and M. T. Ramírez-Silva. "Laccase Inhibition by Mercury: Kinetics, Inhibition Mechanism, and Preliminary Application in the Spectrophotometric Quantification of Mercury Ions." Journal of Chemistry 2018 (June 4, 2018): 1–7. http://dx.doi.org/10.1155/2018/7462697.
Full textZHAO, HUI-XIN, WEI CAI, DA HA, HAO WAN, and PING WANG. "THE STUDY ON NOVEL MICROELECTRODE ARRAY CHIPS FOR THE DETECTION OF HEAVY METALS IN WATER POLLUTION." Journal of Innovative Optical Health Sciences 05, no. 01 (2012): 1150002. http://dx.doi.org/10.1142/s1793545811500027.
Full textMaâtouk, Ferdaous, Mouna Maâtouk, Karima Bekir, Houcine Barhoumi, Abderrazak Maaref, and Hedi Ben Mansour. "An electrochemical DNA biosensor for trace amounts of mercury ion quantification." Journal of Water and Health 14, no. 5 (2016): 808–15. http://dx.doi.org/10.2166/wh.2016.293.
Full textSrivastava, Shrinkhala, and Saurabh Srivastava. "Biomedical Waste Management of Mercury using Advanced Polymeric Materials: Application of MIP - Sieve Sensor." SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology 9, no. 01 (2017): 51–55. http://dx.doi.org/10.18090/samriddhi.v9i01.8338.
Full textYan, Zhengyu, Xincheng Qu, Qianqian Niu, Chunqing Tian, Chuanjian Fan, and Baofen Ye. "A green synthesis of highly fluorescent nitrogen-doped graphene quantum dots for the highly sensitive and selective detection of mercury(ii) ions and biothiols." Analytical Methods 8, no. 7 (2016): 1565–71. http://dx.doi.org/10.1039/c5ay03208c.
Full textGupta, Abhishek, Abhishek Chaudhary, Pooja Mehta, et al. "Nitrogen-doped, thiol-functionalized carbon dots for ultrasensitive Hg(ii) detection." Chemical Communications 51, no. 53 (2015): 10750–53. http://dx.doi.org/10.1039/c5cc03019f.
Full textWang, Yu-Lin, Guan-Cheng Zeng, Chun-Ta Lee, et al. "Fabrication of Aptamer-based Field Effect Transistor Sensors for Detecting Mercury Ions." ECS Transactions 111, no. 3 (2023): 63–68. http://dx.doi.org/10.1149/11103.0063ecst.
Full textZhang, Hanqiang, Yihong Huang, Shirong Hu, et al. "Fluorescent probes for “off–on” sensitive and selective detection of mercury ions and l-cysteine based on graphitic carbon nitride nanosheets." Journal of Materials Chemistry C 3, no. 9 (2015): 2093–100. http://dx.doi.org/10.1039/c4tc02394c.
Full textFirdaus, M., Angga Aprian, Nessi Meileza, et al. "Smartphone Coupled with a Paper-Based Colorimetric Device for Sensitive and Portable Mercury Ion Sensing." Chemosensors 7, no. 2 (2019): 25. http://dx.doi.org/10.3390/chemosensors7020025.
Full textWu, Zonghao, and Tianhong Cui. "Shrink-Induced Microelectrode Arrays for Trace Mercury Ions Detection." IEEE Sensors Journal 19, no. 7 (2019): 2435–41. http://dx.doi.org/10.1109/jsen.2018.2887269.
Full textGuo, Xiaoyu, Fu Chen, Feng Wang, et al. "Recyclable Raman chip for detection of trace Mercury ions." Chemical Engineering Journal 390 (June 2020): 124528. http://dx.doi.org/10.1016/j.cej.2020.124528.
Full textDu, Jianjun, Lin Jiang, Qi Shao, et al. "Colorimetric Detection of Mercury Ions Based on Plasmonic Nanoparticles." Small 9, no. 9-10 (2012): 1467–81. http://dx.doi.org/10.1002/smll.201200811.
Full textGuo, Xuezu, Lanlan Gao, Furong Tao, Shining Wu, and Yuezhi Cui. "Mercury Ion Chemosensor Derived from Barbiturate Acid with Aggregation-Induced Emission Effect." Chemosensors 10, no. 10 (2022): 422. http://dx.doi.org/10.3390/chemosensors10100422.
Full textWang, Xiaobin, Zhishan Fang, Zhuoyi Li, et al. "R-phycoerythrin proteins@ZIF-8 composite thin films for mercury ion detection." Analyst 144, no. 12 (2019): 3892–97. http://dx.doi.org/10.1039/c9an00449a.
Full textYang, Haiguan, Yuhao Xiong, Peng Zhang, Linjing Su, and Fanggui Ye. "Colorimetric detection of mercury ions using MnO2 nanorods as enzyme mimics." Analytical Methods 7, no. 11 (2015): 4596–601. http://dx.doi.org/10.1039/c5ay00633c.
Full textLi, Qiang, Feng Wu, Mao Mao, et al. "A dual-mode colorimetric sensor based on copper nanoparticles for the detection of mercury-(ii) ions." Analytical Methods 11, no. 31 (2019): 4014–21. http://dx.doi.org/10.1039/c9ay00843h.
Full textZhang, Rui Xue, Peng Fei Li, Wen Juan Zhang, Nan Li, and Na Zhao. "A highly sensitive fluorescent sensor with aggregation-induced emission characteristics for the detection of iodide and mercury ions in aqueous solution." Journal of Materials Chemistry C 4, no. 44 (2016): 10479–85. http://dx.doi.org/10.1039/c6tc03696a.
Full textAhmed, Muhammad Ahad, Najmul Hasan, and Shaikh Mohiuddin. "Silver Nanoparticles: Green Synthesis, Characterization, and Their Usage in Determination of Mercury Contamination in Seafoods." ISRN Nanotechnology 2014 (February 4, 2014): 1–5. http://dx.doi.org/10.1155/2014/148184.
Full textWylie, Dwane E., Larry D. Carlson, Randy Carlson, Fred W. Wagner, and Sheldon M. Schuster. "Detection of mercuric ions in water by ELISA with a mercury-specific antibody." Analytical Biochemistry 194, no. 2 (1991): 381–87. http://dx.doi.org/10.1016/0003-2697(91)90245-o.
Full textXu, Guangda, Peng Song, and Lixin Xia. "Examples in the detection of heavy metal ions based on surface-enhanced Raman scattering spectroscopy." Nanophotonics 10, no. 18 (2021): 4419–45. http://dx.doi.org/10.1515/nanoph-2021-0363.
Full textMahmoudian, M. R., W. J. Basirun, and Y. Alias. "A sensitive electrochemical Hg2+ ions sensor based on polypyrrole coated nanospherical platinum." RSC Advances 6, no. 43 (2016): 36459–66. http://dx.doi.org/10.1039/c6ra03878f.
Full textLiu, Jie, Lingbo Chen, Junhua Chen, et al. "An autonomous T-rich DNA machine based lateral flow biosensor for amplified visual detection of mercury ions." Anal. Methods 6, no. 7 (2014): 2024–27. http://dx.doi.org/10.1039/c3ay42266f.
Full textChen, Jin-Fa, Bing-Bing Han, Jin-Feng Ma, et al. "Pillar[5]arene-based fluorescent polymer for selective detection and removal of mercury ions." RSC Advances 7, no. 75 (2017): 47709–14. http://dx.doi.org/10.1039/c7ra10326c.
Full textKempahanumakkagari, Sureshkumar, Pandurangappa Malingappa, Gopi Ambikapathi, and Devaraju Kuramkote Shivanna. "2,7-Dichlorofluorescein Hydrazide as a New Fluorescent Probe for Mercury Quantification: Application to Industrial Effluents and Polluted Water Samples." Journal of Spectroscopy 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/276981.
Full textXu, Zujun, Wenxiu Shi, Chengjun Yang, et al. "Highly selective and sensitive fluorescent probe for the rapid detection of mercury ions." RSC Advances 9, no. 19 (2019): 10554–60. http://dx.doi.org/10.1039/c9ra00622b.
Full textChen, Zhenlin, Kunlin Han, and Ya-Nan Zhang. "Reflective Fiber Surface Plasmon Resonance Sensor for High-Sensitive Mercury Ion Detection." Applied Sciences 9, no. 7 (2019): 1480. http://dx.doi.org/10.3390/app9071480.
Full textAboufazeli, Forouzan, Hamid Reza Lotfi Zadeh Zhad, Vahid Amani, Ezatollah Najafi, Omid Sadeghi, and Najmeh Tavassoli. "Determination of Mercury (II) Ions by Modified Carbon Paste Electrode Based on Functionalized Nanoporous MCM-48 and Multi-Walled Carbon Nanotubes (MWCNTs)." Journal of New Materials for Electrochemical Systems 16, no. 1 (2012): 41–46. http://dx.doi.org/10.14447/jnmes.v16i1.48.
Full textTanvir, Fouzia, Atif Yaqub, Shazia Tanvir, Ran An, and William A. Anderson. "Colorimetric Detection of Mercury Ions in Water with Capped Silver Nanoprisms." Materials 12, no. 9 (2019): 1533. http://dx.doi.org/10.3390/ma12091533.
Full textSrinivasan, K., K. Subramanian, K. Murugan, and K. Dinakaran. "Sensitive fluorescence detection of mercury(ii) in aqueous solution by the fluorescence quenching effect of MoS2 with DNA functionalized carbon dots." Analyst 141, no. 22 (2016): 6344–52. http://dx.doi.org/10.1039/c6an00879h.
Full textFang, Shaoming, Xiaodong Dong, Yuanchang Zhang, et al. "One-step synthesis of porous cuprous oxide microspheres on reduced graphene oxide for selective detection of mercury ions." New J. Chem. 38, no. 12 (2014): 5935–42. http://dx.doi.org/10.1039/c4nj01347f.
Full textShi, H., M. Y. Ou, J. P. Cao, and G. F. Chen. "Synthesis of ovalbumin-stabilized highly fluorescent gold nanoclusters and their application as an Hg2+ sensor." RSC Advances 5, no. 105 (2015): 86740–45. http://dx.doi.org/10.1039/c5ra15559b.
Full textLi, Qing, Monika Michaelis, Gang Wei, and Lucio Colombi Ciacchi. "A novel aptasensor based on single-molecule force spectroscopy for highly sensitive detection of mercury ions." Analyst 140, no. 15 (2015): 5243–50. http://dx.doi.org/10.1039/c5an00708a.
Full textWu, Xiaoling, Lijuan Tang, Wei Ma, et al. "SERS-active Au NR oligomer sensor for ultrasensitive detection of mercury ions." RSC Advances 5, no. 100 (2015): 81802–7. http://dx.doi.org/10.1039/c5ra14593g.
Full textYang, Pei-Chia, Tsunghsueh Wu, and Yang-Wei Lin. "Label-Free Colorimetric Detection of Mercury (II) Ions Based on Gold Nanocatalysis." Sensors 18, no. 9 (2018): 2807. http://dx.doi.org/10.3390/s18092807.
Full textLiang, Xiaoling, Lin Wang, Dou Wang, Lingwen Zeng, and Zhiyuan Fang. "Portable and quantitative monitoring of mercury ions using DNA-gated mesoporous silica nanoparticles using a glucometer readout." Chemical Communications 52, no. 10 (2016): 2192–94. http://dx.doi.org/10.1039/c5cc08611f.
Full text