Dissertations / Theses on the topic 'Mersenne'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 24 dissertations / theses for your research on the topic 'Mersenne.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Talhah, Saad. "Advanced Encryption Techniques using New Mersenne Number Transforms." Thesis, University of Leeds, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.515408.
Full textFabbri, Natacha. "De l’utilité de l'harmonie : Mersenne, Descartes e Galilei." Doctoral thesis, Scuola Normale Superiore, 2006. http://hdl.handle.net/11384/86131.
Full textDuncan, David Allen. "The tyranny of opinions undermined : science, pseudo-science and scepticism in the musical thought of Marin Mersenne /." Ann Arbor : UMI, 2000. http://catalogue.bnf.fr/ark:/12148/cb37103406d.
Full textBasilico, Brenda. "Musique, mathématiques et philosophie dans l'oeuvre de Marin Mersenne." Thesis, Lille 3, 2017. http://www.theses.fr/2017LIL30038/document.
Full textThis PhD dissertation provides a critical perspective of the dominantinterpretation of the scientific and philosophical works of Father Marin Mersenne(1588-1648) entirely structured by the sceptical question. The development of his ideasabout music embodies the spirit of the scientific revolution which emerges in theseventeenth-century. His investigation has the capacity to put his methods into questionwith an insatiable quest for the truth; a quest that involves political and religiousconcerns. The aim of this study is to show a profound transformation in the conceptionof music. This transformation that leads from a science of the quadrivium (subordinateto mathematics and claiming superiority of the judgement of reason) to a physical andmathematical science grounded on experience that recognizes the individuality of theesthetic experience, the liberty of the imagination of the composers and the ineffabilityof the sublime. It is quite difficult however to identify the existence of two differentstages in Mersenne’s thought. It is surprising how he expresses doubts about therelevance of the speculative approach to music whereas a musical reform is proposed inhis apologetic writings, having as a model the perfection of proportions of consonancesand rhythmic combinations well known by the ancients. And also, when he accepts thepractice of musical temperament, challenging the observation of the mathematicalperfection, he will continue to remind the proportions underlying the consonances.Despite this complexity (even these contradictions) we consider and pretend to showthat this transformation is undeniable and that the Mersenne epistemology must beanalysed according to the scientific questions and experiences which he faces in hisinvestigations and not as a response to a sceptical crisis
Rutter, Nick. "Implementation and analysis of the generalised new Mersenne number transforms for encryption." Thesis, University of Newcastle upon Tyne, 2015. http://hdl.handle.net/10443/3236.
Full textPsychoyou, Theodora. "L'évolution de la pensée théorique en France, de Marin Mersenne à Jean-Philippe Rameau." Tours, 2003. http://www.theses.fr/2003TOUR2036.
Full textBALDIN, GREGORIO. "Una visione del mondo meccanicista: Galileo e Mersenne nella filosofia naturale di Thomas Hobbes." Doctoral thesis, Università del Piemonte Orientale, 2015. http://hdl.handle.net/11579/81616.
Full textTaveau, Laurence. "Le manuscrit 2884 du Père Mersenne à la bibliothèque de l’Arsenal. Étude et édition critique." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUL046.
Full textManuscript 2884 is an autograph by Marin Mersenne, a unique document preserved in the Arsenal Library. This writing formed of books and chapters is an unfinished speculative theory of sound and consonance. As the manuscript has never been edited we propose a transcription following two different usages, the first according to the model of the École nationale des Chartes and the second a diplomatic transcription according to the laboratory of the ITEM (Institut des Textes et Manuscrits modernes) specializing in drafts of texts. The transcriptions are supplemented by critical and historical notes, a reconstructed table of theorems and an index of proper names. The facsimile of the manuscript is proposed in a separate volume. In the first part, a codicological study makes it possible to describe the manuscript in its material aspect. A genetic study determines its links with the printed works of Marin Mersenne and traces its general course of writing. The last part of the thesis attempts to define the reasons for its abandonment by a comparative analysis with some books of Harmonie Universelle. Our initial hypothesis supposes a change in natural philosophy, a change from Aristotelian philosophy to a philosophy of Galilean inspiration. We show that the discourse held in manuscript 2884 as a whole is ontologically based in the Aristotelian conception whereas the same subjects approached in Harmonie Universelle show a break with this ontological foundation as well as a profound evolution of Mersenne’s ideas
Hettche, Matthew. "Regarding Descartes' meditations as meditational." Thesis, This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-06102009-063446/.
Full textBuccolini, Claudio. ""Rem totam more geometrico concludas" : La recherche d'une preuve mathématique de l'existence de Dieu chez Marin Mersenne." Paris, EPHE, 2003. http://www.theses.fr/2003EPHE5065.
Full textFerreira, Antônio Eudes. "Números primos e o Postulado de Bertrand." Universidade Federal da Paraíba, 2014. http://tede.biblioteca.ufpb.br:8080/handle/tede/9336.
Full textApproved for entry into archive by Fernando Souza (fernandoafsou@gmail.com) on 2017-08-29T15:47:36Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 691607 bytes, checksum: 68ddd45857d5c0c6e60229a957089adf (MD5)
Made available in DSpace on 2017-08-29T15:47:36Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 691607 bytes, checksum: 68ddd45857d5c0c6e60229a957089adf (MD5) Previous issue date: 2014-08-01
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This work presents a study of prime numbers, how they are distributed, how many prime numbers are there between 1 and a real number x, formulas that generate primes, and a generalization to Bertrand's Postulate. Six proofs that there are in nitely many primes using reductio ad absurdum, Fermat numbers, Mersenne numbers, Elementary Calculus and Topology are discussed.
Este trabalho apresenta um estudo sobre os números primos, como estão distribu ídos, quantos números primos existem entre 1 e um número real x qualquer, fórmulas que geram primos, além de uma generalização para o Postulado de Bertrand. São abordadas seis demonstrações que mostram que existem in nitos números primos usando redução ao absurdo, Números de Fermat, Números de Mersenne, Cálculo Elementar e Topologia.
Hoegberg, Elisabeth Honn. "From theory to practice : composition and analysis in Marin Mersenne's Harmonie universelle /." Electronic version Electronic version, 2005. http://proquest.umi.com/pqdweb?did=885688441&sid=2&Fmt=2&clientId=12010&RQT=309&VName=PQD.
Full textComputer printout. Source: Dissertation Abstracts International, Volume: 66-02, Section: A, page: 0404. Chair: Frank Samarotto. Includes bibliographical references (leaves 407-419), abstract, and vita.
Calderón, Urreiztieta Carlos E. "El monocordio como instrumento científico : sobre rupturas y continuidades en la "Revolución científica": Ramos de Pareja, Zarlino y Mersenne." Doctoral thesis, Universitat Pompeu Fabra, 2013. http://hdl.handle.net/10803/126116.
Full textSe han analizado los monocordios de Ramos de Pareja, Zarlino y Mersenne, a partir de los textos e imágenes que los describen; se han reconstruido como objetos para la experimentación y se han contextualizado en la historiografía de los instrumentos científicos de la llamada “Revolución Científica”. Asociados al concepto “consonancia”, cada monocordio salvaguardaba una “verdad” físico-matemática (armónicos naturales, umbrales psicoacústicos, red de variables físicas) y, a la vez, poseía funciones prácticas como herramienta para la pedagogía, construcción y afinación de instrumentos musicales. Esta doble función (científica y estética), era indisoluble, y por ello, las clasificaciones historiográficas que insisten en ordenar los instrumentos científicos según su naturaleza filosófica o práctica, no pueden aplicarse al monocordio, dejándolo de lado. Si durante los siglos XV, XVI y XVII la “música” fue una “ciencia”, el monocordio es un instrumento científico, y como tal, sorprende su ausencia y se reclama y reivindica su presencia en las colecciones y museos de instrumentos musicales y científicos. Las reconstrucciones aquí presentadas –reales y virtuales– ayudan a aprehender un saber en el que confluían sensibilidad y razón pero que, finalmente, derivó hacia un exclusivo interés formal y cuantitativo –la naciente ciencia moderna– que podía prescindir de toda estética a priori, como fundamento de su investigación.
The monochords described by Ramos de Pareja, Zarlino and Mersenne, have been analysed in their writings, reconstructed as experimental objects and contextualized in the historiography of the scientific instruments of the so-called "Scientific Revolution." Related to concept of “consonance”, each monochord preserved a physic-mathematical "truth" (natural harmonics, psychoacoustic thresholds, physical network variables) and, in turn, had practical functions as pedagogic tool, construction and tuning of musical instruments. This double function (scientific and aesthetic) was indissoluble, and therefore the historiographical classification that insists in ordering scientific instruments according to their philosophical or practical nature can not be applied to the monochord, leaving it aside. If "music" was a "science" itself in the 15th, 16th and 17th centuries, the monochord is a scientific instrument, and as such, its absence surprises and its presence is protested and vindicated of the collections and museums of musical and scientific instruments. The reconstructions presented –real and virtual– help to understand a knowledge where sense and reason blend, but which finally acquired an exclusive quantitative and formal interest –early modern science– that could dispensed an aesthetic a priori, as the basis of its research.
Kemeny, Maximilian Alexander. "“A Certain Correspondence”: The Unification of Motion from Galileo to Huygens." Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/15733.
Full textCruz, Sívio Orleans. "Números perfeitos." Universidade Federal da Paraíba, 2013. http://tede.biblioteca.ufpb.br:8080/handle/tede/7522.
Full textApproved for entry into archive by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2015-10-15T15:01:57Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 916082 bytes, checksum: 03e747a0ecd5819058ba4e050a1383b8 (MD5)
Made available in DSpace on 2015-10-15T15:01:57Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 916082 bytes, checksum: 03e747a0ecd5819058ba4e050a1383b8 (MD5) Previous issue date: 2013-08-15
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this thesis we study some topics of the Theory of Numbers as an inspiration for future studies of Perfect Numbers and Mersenne Primes. We present some important results for our study and analyze some statements of Fermat's Little Theorem, showing the various mathematical demonstrations that proved under various logical aspects. We have clari ed some historical aspects and conjectures for perfect numbers, through a simple narrative of facts and this will certainly give us the emphasis that have motivated and still motivates many mathematicians for the study of Perfect Numbers.
Nesta dissertação fazemos um estudo de alguns tópicos da Teoria dos Números como motivação para o estudo dos Números Perfeitos e Primos de Mersenne. Apresentamos alguns resultados importantes para o nosso estudo e analisamos algumas demonstrações do Pequeno Teorema de Fermat, evidenciando a demonstração de vários matemáticos que os provaram sob vários aspectos lógicos. Evidenciamos alguns aspectos históricos e conjecturas para os números perfeitos, através de uma narrativa simples dos fatos e que certamente nos dão a ênfase que motivou e motiva vários matemáticos para o estudo dos números perfeitos.
Vannucci, Maria Chiara. "Questioni elementari di teoria dei numeri." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/6614/.
Full textChung, Jaewook. "Issues in Implementation of Public Key Cryptosystems." Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2853.
Full textNew three, four and five-way squaring formulae based on the Toom-Cook multiplication algorithm are presented. All previously known squaring algorithms are symmetric in the sense that the point-wise multiplication step involves only squarings. However, our squaring algorithms are asymmetric and use at least one multiplication in the point-wise multiplication step. Since squaring can be performed faster than multiplication, our asymmetric squaring algorithms are not expected to be faster than other symmetric squaring algorithms for large operand sizes. However, our algorithms have much less overhead and do not require any nontrivial divisions. Hence, for moderately small and medium size operands, our algorithms can potentially be faster than other squaring algorithms. Experimental results confirm that one of our three-way squaring algorithms outperforms the squaring function in GNU multiprecision library (GMP) v4. 2. 1 for certain range of input size. Moreover, for degree-two squaring in Z[x], our algorithms are much faster than any other squaring algorithms for small operands.
We present a side channel attack on XTR cryptosystems. We analyze the statistical behavior of simultaneous XTR double exponentiation algorithm and determine what information to gather to reconstruct the two input exponents. Our analysis and experimental results show that it takes U1. 25 tries, where U = max(a,b) on average to find the correct exponent pair (a,b). Using this result, we conclude that an adversary is expected to make U0. 625 tries on average until he/she finds the correct secret key used in XTR single exponentiation algorithm, which is based on the simultaneous XTR double exponentiation algorithm.
Carvalho, Glauber Cristo Alves de. "Números primos: pequenos tópicos." Universidade Federal de Goiás, 2013. http://repositorio.bc.ufg.br/tede/handle/tede/3443.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-10-23T12:38:41Z (GMT) No. of bitstreams: 2 Dissertação - Glauber Cristo Alves de Carvalho - 2013.pdf: 2320575 bytes, checksum: 5671a75a3a3b2b110d7431a79726479c (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2014-10-23T12:38:41Z (GMT). No. of bitstreams: 2 Dissertação - Glauber Cristo Alves de Carvalho - 2013.pdf: 2320575 bytes, checksum: 5671a75a3a3b2b110d7431a79726479c (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2013-03-15
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This paper presents a brief history about the numbers. After some important definitions to understand the texts. Following, we encounter the world of prime numbers. This part is presented some important properties, findings and open problems. The study of these figures have managed to find some formulas to generate them, which are presented throughout the text. It presents some numbers especias such as Fermat primes, Mersene, Shopie German and others. Finally, we have an application that uses many properties presented.
Neste trabalho é apresentado um breve histórico sobre os números. Após, algumas definições importantes para compreensão dos textos. Seguindo, nos deparamos com o universo dos números primos. Nesta parte é apresentado algumas propriedades importantes, descobertas e problemas em aberto. O estudo sobre estes números já conseguiu encontrar algumas fórmulas para gerá-los, que são apresentadas no decorrer do texto. Apresenta-se alguns números especias, como os primos de Fermat, Mersene, Shopie German e outros. Por fim, temos uma aplicação que utiliza muitas propriedades apresentadas.
Alonso, Orlay. "Illuminated Scores and the Architectural Design of Musical Form." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429802524.
Full textCosta, Tito José Minhava Botelho da. "Os números perfeitos e os primos de Mersenne." Master's thesis, 2015. http://hdl.handle.net/10451/20623.
Full textOs números e as suas regularidades desde sempre fascinaram os matemáticos. Ao longo dos tempos, a busca de provas ou refutações de várias conjeturas impulsionaram o avanço do conhecimento matemático, levando ao aparecimento da Teoria dos Números. Muitos foram os matemáticos de renome que, em diferentes momentos históricos, deram o seu contributo para esta evolução. Mesmo as antigas civilizações Babilónia e Egípcia tinham já conhecimentos sobre os números, as suas propriedades e regularidades, apesar das escassas referências escritas existentes não permitirem aferir rigorosamente o quão profundo era esse conhecimento. Já o mesmo não acontece com a civilização grega, cuja curiosidade, engenho e genialidade de alguns dos seus matemáticos se encontra bem documentada. O texto matemático mais importante da época grega foi, indubitavelmente, a obra de Euclides os “Elementos”, na qual, nos seus capítulos VII, VIII e IX, existem referências e provas de alguns resultados que revelam um profundo conhecimento da Teoria do Números, em particular, dos números perfeitos e dos números primos, cujas propriedades e regularidades apaixonaram os matemáticos em diferentes momentos. Com este trabalho, pretendemos realizar uma súmula dos resultados e conjeturas mais relevantes referentes ao processo que alicerçou o estudo dos números perfeitos desde a antiguidade até aos dias de hoje. Atualmente, a procura de números perfeitos resume-se a encontrar os denominados primos de Mersenne, isto é, primos da forma 2n−1, cujo trabalho do monge minimita Marin Mersenne mostrou estarem na base da factorização de todos os números perfeitos conhecidos. Tentaremos ainda fazer referência a alguns dos desafios, que atualmente persistem, referentes aos números perfeitos e às suas propriedades, assim como de algumas conjeturas que, apesar de experimentalmente corroboradas com recurso aos meios computacionais atuais, ainda carecem de prova ou refutação.
Numbers and their regularities forever fascinated mathematicians. Throughout the ages, the search for evidence or refutations of several conjectures boosted the advancement of mathematical knowledge, leading to the appearance of number theory. Many were the renowned mathematicians who, in different historical moments, contributed to this development. Even the ancient Babylonian and Egyptian civilizations had extensive knowledge about the numbers, their properties and regularities, in spite of the scarce written references which do not allow us to accurately gauge how deep was this knowledge. The same is not true with the Greek civilization, win which curiosity, resourcefulness and genius of some of their mathematicians is well documented. The most important mathematical text of that time was, undoubtedly, the work of Euclid's "Elements", in which, in chapter IX, there are references and evidence of some results which reveal a deep knowledge of the theory of numbers, in particular, of perfect and prime numbers, whose properties and regularities fascinated mathematicians at different times. With this work, we intend to present a collection of results and conjectures there were more relevant for the process that allowed the study of perfect numbers from antiquity to the present day. Currently, the demand for perfect numbers resumes itself to find what is now known as Mersenne primes, in honor of the monk Marin Mersenne that, among others results, showed that primes numbers that can be written in the form 2n -1 are factors in the factorization of all known perfect numbers. We also intend to make reference to some of the challenges that currently persist in the study of perfect numbers and their properties, as well as some conjectures that, although experimentally corroborated with current computational means, still lack proof or refutation.
TSAO, HAN-YANG, and 曹瀚洋. "On Primality Tests for Mersenne and Fermat Numbers." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/748nva.
Full text輔仁大學
數學系碩士班
106
Abstract In this master thesis, we will briefly introduce some well-known results on Mersenne and Fermat numbers in Chapter 1. In Section 1.3, we will also introduce the Lucas-Lehmer sequences and outline their useful corresponding properties with complete proofs. In Chapter 2, we will study the Lucas-Lehmer primality test for Mersenne numbers. And in Chapter 3, we will study the Pepin{'}s primality test for Fermat numbers. Via Lucas-Lehmer sequences, both tests share a common nature. We will outline these ideas with complete discussions here.
Yang, Shang-Yi, and 楊上逸. "Code Generation for Fast Pseudo-Mersenne Prime Field Arithmetic on ARM Processors." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/19497745985400268162.
Full text國立臺灣大學
電機工程學研究所
101
Recent research on high-speed cryptography has been striving for performance by twiddling with instructions, but without an automated tool, writing fast software takes much precious labor effort. We present a tool with a simple interface for crypto developers to generate fast modular multiplication routines in a few keystrokes: you provide the prime as the modulus and it produces several candidate results or enumerates them all for benchmark. Specifically, we automatized the choice of number representation and the code generation for multiplication modulo a pseudo-Mesenne prime on ARM11, using the proposed convolved multiplication method, which interleaves multiplication and modular reduction. The high-quality code generated runs up to 16.4% faster than the convolved multiplication compiled by defacto-standard compilers such as gcc, and is 4 to 8 times faster than the GMP modular multiplication.
Savage, Eric S. "The Origins of Mathematical Societies and Journals." 2010. http://trace.tennessee.edu/utk_gradthes/658.
Full textTang, Andy chi-chung. "Pythagoras at the smithy : science and rhetoric from antiquity to the early modern period." Thesis, 2012. http://hdl.handle.net/2152/27195.
Full texttext