To see the other types of publications on this topic, follow the link: Mesfet gaas.

Journal articles on the topic 'Mesfet gaas'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Mesfet gaas.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Franklin, A. J., E. A. Amerasekera, and D. S. Campbell. "A Comparison Between GaAs Mesfet and Si NMOS ESD Behaviour." Active and Passive Electronic Components 12, no. 3 (1987): 201–11. http://dx.doi.org/10.1155/1987/96107.

Full text
Abstract:
Work is in hand at Loughborough University to investigate and compare the ESD sensitivity of GaAs D-MESFETs and unprotected enhancement mode NMOS structures.The work to date has shown that GaAs MESFET structures can be severely degraded with ESD pulses above 600V as compared with 200V for Si NMOS. It has also been shown that both GaAs and NMOS structures are polarity sensitive.The behaviour of the Schottky barrier is used to explain the polarity behaviour in GaAs MESFETs. The breakdown of the oxide in the NMOS devices can be explained by impact ionisation.
APA, Harvard, Vancouver, ISO, and other styles
2

OTSUJI, TAIICHI, KOICHI MURATA, KOICHI NARAHARA, KIMIKAZU SANO, EIICHI SANO, and KIMIYOSHI YAMASAKI. "20-40-Gbit/s-CLASS GaAs MESFET DIGITAL ICs FOR FUTURE OPTICAL FIBER COMMUNICATIONS SYSTEMS." International Journal of High Speed Electronics and Systems 09, no. 02 (June 1998): 399–435. http://dx.doi.org/10.1142/s0129156498000191.

Full text
Abstract:
This paper describes recent advances in high-speed digital IC design technologies based on GaAs MESFETs for future high-speed optical communications systems. We devised new types of a data selector and flip-flops, which are key elements in performing high-speed digital functions (signal multiplexing, decision, demultiplexing, and frequency conversion) in front-end transmitter/receiver systems. Incorporating these circuit design technologies with state-of-the-art 0.12 μm gate-length GaAs MESFET process, we developed a DC-to-44-Gbit/s 2:1 data multiplexer IC, a DC-to 22-Gbit/s static decision IC, and a 20-to-40-Gbit/s dynamic decision IC. The fabricated ICs demonstrated record speed performances for GaAs MESFETs. Although further operating speed margin is still required, the GaAs MESFET is a potential candidate for 20- to 40-Gbit/s class applications.
APA, Harvard, Vancouver, ISO, and other styles
3

SHUR, M. S., T. A. FJELDLY, T. YTTERDAL, and K. LEE. "UNIFIED GaAs MESFET MODEL FOR CIRCUIT SIMULATIONS." International Journal of High Speed Electronics and Systems 03, no. 02 (June 1992): 201–33. http://dx.doi.org/10.1142/s0129156492000084.

Full text
Abstract:
We describe a new, unified model for MEtal Semiconductor Field Effect Transistors (MESFETs) which covers all ranges of operation, including the subthreshold regime. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics are described by continuous, analytical expressions with relatively few, physically based parameters. The model includes effects such as velocity saturation, parasitic series resistances, the dependence of the threshold voltage on drain bias, finite output conductance in saturation, and temperature dependence of the device parameters. We also describe a parameter extraction routine which allows the model parameters to be derived in a straightforward fashion from experimental data. The model has been incorporated into our new circuit simulator AIM-Spice. The new device characterization is applied with good results to a typical ion-implanted GaAs MESFET and a delta-doped MESFET.
APA, Harvard, Vancouver, ISO, and other styles
4

Wager, J. F., and A. J. McCamant. "GaAs MESFET interface considerations." IEEE Transactions on Electron Devices 34, no. 5 (May 1987): 1001–7. http://dx.doi.org/10.1109/t-ed.1987.23036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zheng, Chun-Yi, Wen-Jung Chiang, Yeong-Lin Lai, Edward Y. Chang, Shen-Li Chen, and K. B. Wang. "Characteristics of GaAs Power MESFETs with Double Silicon Ion Implantations for Wireless Communication Applications." Open Materials Science Journal 10, no. 1 (June 15, 2016): 29–36. http://dx.doi.org/10.2174/1874088x01610010029.

Full text
Abstract:
GaAs power metal-semiconductor field-effect transistors (MESFETs) were fabricated using direct double silicon (Si) ion implantation technology for wireless communication applications. A 150-µm MESFET had a saturation drain current of 238 mA/mm after Si3N4passivation. A 15-mm MESFET, when measured under a class-AB condition with a biased drain voltage of 3.4 V and a quiescent drain current of 600 mA, delivered a maximum output power (Pout) of 31.1 dBm and a maximum power-added efficiency (PAE) of 58.0% at a frequency of 1.88 GHz. The MESFET exhibited aPoutof 29.2 dBm with a PAE of 45.0% at the 1-dB gain compression point. The MESFET, when measured under a deep class-B condition with a biased drain voltage of 4.7 V and a quiescent drain current of 50 mA, achieved a maximumPoutof 33.1 dBm and a maximum PAE of 55.9% at 1.88 GHz. The MESFET operating at 4.7 V and 1.88 GHz exhibited aP1dBof 31.8 dBm and an associated PAE of 47.1% at the 1-dB gain compression point. When tested by IS-95 code-division multiple access (CDMA) standard signals and biased at 4.7 V under the deep class-B condition, the MESFET with aPoutof 28 dBm demonstrated an adjacent channel power rejection (ACPR) of –31.2 dBc at +1.25 MHz apart from the 1.88 GHz center frequency and –45.7 dBc at +2.25 MHz.
APA, Harvard, Vancouver, ISO, and other styles
6

Ramam, A., R. Gulati, and B. L. Sharma. "Variable Pinch-Off GaAs MESFET." physica status solidi (a) 91, no. 2 (October 16, 1985): K169—K172. http://dx.doi.org/10.1002/pssa.2210910264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Baier, S. M., Gi-Young Lee, H. K. Chung, B. J. Fure, and R. Mactaggart. "Complementary GaAs MESFET logic gates." IEEE Electron Device Letters 8, no. 6 (June 1987): 260–62. http://dx.doi.org/10.1109/edl.1987.26623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Conger, J., M. S. Shur, and A. Peczalski. "Power law GaAs MESFET model." IEEE Transactions on Electron Devices 39, no. 10 (1992): 2415–17. http://dx.doi.org/10.1109/16.158819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Daga, O. P., J. K. Singh, B. R. Singh, H. S. Kothari, and W. S. Khokle. "GaAs MESFET and related processes." Bulletin of Materials Science 13, no. 1-2 (March 1990): 99–112. http://dx.doi.org/10.1007/bf02744864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yamasaki, Kimiyoshi. "VI. Millimeter-Wave GaAs MESFET Technology." IEEJ Transactions on Electronics, Information and Systems 116, no. 5 (1996): 509–11. http://dx.doi.org/10.1541/ieejeiss1987.116.5_509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Djouder, Mohamed, Arezki Benfdila, and Ahcene Lakhlef. "Temperature dependent analytical model for submicron GaAs-MESFET." Bulletin of Electrical Engineering and Informatics 10, no. 3 (June 1, 2021): 1271–82. http://dx.doi.org/10.11591/eei.v10i3.2944.

Full text
Abstract:
MESFET are used in circuitsof gigahertz frequencies as they are based on gallium arsenide (GaAs) having electron mobility six times higher than that of silicon. An analytical model simulating different device current-voltage characteristics, i.e., output conductance and output transconductance of a 0.3μm gate MESFET with temperature dependence is proposed. The model is validated by comparing the results of the proposed model and those of the numerical simulation. The parameter values are computed using an intrinsic MESFET of two-dimensional geometry. In this work, the distribution of different output loads for varied applied voltages is considered. Simulation results obtainedunder temperature variation effectsfor load distribution and applied driven voltage variation are considered. The RMS and average errors between the different models and GaAs MESFET simulations are calculated to evidence the proposed model accuracy. This was demonstrated by a good agreement between the proposed model and the simulation results, which are found in good agreement. The simulation results obtained under temperature variations were discussed and found to complement those obtained in the literature. This clarifies the relevance of the suggested model analytical.
APA, Harvard, Vancouver, ISO, and other styles
12

Curtice, W. R. "GaAs MESFET modeling and nonlinear CAD." IEEE Transactions on Microwave Theory and Techniques 36, no. 2 (1988): 220–30. http://dx.doi.org/10.1109/22.3509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kenzai, C., M. Zaabat, Y. Saidi, and A. Khiter. "Modélisation des Caractéristiques du GaAs MESFET." Acta Physica Polonica A 98, no. 6 (December 2000): 747–62. http://dx.doi.org/10.12693/aphyspola.98.747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Tang, Wade C., Kerry S. Lowe, I. Abdel‐Motaleb, and Lawrence Young. "Backgating in Ion‐Implanted GaAs MESFET." Journal of The Electrochemical Society 132, no. 11 (November 1, 1985): 2794–95. http://dx.doi.org/10.1149/1.2113666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

GEORGE, PETER, PING-K. KO, and CHENMING HU. "GaAs MESFET model for circuit simulation." International Journal of Electronics 66, no. 3 (March 1989): 379–97. http://dx.doi.org/10.1080/00207218908925396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Shih, C. C., B. J. Sheu, and H. M. Le. "Characterization of GaAs MESFET gate capacitances." IEEE Journal of Solid-State Circuits 23, no. 3 (June 1988): 878–80. http://dx.doi.org/10.1109/4.335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Pasternak, J. H., and C. A. T. Salama. "GaAs MESFET differential pass-transistor logic." IEEE Journal of Solid-State Circuits 26, no. 9 (1991): 1309–16. http://dx.doi.org/10.1109/4.84949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Shiralagi, K., R. Tsui, and H. Goronkin. "GaAs MESFET fabrication without using photoresist." IEEE Electron Device Letters 19, no. 2 (February 1998): 57–59. http://dx.doi.org/10.1109/55.658604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Madjar, Asher, Peter R. Herczfeld, and Arthur Paollela. "Photoavalanche effects in a GaAs MESFET." Microwave and Optical Technology Letters 3, no. 2 (February 1990): 60–62. http://dx.doi.org/10.1002/mop.4650030206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Umeda, Tokuo, and Yoshio Cho. "High-speed photodetectors using GaAs MESFET." Electronics and Communications in Japan (Part II: Electronics) 69, no. 1 (1986): 83–90. http://dx.doi.org/10.1002/ecjb.4420690110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Papaioannou, G. J., J. A. Kaliakatsos, P. C. Euthymiou, and J. R. Forrest. "Photovoltaic effects of GaAs MESFET layers." IEE Proceedings I Solid State and Electron Devices 132, no. 3 (1985): 167. http://dx.doi.org/10.1049/ip-i-1.1985.0034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kreischer, L. "Noise tuning of GaAs-MESFET oscillators." Electronics Letters 26, no. 5 (1990): 315. http://dx.doi.org/10.1049/el:19900207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Pasternak, J. H., and C. A. T. Salama. "GaAs MESFET differential pass-transistor logic." Electronics Letters 26, no. 19 (1990): 1597. http://dx.doi.org/10.1049/el:19901023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Goronkin, H., and V. Nair. "Comparison of GaAs MESFET noise figures." IEEE Electron Device Letters 6, no. 1 (January 1985): 47–49. http://dx.doi.org/10.1109/edl.1985.26037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Adibi, A., and K. Eshraghian. "Generalised model for GaAs MESFET photodetectors." IEE Proceedings G Circuits, Devices and Systems 136, no. 6 (1989): 337. http://dx.doi.org/10.1049/ip-g-2.1989.0056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Utsumi, K., A. Tezuka, K. Nishii, K. Bando, K. Inoue, and T. Onuma. "Gigabit optical transmitter GaAs MESFET IC." Electronics Letters 23, no. 8 (1987): 374. http://dx.doi.org/10.1049/el:19870274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lalinský, T., Š. Haščík, Ž. Mozolová, L. Grno, J. Kuzmík, and M. Porges. "Monolithic GaAs MESFET power sensor microsystem." Electronics Letters 31, no. 22 (October 26, 1995): 1914–15. http://dx.doi.org/10.1049/el:19951295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Xiao, Shuo, C. Andre, and T. Salama. "High-gain gaas mesfet op amp." Analog Integrated Circuits and Signal Processing 5, no. 2 (March 1994): 169–73. http://dx.doi.org/10.1007/bf01272650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Novosyadliy, S. P., V. M. Lukovkin, R. Melnyk, and A. V. Pavlyshyn. "Physical-topology modeling of silicon/gallium arsenide Schottky transistor of submicron technology LSI." Physics and Chemistry of Solid State 21, no. 2 (June 15, 2020): 361–64. http://dx.doi.org/10.15330/pcss.21.2.361-364.

Full text
Abstract:
In this paper described researched essentials and physical mechanisms of MESFET on epitaxy layers of GaAs with monocrystalline silicon wafer. Conducted computer modeling of MESFET with p-channel: distributions of potential, volumetric charge, current in channel and its characteristics. Based on conducted modeling discovered new effect in MESFET, shielding of volumetric charge, which sufficiently influences on current distribution in channel.
APA, Harvard, Vancouver, ISO, and other styles
30

Novosjadly, S. P., A. I. Terletsky, and O. B. Fryk. "Formation CMOS Schemes on GaAs with Self-Aligned Nitride and Silicide Gates." Фізика і хімія твердого тіла 16, no. 2 (June 15, 2015): 420–24. http://dx.doi.org/10.15330/pcss.16.2.420-424.

Full text
Abstract:
Advanced integrated logic circuits on GaAs are mainly based on the using of n-channel field-effect transistors with gate Schottky (MESFET). To create the complementary MESFET integrated circuits the main problem is quite small Schottky barrier height (< 0,5 eV) on p-type gallium arsenide. One way to solve this problem is to use a nitride or silicide tungsten compounds to form gates given the thickness and composition. This paper highlights the features of the formation of complementary high-speed logic circuits on the p-GaAs with self-aligned gate based on nitride or silicide of tungsten obtained by reduced pressure horizontal reactor "Izotron 4" and of RF magnetron sputtering equipment "Oratorio-5." This technology can also be used to form a Schottky contact to n- channel MESFET. Since the manufacturing process of MESFET self-aligned gate provides using refractory gate material as a mask for the multiply ion implantation, the Schottky contact must withstand subsequent high-temperature heat treatment required to activate implanted impurities. In this connection, the action of high-temperature photonic and resistive heating on the barrier height of Schottky contact formed by nitride (silicide) tungsten (WNx, WSix) GaAs was also studied.
APA, Harvard, Vancouver, ISO, and other styles
31

Lau, W. M., Ji Lijiu, K. Lowe, W. Tang, and L. Young. "Hysteresis in GaAs metal-semiconductor field-effect transistors I–V characteristics." Canadian Journal of Physics 63, no. 6 (June 1, 1985): 748–52. http://dx.doi.org/10.1139/p85-119.

Full text
Abstract:
The hysteresis loops observed in the drain current vs. voltage characteristics of metal-semiconductor field-effect transistors (MESFET's) fabricated on semi-insulating GaAs by ion implantation were investigated as a function of the sweep frequency and of the temperature. A model was developed to correlate the extent of the looping to the characteristics of the deep-level traps in the channel. Experimental results were compared with the channel deep-level transient spectroscopic results on the same MESFET.
APA, Harvard, Vancouver, ISO, and other styles
32

Songyan, Chen, Liu Baolin, Wang Benzhong, Huang Meichun, Chen Longhai, and Chen Chao. "GaAsInP heteroepitaxy and GaAsInP MESFET fabrication by MOVPE." Journal of Crystal Growth 170, no. 1-4 (January 1997): 433–37. http://dx.doi.org/10.1016/s0022-0248(96)00626-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Gromov, Dmitry, and Vadim Elesin. "Long-term radiation effects in GaAs microwave devices exposed to pulsed ionizing radiation." ITM Web of Conferences 30 (2019): 10005. http://dx.doi.org/10.1051/itmconf/20193010005.

Full text
Abstract:
The investigation results of the GaAs microwave devices characteristics under pulse irradiation are presented. The study covers the field effect transistor with Schottky barrier, pseudomorphic high-electron mobility transistors and resonant tunnelling diodes implemented in GaAs technology processes. It has been demonstrated that GaAs MESFET, pHEMT and RTDs may show the long-term parameter recovery undo pulsed ionizing exposure.
APA, Harvard, Vancouver, ISO, and other styles
34

De Geronimo, G., and A. Castoldi. "A low-power GaAs MESFET charge preamplifier." Nuclear Physics B - Proceedings Supplements 54, no. 3 (March 1997): 113–18. http://dx.doi.org/10.1016/s0920-5632(97)00100-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

McCamant, A. J., G. D. McCormack, and D. H. Smith. "An improved GaAs MESFET model for SPICE." IEEE Transactions on Microwave Theory and Techniques 38, no. 6 (June 1990): 822–24. http://dx.doi.org/10.1109/22.130988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Choi, J. R., and D. Polla. "Integration of microsensors in GaAs MESFET process." Journal of Micromechanics and Microengineering 3, no. 2 (June 1, 1993): 60–64. http://dx.doi.org/10.1088/0960-1317/3/2/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Scheinberg, N., R. Bayruns, and R. Goyal. "A low-frequency GaAs MESFET circuit model." IEEE Journal of Solid-State Circuits 23, no. 2 (April 1988): 605–8. http://dx.doi.org/10.1109/4.1029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Conger, J., A. Peczalski, and M. S. Shur. "Modeling frequency dependence of GaAs MESFET characteristics." IEEE Journal of Solid-State Circuits 29, no. 1 (1994): 71–76. http://dx.doi.org/10.1109/4.272098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Larson, L. E., C. S. Chou, and M. J. Delaney. "An ultrahigh-speed GaAs MESFET operational amplifier." IEEE Journal of Solid-State Circuits 24, no. 6 (1989): 1523–28. http://dx.doi.org/10.1109/4.44988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Claspy, P. C., M. Richard, K. B. Bhasin, M. Bendett, G. Gustafson, and W. Walters. "A high-speed GaAs MESFET optical controller." IEEE Photonics Technology Letters 1, no. 11 (November 1989): 389–91. http://dx.doi.org/10.1109/68.43389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Benbouza, M. S. "Active inductances controlled in GaAs MESFET technology." Semiconductor physics, quantum electronics and optoelectronics 9, no. 3 (October 31, 2006): 44–48. http://dx.doi.org/10.15407/spqeo9.03.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Rollman, J. A., and P. F. Wahid. "Ka-band monolithic GaAs mesfet amplifier design." Microwave and Optical Technology Letters 3, no. 8 (August 1990): 273–76. http://dx.doi.org/10.1002/mop.4650030802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Riesz, Ferenc, B. Szentpáli, P. Gottwald, and M. Németh-Sallay. "A novel mesfet-compatible gaas optoelectronic switch." Microwave and Optical Technology Letters 5, no. 3 (March 1992): 112–14. http://dx.doi.org/10.1002/mop.4650050305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Gulati, R., S. B. Kaushik, P. L. Trivedi, H. S. Sharma, I. Chandra, and B. L. Sharma. "Optical effect in normally-off GaAs MESFET." physica status solidi (a) 88, no. 1 (March 16, 1985): K99—K103. http://dx.doi.org/10.1002/pssa.2210880169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Bland, S. W., D. Wood, and J. Mun. "Self-alignment techniques for GaAs MESFET i.c.s." Journal of the Institution of Electronic and Radio Engineers 57, no. 1S (1987): S84. http://dx.doi.org/10.1049/jiere.1987.0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kanamori, M., H. Ono, T. Furutsuka, and J. Matsui. "External stress effect on GaAs MESFET Characteristics." IEEE Electron Device Letters 8, no. 5 (May 1987): 228–30. http://dx.doi.org/10.1109/edl.1987.26612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Jeong, Jichai, G. P. Vella-coleiro, and C. M. L. Yee. "GaAs MESFET amplifiers fabricated on InP substrates." Electronics Letters 26, no. 2 (1990): 135. http://dx.doi.org/10.1049/el:19900092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Chan, W. K., D. M. Shah, T. J. Gmitter, and C. Caneau. "Inverted gate GaAs MESFET by epitaxial liftoff." Electronics Letters 28, no. 8 (1992): 708. http://dx.doi.org/10.1049/el:19920448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ishida, T., T. Nonaka, C. Yamagishi, Y. Kawarada, Y. Sano, M. Akiyama, and K. Kaminishi. "GaAs MESFET ring oscillator on Si substrate." IEEE Transactions on Electron Devices 32, no. 6 (June 1985): 1037–41. http://dx.doi.org/10.1109/t-ed.1985.22070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ojala, P. K., and K. K. Kaski. "Analytically extracted ZTC point for GaAs MESFET." IEE Proceedings G Circuits, Devices and Systems 140, no. 6 (1993): 424. http://dx.doi.org/10.1049/ip-g-2.1993.0068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography