Academic literature on the topic 'Meshfree/meshless methods'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Meshfree/meshless methods.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Meshfree/meshless methods"

1

GU, Y. T. "MESHFREE METHODS AND THEIR COMPARISONS." International Journal of Computational Methods 02, no. 04 (2005): 477–515. http://dx.doi.org/10.1142/s0219876205000673.

Full text
Abstract:
In recent years, one of the hottest topics in computational mechanics is the meshfree or meshless method. Increasing number of researchers are devoting themselves to the research of the meshfree methods, and a group of meshfree methods have been proposed and used to solve the ordinary differential equations (ODEs) or the partial differential equations (PDE). In the meantime, meshfree methods are being applied to a growing number of practical engineering problems. In this paper, a detailed discussion will be provided on the development of meshfree methods. First, categories of meshfree methods
APA, Harvard, Vancouver, ISO, and other styles
2

Racz, Donat, and Tinh Quoc Bui. "Novel adaptive meshfree integration techniques in meshless methods." International Journal for Numerical Methods in Engineering 90, no. 11 (2012): 1414–34. http://dx.doi.org/10.1002/nme.4268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Daxini, S. D., and J. M. Prajapati. "A Review on Recent Contribution of Meshfree Methods to Structure and Fracture Mechanics Applications." Scientific World Journal 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/247172.

Full text
Abstract:
Meshfree methods are viewed as next generation computational techniques. With evident limitations of conventional grid based methods, like FEM, in dealing with problems of fracture mechanics, large deformation, and simulation of manufacturing processes, meshfree methods have gained much attention by researchers. A number of meshfree methods have been proposed till now for analyzing complex problems in various fields of engineering. Present work attempts to review recent developments and some earlier applications of well-known meshfree methods like EFG and MLPG to various types of structure mec
APA, Harvard, Vancouver, ISO, and other styles
4

Sadono, Kresno Wikan. "Penyelesaian Numerik Advection Equation 1 Dimensi dengan EFG-DGM." MEDIA KOMUNIKASI TEKNIK SIPIL 22, no. 1 (2016): 51. http://dx.doi.org/10.14710/mkts.v22i1.12406.

Full text
Abstract:
Differential equation can be used to model various phenomena in science and engineering. Numerical method is the most common method used in solving DE. Numerical methods that popular today are finite difference method (FDM), finite element method (FEM) dan discontinuous Galerkin method (DGM), which the method includes mesh based. Lately, the developing methods, that are not based on a mesh, which the nodes directly spread in domain, called meshfree or meshless. Element free Galerkin method (EFG), Petrov-Galerkin meshless (MLPG), reproducing kernel particle method (RKPM) and radial basis functi
APA, Harvard, Vancouver, ISO, and other styles
5

Shanazari, Kamal. "An Adaptive Domain Partitioning Technique for Meshfree-Type Methods." Journal of Applied Mathematics 2012 (2012): 1–13. http://dx.doi.org/10.1155/2012/817026.

Full text
Abstract:
An overlapping domain partitioning based on adapting nodes is presented for the meshless-type methods. The decomposition of the domain is carried out based on the distribution of the nodes produced rather than the geometry of the problem. A set of adaptive nodes is first generated using the dimension reduction and equidistributing along the coordinate directions with respect to arc-length monitor. The domain is then partitioned in such a way that the same number of nodes are allocated to the subdomains. A radial basis function collocation method is applied to each subdomain followed by assembl
APA, Harvard, Vancouver, ISO, and other styles
6

Barbier, E., and Nik Petrinic. "Multiple Crack Growth and Coalescence in Meshfree Methods with Adistance Function-Based Enriched Kernel." Key Engineering Materials 560 (July 2013): 37–60. http://dx.doi.org/10.4028/www.scientific.net/kem.560.37.

Full text
Abstract:
Distance fields are functions defining the minimum distance between any generic point inspace and the boundaries of an object. This paper shows some important properties of these fields andtheir derivatives. In fact, for polygonal lines, the derivatives of distance fields are discontinuous overthe finite length of the segment, but continuous all around the end-points. An immediate consequenceis their application as intrinsic enrichment of weight functions in meshless methods, for the treatmentof multiple arbitrary cracks. By introducing such explicitly known function for the distance fields,di
APA, Harvard, Vancouver, ISO, and other styles
7

Khosravifard, Amir, and Mohammad Rahim Hematiyan. "A new method for meshless integration in 2D and 3D Galerkin meshfree methods." Engineering Analysis with Boundary Elements 34, no. 1 (2010): 30–40. http://dx.doi.org/10.1016/j.enganabound.2009.07.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sadono, Kresno Wikan. "Penyelesaian Numerik Persamaan Advection Dengan Radial Point Interpolation Method dan Integrasi Waktu Dengan Discontinuous Galerkin Method." Teknik 37, no. 2 (2016): 64. http://dx.doi.org/10.14710/teknik.v37i2.11640.

Full text
Abstract:
Persamaan differensial banyak digunakan untuk menggambarkan berbagai fenomena dalam bidang sains dan rekayasa. Berbagai masalah komplek dalam kehidupan sehari-hari dapat dimodelkan dengan persamaan differensial dan diselesaikan dengan metode numerik. Salah satu metode numerik, yaitu metode meshfree atau meshless berkembang akhir-akhir ini, tanpa proses pembuatan elemen pada domain. Penelitian ini menggabungkan metode meshless yaitu radial basis point interpolation method (RPIM) dengan integrasi waktu discontinuous Galerkin method (DGM), metode ini disebut RPIM-DGM. Metode RPIM-DGM diaplikasika
APA, Harvard, Vancouver, ISO, and other styles
9

Zakrzewski, Nadia, Majidreza Nazem, Scott William Sloan, and Mark Cassidy. "On Application of the Maximum Entropy Meshless Method for Large Deformation Analysis of Geotechnical Problems." Applied Mechanics and Materials 846 (July 2016): 331–35. http://dx.doi.org/10.4028/www.scientific.net/amm.846.331.

Full text
Abstract:
Traditional grid-based numerical techniques such as the Finite Element Method (FEM) are known to suffer when large deformations of the continuum are encountered. As such, there has been limited success using this class of methods to solve many of the complex problems encountered in computational geomechanics. The potential of Meshfree techniques for addressing this perceived deficiency has been recognised. This study presents a robust Maximum Entropy Meshless (MEM) method for the analysis of problems involving geometrical nonlinearity in computational geomechanics. The method is validated via
APA, Harvard, Vancouver, ISO, and other styles
10

Darbani, Mohsen. "The Meshfree Finite Element Method for Fluids with Large Deformations." Defect and Diffusion Forum 326-328 (April 2012): 176–80. http://dx.doi.org/10.4028/www.scientific.net/ddf.326-328.176.

Full text
Abstract:
The shallow water equations (SWE) is often simulated by using Eulerian descriptions. These phenomena may give rise to strong gradients and lead to large distortion of grids meshes. Hence classical finite elements methods may fall in simulating such problems. In this paper we present a meshless method, based on the natural element nethod (NEM). In a geometrical domain of a cloud of nodes, NEM uses the Voronoi cells and then its dual, namely Delaunay triangulation. Its main advantage lies in shape function of the natural neighbour interpolation, such that the position of natural neighbours is en
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Meshfree/meshless methods"

1

Corrigan, Andrew. "Kernel-based meshless methods." Fairfax, VA : George Mason University, 2009. http://hdl.handle.net/1920/4585.

Full text
Abstract:
Thesis (Ph.D.)--George Mason University, 2009.<br>Vita: p. 108. Thesis co-directors: John Wallin, Thomas Wanner. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computational Science and Informatics. Title from PDF t.p. (viewed Oct. 12, 2009). Includes bibliographical references (p. 102-107). Also issued in print.
APA, Harvard, Vancouver, ISO, and other styles
2

Kwok, Ting On. "Adaptive meshless methods for solving partial differential equations." HKBU Institutional Repository, 2009. http://repository.hkbu.edu.hk/etd_ra/1076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mabogo, Mbavhalelo. "Development of techniques using finite element and meshless methods for the simulation of piercing." Thesis, [S.l. : s.n.], 2009. http://dk.cput.ac.za/cgi/viewcontent.cgi?article=1056&context=td_cput.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Meng. "Intrinsic meshless methods for PDEs on manifolds and applications." HKBU Institutional Repository, 2018. https://repository.hkbu.edu.hk/etd_oa/528.

Full text
Abstract:
Radial basis function (RBF) methods for partial differential equations (PDEs), either in bulk domains, on surfaces, or in a combination of the formers, arise in a wide range of practical applications. This thesis proposes numerical approaches of RBF-based meshless techniques to solve these three kinds of PDEs on stationary and nonstationary surfaces and domains. In Chapter 1, we introduce the background of RBF methods, some basic concepts, and error estimates for RBF interpolation. We then provide some preliminaries for manifolds, restricted RBFs on manifolds, and some convergence properties o
APA, Harvard, Vancouver, ISO, and other styles
5

Osorio, Mauricio Andres. "Error Estimates for a Meshfree Method with Diffuse Derivatives and Penalty Stabilization." University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1273521053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cheung, Ka Chun. "Meshless algorithm for partial differential equations on open and singular surfaces." HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/278.

Full text
Abstract:
Radial Basis function (RBF) method for solving partial differential equation (PDE) has a lot of applications in many areas. One of the advantages of RBF method is meshless. The cost of mesh generation can be reduced by playing with scattered data. It can also allow adaptivity to solve some problems with special feature. In this thesis, RBF method will be considered to solve several problems. Firstly, we solve the PDEs on surface with singularity (folded surface) by a localized method. The localized method is a generalization of finite difference method. A priori error estimate for the discreit
APA, Harvard, Vancouver, ISO, and other styles
7

Pols, LeRoi Vincent. "Scalability of fixed-radius searching in meshless methods for heterogeneous architectures." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/96144.

Full text
Abstract:
Thesis (MEng)--Stellenbosch University, 2014.<br>ENGLISH ABSTRACT: In this thesis we set out to design an algorithm for solving the all-pairs fixed-radius nearest neighbours search problem for a massively parallel heterogeneous system. The all-pairs search problem is stated as follows: Given a set of N points in d-dimensional space, find all pairs of points within a horizon distance of one another. This search is required by any nonlocal or meshless numerical modelling method to construct the neighbour list of each mesh point in the problem domain. Therefore, this work is applicable to
APA, Harvard, Vancouver, ISO, and other styles
8

Ghozzi, Yosr. "Simulation numérique des problèmes mécaniques non linéaires par approche mixte MEF-MESHLESS." Thesis, Troyes, 2014. http://www.theses.fr/2014TROY0006/document.

Full text
Abstract:
Dans le présent travail, nous mettons en œuvre un développement numérique d’une méthode de discrétisation mixte MEF/Meshless pour la résolution de problème mécanique fortement non-linéaire. Une attention particulière est attribuée à la construction des fonctions de forme par approximation diffuse. Dans le but de traiter des problèmes de la mécanique des solides en transformations finies, nous développons une méthode numérique dite « mixte » unissant à la fois la méthode numérique Meshless afin de discrétiser les zones à fort gradient de déformation, et la méthode des Eléments Finis (MEF) pour
APA, Harvard, Vancouver, ISO, and other styles
9

Hamrani, Abderrachid. "Apports d'approches sans maillage pour la simulation des phénomènes de séparation de la matière. Application aux procédés de mise en forme." Thesis, Paris, ENSAM, 2016. http://www.theses.fr/2016ENAM0036/document.

Full text
Abstract:
Avec l'avancé des méthodes numériques, de nouvelles méthodes dites « sans maillage » sont apparues pour remédier à certaines limitations de la méthode des éléments finis. Ces méthodes ont la particularité de n’employer aucun maillage prédéfini : elles utilisent un ensemble de nœuds dispersés dans le domaine considéré et sur ses frontières. L’objectif de cette étude est de montrer l’intérêt de l’application des méthodes sans maillage basées sur les fonctions de base radiale pour la simulation des procédés de mise en forme en général et de poinçonnage rapide en particulier. Une attention particu
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Meshfree/meshless methods"

1

Atluri, Satya N. Advances in the MLPG meshless methods. Tech Science Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

ECCOMAS Thematic Conference on Meshless Methods (2nd : 2007 : Porto, Portugal), ed. Progress on meshless methods. Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pepper, D. W. An introduction to finite element, boundary element, and meshless methods with applications to heat transfer and fluid flow. ASME Press, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Meshless Methods in Solid Mechanics. Springer, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ferreira, A. J. M., E. J. Kansa, G. E. Fasshauer, and V. M. A. Leitao. Progress on Meshless Methods. A J M Ferreira, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Meshless Methods And Their Numerical Properties. CRC Press, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Hua, and Shantanu S. Mulay. Meshless Methods and Their Numerical Properties. Taylor & Francis Group, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Hua, and Shantanu S. Mulay. Meshless Methods and Their Numerical Properties. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Meshfree/meshless methods"

1

Chen, Jiun-Shyan, and Ted Belytschko. "Meshless and Meshfree Methods." In Encyclopedia of Applied and Computational Mathematics. Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-540-70529-1_531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schaback, Robert. "Error Analysis of Nodal Meshless Methods." In Meshfree Methods for Partial Differential Equations VIII. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51954-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lukyanov, Alexander A., and Cornelis Vuik. "Meshless Multi-Point Flux Approximation." In Meshfree Methods for Partial Differential Equations VIII. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51954-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ramesh, V., S. Vivek, and S. M. Deshpande. "Kinetic meshless methods for unsteady moving boundaries." In Meshfree Methods for Partial Differential Equations V. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16229-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Somasekhar, M., S. Vivek, K. S. Malagi, V. Ramesh, and S. M. Deshpande. "Efficient cloud refinement for kinetic meshless methods." In Meshfree Methods for Partial Differential Equations V. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16229-9_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Milewski, Slawomir, and Janusz Orkisz. "Global-local Petrov-Galerkin formulations in the Meshless Finite Difference Method." In Meshfree Methods for Partial Differential Equations V. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16229-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fackeldey, Konstantin, Alexander Bujotzek, and Marcus Weber. "A Meshless Discretization Method for Markov State Models Applied to Explicit Water Peptide Folding Simulations." In Meshfree Methods for Partial Differential Equations VI. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32979-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Meshless Local Petrov–Galerkin Method." In Meshfree Methods. CRC Press, 2009. http://dx.doi.org/10.1201/9781420082104-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Meshless Local Petrov–Galerkin Method." In Meshfree Methods. CRC Press, 2009. http://dx.doi.org/10.1201/9781420082104.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"The Meshless (Meshfree) Method in Financial Engineering." In Finite Difference Methods in Financial Engineering. John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118673447.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Meshfree/meshless methods"

1

Hon, Benny Y. C. "MESHLESS COMPUTATIONAL METHOD BY USING RADIAL BASIS FUNCTIONS." In Proceedings of the 1st Asian Workshop on Meshfree Methods. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778611_0004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hagihara, Seiya, Mitsuyoshi Tsunori, Toru Ikeda, Noriyuki Miyazaki, Takayuki Watanabe, and Chaunrong Jin. "MESHLESS ANALYSIS INTEGRATE SYSTEM FOR STRUCTURAL AND FRACTURE MECHANICS ANALYSIS." In Proceedings of the 1st Asian Workshop on Meshfree Methods. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778611_0012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rao, B. N., C. O. Arun, and M. S. Siva Kumar. "Stochastic Meshfree Method for Computational Fracture Mechanics." In ASME 2007 Pressure Vessels and Piping Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/pvp2007-26794.

Full text
Abstract:
In the stochastic mechanics community, the need to account for uncertainty has long been recognized as key to achieving the reliable design of structural and mechanical systems. It is generally agreed that advanced computational tools must be employed to provide the necessary computational framework for describing structural response. A currently popular method is the stochastic finite element method (SFEM), which integrates probability theory with the standard finite element method (FEM). However, SFEM requires a structured mesh to perform the underlying finite element analysis. It is general
APA, Harvard, Vancouver, ISO, and other styles
4

Rao, B. N., and A. S. Balu. "Fuzzy Meshfree Method for Fracture Analysis of Cracks." In ASME 2007 Pressure Vessels and Piping Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/pvp2007-26792.

Full text
Abstract:
Uncertainty in loading has been treated by probabilistic methods and by fuzzy set methods. Fuzzy finite element method (FFEM) that calculates, given possible bounds of the applied loads, sharp bounds on displacements and stresses are available in the literature. However, FFEM requires a structured mesh to perform the underlying finite element analysis. It is generally recognized that the creation of workable meshes for complex geometric configurations can be difficult, time consuming, and expensive. This discrepancy is further exacerbated when solving solid mechanics problems characterized by
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, C. S., Jichun Li, and D. W. Pepper. "A MESHLESS METHOD USING RADIAL BASIS FUNCTIONS FOR SOLVING WAVE EQUATIONS." In Proceedings of the 1st Asian Workshop on Meshfree Methods. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778611_0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Y. L. "A MESHLESS LOCAL RADIAL POINT INTERPOLATION METHOD (LRPIM) FOR FLUID FLOW PROBLEMS." In Proceedings of the 1st Asian Workshop on Meshfree Methods. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778611_0021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, G. R., and Y. L. Wu. "APPLICATION OF MESHLESS POINT INTERPOLATION METHOD WITH MATRIX TRIANGULARIZATION ALGORITHM TO NATURAL CONVECTION." In Proceedings of the 1st Asian Workshop on Meshfree Methods. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778611_0022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chowdhury, Rajib, B. N. Rao, and A. Meher Prasad. "An Improved Meshfree Method for Fracture Analysis of Cracks." In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93753.

Full text
Abstract:
This paper presents an efficient meshless method for analyzing linear-elastic cracked structures subject to single- or mixed-mode loading conditions. The method involves an element-free Galerkin formulation in conjunction with an exact implementation of essential boundary conditions and a new weight function. The proposed method eliminates the shortcomings of Lagrange multipliers typically used in element-free Galerkin formulations. Numerical examples show that the proposed method yields accurate estimates of stress-intensity factors and near-tip stress field in two-dimensional cracked structu
APA, Harvard, Vancouver, ISO, and other styles
9

Yagawa, G. "SEAMLESS AND PARALLEL COMPUTING BY USING FREE MESH METHOD: A KIND OF MESHLESS TECHNIQUE." In Proceedings of the 1st Asian Workshop on Meshfree Methods. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778611_0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cheng, J. Q., Hua Li, K. Y. Lam, T. Y. Ng, and Y. K. Yew. "A HYBRID MESHLESS-DIFFERENTIAL ORDER REDUCTION (HM-DOR) METHOD FOR DEFORMATION CONTROL OF SMART CIRCULAR PLATE BY SENSORS/ACTUATORS." In Proceedings of the 1st Asian Workshop on Meshfree Methods. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778611_0010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!