Journal articles on the topic 'Mesoporous amorphous WO3 (a-WO3)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Mesoporous amorphous WO3 (a-WO3).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Shang, Fu Liang, Hai Tao Yang, Wei Lin Lin, and Ling Gao. "Preparation and Electrochromic Properties of Mesoporous WO3 Film." Advanced Materials Research 79-82 (August 2009): 867–70. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.867.
Full textZou, Yidong, Shibo Xi, Tao Bo, et al. "Mesoporous amorphous Al2O3/crystalline WO3 heterophase hybrids for electrocatalysis and gas sensing applications." Journal of Materials Chemistry A 7, no. 38 (2019): 21874–83. http://dx.doi.org/10.1039/c9ta08633a.
Full textFuku, Kojiro, Yuta Miyase, Yugo Miseki, Takahiro Gunji, and Kazuhiro Sayama. "WO3/BiVO4 photoanode coated with mesoporous Al2O3 layer for oxidative production of hydrogen peroxide from water with high selectivity." RSC Adv. 7, no. 75 (2017): 47619–23. http://dx.doi.org/10.1039/c7ra09693c.
Full textZhang, Yinhai, Xiaoxue Liu, Ruyu Zhao, et al. "The Green Preparation of Mesoporous WO3/SiO2 and Its Application in Oxidative Desulfurization." Catalysts 14, no. 2 (2024): 103. http://dx.doi.org/10.3390/catal14020103.
Full textZhang, Cheng, Chuning Jiang, Xiaohong Zheng, and Xin Hong. "Medium-Low-Temperature NO2 Sensor Based on YSZ Solid Electrolyte and Mesoporous WO3 Sensing Electrode for Detection of Vehicle Emissions." Nano 16, no. 07 (2021): 2150083. http://dx.doi.org/10.1142/s1793292021500831.
Full textCruz-Leal, M., O. Goiz, F. Chávez, et al. "Study of the Thermal Annealing on Structural and Morphological Properties of High-Porosity A-WO3 Films Synthesized by HFCVD." Nanomaterials 9, no. 9 (2019): 1298. http://dx.doi.org/10.3390/nano9091298.
Full textLiang, Yuan-Chang, and Che-Wei Chang. "Preparation of Orthorhombic WO3 Thin Films and Their Crystal Quality-Dependent Dye Photodegradation Ability." Coatings 9, no. 2 (2019): 90. http://dx.doi.org/10.3390/coatings9020090.
Full textde Wijs, G. A., and R. A. de Groot. "Amorphous WO3: a first-principles approach." Electrochimica Acta 46, no. 13-14 (2001): 1989–93. http://dx.doi.org/10.1016/s0013-4686(01)00377-2.
Full textBrei, V. V., O. V. Melezhyk, S. V. Prudius, G. M. Tel'biz, and O. I. Oranska. "Study of the Acid Site Structure on the WO3/ZrO2 Surface." Adsorption Science & Technology 23, no. 2 (2005): 109–14. http://dx.doi.org/10.1260/0263617054037754.
Full textZhang, Guanguang, Kuankuan Lu, Xiaochen Zhang, et al. "Effects of Annealing Temperature on Optical Band Gap of Sol-gel Tungsten Trioxide Films." Micromachines 9, no. 8 (2018): 377. http://dx.doi.org/10.3390/mi9080377.
Full textLuo, Jian Yi, Run Ming Chen, Yang Yang Zhou, Ri Mei Chen, Wei Yuan Deng, and Li Li. "Double-Side Digital Display Devices Based on the Solid-State Electrochromic Effect of the Amorphous WO3 Thin Films." Advanced Materials Research 529 (June 2012): 74–78. http://dx.doi.org/10.4028/www.scientific.net/amr.529.74.
Full textChu, Xuefeng, Kunjie Lin, Haiyang Zhao, et al. "Biphasic WO3 Nanostructures via Controlled Crystallization: Achieving High-Performance Electrochromism Through Amorphous/Crystalline Heterointerface Design." Crystals 15, no. 4 (2025): 324. https://doi.org/10.3390/cryst15040324.
Full textXia, Zhu-jie, Hong-li Wang, Yi-fan Su, et al. "Enhanced Electrochromic Properties by Improvement of Crystallinity for Sputtered WO3 Film." Coatings 10, no. 6 (2020): 577. http://dx.doi.org/10.3390/coatings10060577.
Full textSong, Ya, Zhiyu Zhang, Lamei Yan, et al. "Electrodeposition of Ti-Doped Hierarchically Mesoporous Silica Microspheres/Tungsten Oxide Nanocrystallines Hybrid Films and Their Electrochromic Performance." Nanomaterials 9, no. 12 (2019): 1795. http://dx.doi.org/10.3390/nano9121795.
Full textAmer, Mabrook S., Prabhakarn Arunachalam, Abdullah M. Al-Mayouf, Saradh Prasad, Matar N. Alshalwi, and Mohamed A. Ghanem. "Mesoporous Tungsten Trioxide Photoanodes Modified with Nitrogen-Doped Carbon Quantum Dots for Enhanced Oxygen Evolution Photo-Reaction." Nanomaterials 9, no. 10 (2019): 1502. http://dx.doi.org/10.3390/nano9101502.
Full textAhmadi, Ehsan, Mustaffa Ali Azhar, Dede Miftahul Anwar, Monna Rozana, and Zainovia Lockman. "The Effect of Crystallinity of Nanoporous WO3 on the Intercalation and Deintercalation of Li+." Advanced Materials Research 1024 (August 2014): 128–31. http://dx.doi.org/10.4028/www.scientific.net/amr.1024.128.
Full textFilipescu, Mihaela, Stefan Dobrescu, Adrian Ionut Bercea, et al. "Polypyrrole–Tungsten Oxide Nanocomposite Fabrication through Laser-Based Techniques for an Ammonia Sensor: Achieving Room Temperature Operation." Polymers 16, no. 1 (2023): 79. http://dx.doi.org/10.3390/polym16010079.
Full textZhang, Qiyuan, Ruoming Du, and Aihua Yao. "Cathodic electrodeposition of amorphous tungsten oxide dihydrate film for dual-band electrochromic modulation." RSC Advances 15, no. 7 (2025): 5242–51. https://doi.org/10.1039/d4ra08851d.
Full textAbdullah, S. A., Nayan Nafarizal, and Mohd Zainizan Sahdan. "Influence of Oxygen Flow Rate on the Characteristics of the Tungsten Oxide Using RF Magnetron Sputtering." Applied Mechanics and Materials 773-774 (July 2015): 657–61. http://dx.doi.org/10.4028/www.scientific.net/amm.773-774.657.
Full textÖzteki̇n, Ruki̇ye, and Deli̇a Teresa Sponza. "Photocatalytic Degradation of a Herbicide Namely Glyphosate and Hexazinone from the Surface Water which will be Used as Drinking Water via Polyaniline/ZnWO4/WO3 and Evaluation of Acute Toxicity Assays." International Journal of Chemical Engineering and Materials 3 (November 29, 2024): 66–100. http://dx.doi.org/10.37394/232031.2024.3.9.
Full textLing, Chui Min, Chin Chai Teng, Mohd Hayrie Mohd Hatta, and Siew Ling Lee. "TUNGSTEN OXIDE DOPED TITANIA SUPPORTED ON TUD-C FOR PHOTOCATALYTIC REMOVAL OF METHYLENE BLUE." Platform : A Journal of Science and Technology 4, no. 2 (2021): 42. http://dx.doi.org/10.61762/pjstvol4iss2art13217.
Full textAbdullah, S. F., S. Radiman, M. A. Abdul Hamid, and N. B, Ibrahim. "Studies on the phase transitions and properties of tungsten (VI) oxide nanoparticles by X-Ray diffraction (XRD) and thermal analysis." ASEAN Journal on Science and Technology for Development 26, no. 1 (2017): 13–20. http://dx.doi.org/10.29037/ajstd.300.
Full textZhou, Dan, Zhibo Tong, Hongmei Xie, Jiaotong Sun, and Fenggui Chen. "Effects of Additives on Electrochromic Properties of Nanocrystalline Tungsten Oxide Films Prepared by Complexation-Assisted Sol–Gel Method." Materials 16, no. 7 (2023): 2681. http://dx.doi.org/10.3390/ma16072681.
Full textBairamis, Feidias, and Ioannis Konstantinou. "WO3 Fibers/g-C3N4 Z-Scheme Heterostructure Photocatalysts for Simultaneous Oxidation/Reduction of Phenol/Cr (VI) in Aquatic Media." Catalysts 11, no. 7 (2021): 792. http://dx.doi.org/10.3390/catal11070792.
Full textLi, Hui, Chun-Han Wu, Yi-Cheng Liu, et al. "Mesoporous WO3-TiO2 heterojunction for a hydrogen gas sensor." Sensors and Actuators B: Chemical 341 (August 2021): 130035. http://dx.doi.org/10.1016/j.snb.2021.130035.
Full textHongo, Teruhisa, Yoshihiro Usami, and Atsushi Yamazaki. "Synthesis and Characterization of Nanostructured Tungsten Oxide by Hard Template Method." Advanced Materials Research 896 (February 2014): 78–81. http://dx.doi.org/10.4028/www.scientific.net/amr.896.78.
Full textKim, Chang Yeoul, Jin Wook Choi, Tae Yeoung Lim, and Duck Kyun Choi. "Synthesis of WO3 Electrochromic Sensor by Sol-Gel Method and Characterization of Its Electrochemical and Optical Properties." Key Engineering Materials 317-318 (August 2006): 807–10. http://dx.doi.org/10.4028/www.scientific.net/kem.317-318.807.
Full textWang, Wenjie, Decai Yang, Yifan Mou, et al. "Construction of 2D/2D Mesoporous WO3/CeO2 Laminated Heterojunctions for Optimized Photocatalytic Performance." Nanomaterials 13, no. 11 (2023): 1798. http://dx.doi.org/10.3390/nano13111798.
Full textMorankar, Pritam J., Rutuja U. Amate, Mrunal K. Bhosale, and Chan-Wook Jeon. "PVP-Engineered WO3/TiO2 Heterostructures for High-Performance Electrochromic Applications with Enhanced Optical Modulation and Stability." Polymers 17, no. 12 (2025): 1683. https://doi.org/10.3390/polym17121683.
Full textCho, Jinill, Hyunho Seok, and Taesung Kim. "Post O2 Plasma-Induced Fabrication of 1T-WS2/a-WO3 Heterostructure for Superior Hydrogen Evolution Reaction Electrocatalysts Via Hydrogen Spillover." ECS Meeting Abstracts MA2023-02, no. 16 (2023): 1157. http://dx.doi.org/10.1149/ma2023-02161157mtgabs.
Full textMalge, Amarkumar, T. Sankarappa, G. B. Devidas, J. S. Ashwajeet, Ashwini Devidas, and Mohansingh Heerasingh. "Dielectric And Relaxation Studies in Multi Oxides Doped Borotellurite Glasses." IOP Conference Series: Materials Science and Engineering 1221, no. 1 (2022): 012015. http://dx.doi.org/10.1088/1757-899x/1221/1/012015.
Full textFominski, Vyacheslav, Alexey Gnedovets, Dmitry Fominski, et al. "Pulsed Laser Deposition of Nanostructured MoS3/np-Mo//WO3−y Hybrid Catalyst for Enhanced (Photo) Electrochemical Hydrogen Evolution." Nanomaterials 9, no. 10 (2019): 1395. http://dx.doi.org/10.3390/nano9101395.
Full textPaolucci, Valentina, Seyed Mahmoud Emamjomeh, Michele Nardone, Luca Ottaviano, and Carlo Cantalini. "Two-Step Exfoliation of WS2 for NO2, H2 and Humidity Sensing Applications." Nanomaterials 9, no. 10 (2019): 1363. http://dx.doi.org/10.3390/nano9101363.
Full textLugovskaya, L. A., L. A. Aleshina, G. M. Kalibaeva, and A. D. Fofanov. "X-ray study and structure simulation of amorphous tungsten oxide." Acta Crystallographica Section B Structural Science 58, no. 4 (2002): 576–86. http://dx.doi.org/10.1107/s0108768102006833.
Full textAlamri, Saleh N., and Ahamed A. Joraid. "Smart Windows with Different Thicknesses of V2O5 as Ion Storage Layers." Materials Science Forum 663-665 (November 2010): 743–50. http://dx.doi.org/10.4028/www.scientific.net/msf.663-665.743.
Full textKgoetlana, Charlie M., Soraya P. Malinga, and Langelihle N. Dlamini. "Photocatalytic Degradation of Chlorpyrifos with Mn-WO3/SnS2 Heterostructure." Catalysts 10, no. 6 (2020): 699. http://dx.doi.org/10.3390/catal10060699.
Full textKim, Chang Yeoul, Seong Geun Cho, Seok Park, Tae Yeoung Lim, and Duck Kyun Choi. "Electrochemical and Optical Properties of WO3 Prepared by Sol-Gel Coating." Materials Science Forum 544-545 (May 2007): 1081–84. http://dx.doi.org/10.4028/www.scientific.net/msf.544-545.1081.
Full textAbduvalov, Alshyn, Marat Kaikanov, Timur Sh Atabaev, and Alexander Tikhonov. "Improving Photoelectrochemical Activity of Magnetron-Sputtered Double-Layer Tungsten Trioxide Photoanodes by Irradiation with Intense Pulsed Ion Beams." Nanomaterials 12, no. 15 (2022): 2639. http://dx.doi.org/10.3390/nano12152639.
Full textWei, Y. X., J. Y. Li, W. M. Liu, and Y. Yan. "Long-life Inorganic Electrochromic Device Based on WO3 and PB Films with Fast Switching Respond." Journal of Physics: Conference Series 2639, no. 1 (2023): 012028. http://dx.doi.org/10.1088/1742-6596/2639/1/012028.
Full textKavitha, V. S., V. Biju, K. G. Gopchandran, et al. "Tailoring the Emission Behavior of WO3 Thin Films by Eu3+Ions for Light-Emitting Applications." Nanomaterials 13, no. 1 (2022): 7. http://dx.doi.org/10.3390/nano13010007.
Full textKoshida, Nobuyoshi, and Osamu Tomita. "Mechanism of a High-Contrast Inorganic Ion Resist Using Amorphous WO3." Japanese Journal of Applied Physics 25, Part 1, No. 12 (1986): 1932–35. http://dx.doi.org/10.1143/jjap.25.1932.
Full textDi Quarto, F., V. O. Aimiuwu, S. Piazza, and C. Sunseri. "Amorphous semiconductor—electrolyte junction. Energetics at the a-WO3—electrolyte junction." Electrochimica Acta 36, no. 11-12 (1991): 1817–22. http://dx.doi.org/10.1016/0013-4686(91)85050-h.
Full textBasato, M., E. Brescacin, and E. Tondello. "Amorphous WO3 Films via “Wet” CVD of a WVI Oxoalkoxide Precursor." Chemical Vapor Deposition 7, no. 5 (2001): 219. http://dx.doi.org/10.1002/1521-3862(200109)7:5<219::aid-cvde219>3.0.co;2-q.
Full textLee, Min, Sun-I. Kim, Myeung-jin Lee, et al. "Effect of Catalyst Crystallinity on V-Based Selective Catalytic Reduction with Ammonia." Nanomaterials 11, no. 6 (2021): 1452. http://dx.doi.org/10.3390/nano11061452.
Full textFominski, Vyacheslav, Roman Romanov, Dmitry Fominski, et al. "Performance and Mechanism of Photoelectrocatalytic Activity of MoSx/WO3 Heterostructures Obtained by Reactive Pulsed Laser Deposition for Water Splitting." Nanomaterials 10, no. 5 (2020): 871. http://dx.doi.org/10.3390/nano10050871.
Full textGeorgijevic, Radovan, and Slavko Mentus. "The synthesis of tungsten trioxide gel by dissolution of tungsten in hydrogen peroxide and its transformations during the heat treatment in oxidation and reduction atmospheres." Chemical Industry 65, no. 3 (2011): 279–86. http://dx.doi.org/10.2298/hemind101228009g.
Full textPapagiannis, Ioannis, Elias Doukas, Alexandros Kalarakis, George Avgouropoulos, and Panagiotis Lianos. "Photoelectrocatalytic H2 and H2O2 Production Using Visible-Light-Absorbing Photoanodes." Catalysts 9, no. 3 (2019): 243. http://dx.doi.org/10.3390/catal9030243.
Full textSrichaiyaperk, Thanat, Kamon Aiempanakit, Mati Horprathum, et al. "Effects of Annealing Treatment on WO3 Thin Films Prepared by DC Reactive Magnetron Sputtering." Advanced Materials Research 979 (June 2014): 248–50. http://dx.doi.org/10.4028/www.scientific.net/amr.979.248.
Full textSarkar, Arpita, Susmita Pramanik, Amitava Achariya, and Panchanan Pramanik. "A novel sol–gel synthesis of mesoporous ZrO2–MoO3/WO3 mixed oxides." Microporous and Mesoporous Materials 115, no. 3 (2008): 426–31. http://dx.doi.org/10.1016/j.micromeso.2008.02.015.
Full textLi, Ruixin, Faqi Zhan, Guochang Wen, et al. "Facile Synthesis of a Micro–Nano-Structured FeOOH/BiVO4/WO3 Photoanode with Enhanced Photoelectrochemical Performance." Catalysts 14, no. 11 (2024): 828. http://dx.doi.org/10.3390/catal14110828.
Full text