Journal articles on the topic 'Metabolic CD34+ cells'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Metabolic CD34+ cells.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kochi, Yu, Yoshikane Kikushige, Toshihiro Miyamoto, and Koichi Akashi. "Identification of ASCT1 As a Candidate Molecule Enhancing Antioxidant Activity in Primary Human AML Cells." Blood 128, no. 22 (2016): 1674. http://dx.doi.org/10.1182/blood.v128.22.1674.1674.
Full textFadini, G. P. "Circulating CD34+ cells, metabolic syndrome, and cardiovascular risk." European Heart Journal 27, no. 18 (2006): 2247–55. http://dx.doi.org/10.1093/eurheartj/ehl198.
Full textNakasone, Hideki, Misato Kikuchi, Yu Akahoshi, et al. "The Expression of CD83 Would be Increased in CD34-Positive Monocytes Detected in Peripheral Blood Mobilized By G-CSF in Humans." Blood 132, Supplement 1 (2018): 2063. http://dx.doi.org/10.1182/blood-2018-99-112084.
Full textDesterke, Christophe, Estelle Balducci, Xavier Fund, Claire Borie, Annelise Bennaceur-Griscelli, and Ali G. Turhan. "A Novel Metabolic Transcriptome Identified in Myelodysplastic Syndromes (MDS) Correlates with OMS Classification and Poor Prognosis." Blood 132, Supplement 1 (2018): 5495. http://dx.doi.org/10.1182/blood-2018-99-110678.
Full textPerrone, Olivia, Tiziana Coppola, James Bartram, Waseem Nasr, Juying Xu, and Marie-Dominique Filippi. "The Effect of SCD-1 Inhibition on Human Hematopoietic Stem Cell Mitochondrial Metabolism, Cell Proliferation, and Differentiation Potential." Blood 142, Supplement 1 (2023): 1308. http://dx.doi.org/10.1182/blood-2023-185260.
Full textPoulaki, Aikaterini, Theodora Katsila, Emilia S. Hatziyannis, et al. "Metabolic Reprogramming in Myelodysplastic Syndromes." Blood 144, Supplement 1 (2024): 6694. https://doi.org/10.1182/blood-2024-211216.
Full textDevaraj, Sridevi, and Ishwarlal Jialal. "Dysfunctional Endothelial Progenitor Cells in Metabolic Syndrome." Experimental Diabetes Research 2012 (2012): 1–5. http://dx.doi.org/10.1155/2012/585018.
Full textDalloul, Ali H., Claire Patry, Jean Salamero, Bruno Canque, Fernanda Grassi, and Christian Schmitt. "Functional and Phenotypic Analysis of Thymic CD34+CD1a− Progenitor-Derived Dendritic Cells: Predominance of CD1a+ Differentiation Pathway." Journal of Immunology 162, no. 10 (1999): 5821–28. http://dx.doi.org/10.4049/jimmunol.162.10.5821.
Full textNishida, Yuki, Edward Ayoub, Darah Scruggs, et al. "Stem-Cell Enriched Cellular Hierarchy of TP53 Mutant Acute Myeloid Leukemia Is Vulnerable to Targeted Protein Degradation of c-MYC." Blood 142, Supplement 1 (2023): 583. http://dx.doi.org/10.1182/blood-2023-174938.
Full textRai, Richa, Foramben Patel, Stella Melana, et al. "Rigosertib in Combination with Azacitidine Impacts Metabolic and Differentiation Pathways in the MDS-L Cell Line." Blood 136, Supplement 1 (2020): 35–36. http://dx.doi.org/10.1182/blood-2020-142908.
Full textForte, Dorian, Roberto Maria Pellegrino, Francesco Fabbri, et al. "Circulating Extracellular Vesicles from Acute Myeloid Leukemia Patients Drive Distinct Metabolic Profile of Leukemic Cells and Reveal Crucial Lipidomic Biomarkers." Blood 138, Supplement 1 (2021): 3471. http://dx.doi.org/10.1182/blood-2021-150339.
Full textRattazzi, Marcello, Sabina Villalta, Silvia Galliazzo, et al. "Low CD34+ cells, high neutrophils and the metabolic syndrome are associated with an increased risk of venous thromboembolism." Clinical Science 125, no. 4 (2013): 211–22. http://dx.doi.org/10.1042/cs20120698.
Full textKuntz, Elodie Marie, Pablo Baquero, Tessa L. Holyoake, Eyal Gottlieb, and G. Vignir Helgason. "Therapy Resistant CML Stem Cells Are Dependent on Mitochondrial Oxidative Metabolism for Their Survival." Blood 128, no. 22 (2016): 932. http://dx.doi.org/10.1182/blood.v128.22.932.932.
Full textWu, Andrew, Katharina Rothe, Min Chen, et al. "Inhibition of the MiR-185-PAK6-Mediated Survival and Metabolic Pathways Selectively Targets Drug-Resistant CML Stem/Progenitor Cells." Blood 134, Supplement_1 (2019): 4138. http://dx.doi.org/10.1182/blood-2019-127826.
Full textDíaz-Flores, Lucio, Ricardo Gutiérrez, Maria Pino García, et al. "Cd34+ Stromal Cells/Telocytes in Normal and Pathological Skin." International Journal of Molecular Sciences 22, no. 14 (2021): 7342. http://dx.doi.org/10.3390/ijms22147342.
Full textThomas, Geethu, Laura Garcia Prat, Marcela Gronda, et al. "The Metabolic Enzyme Hexokinase 2 Localizes to the Nucleus in AML and Normal Hematopoietic Stem/Progenitor Cells to Maintain Stemness." Blood 132, Supplement 1 (2018): 2795. http://dx.doi.org/10.1182/blood-2018-99-110021.
Full textSubedi, Amit, Qiang Liu, David Sharon, et al. "Nicotinamide Phosphoribosyltransferase Inhibitors Induce Apoptosis of AML Stem Cells through Dysregulation of Lipid Metabolism." Blood 136, Supplement 1 (2020): 25–26. http://dx.doi.org/10.1182/blood-2020-142404.
Full textPershina, Pakhomova, Widera, et al. "Gender Differences in the Pharmacological Actions of Pegylated Glucagon-Like Peptide-1 on Endothelial Progenitor Cells and Angiogenic Precursor Cells in a Combination of Metabolic Disorders and Lung Emphysema." International Journal of Molecular Sciences 20, no. 21 (2019): 5414. http://dx.doi.org/10.3390/ijms20215414.
Full textKrüger, Karsten, Rainer Klocke, Julia Kloster, Sigrid Nikol, Johannes Waltenberger, and Frank C. Mooren. "Activity of daily living is associated with circulating CD34+/KDR+ cells and granulocyte colony-stimulating factor levels in patients after myocardial infarction." Journal of Applied Physiology 116, no. 5 (2014): 532–37. http://dx.doi.org/10.1152/japplphysiol.01254.2013.
Full textMichurova, Marina Sergeevna, Victor Yur'evich Kalashnikov, Olga Michailovna Smirnova, Olga Nikolaevna Ivanova, and Sergey Anatol'evich Terekhin. "Mobilization of endothelial progenitor cells after endovascular interventions in patients with type 2 diabetes mellitus." Diabetes mellitus 17, no. 4 (2014): 35–42. http://dx.doi.org/10.14341/dm2014435-42.
Full textGuo, Bin, Xinxin Huang та Hal E. Broxmeyer. "Antagonizing PPARγ Expands Human Hematopoietic Stem and Progenitor Cells By Switching on FBP1-Repressed Glycolysis and Preventing Differentiation". Blood 130, Suppl_1 (2017): 709. http://dx.doi.org/10.1182/blood.v130.suppl_1.709.709.
Full textPierre-Louis, Olivier, Denis Clay, Bernadette Guerton, et al. "A New Multiparametric Flow Cytometry Technique Based on Combined Side Population (SP) and Aldehyde Deshydrogenase (ALDH) Functionalities Identifies a Hierarchy within the Human Hematopoietic Stem/Progenitor Compartment." Blood 110, no. 11 (2007): 2226. http://dx.doi.org/10.1182/blood.v110.11.2226.2226.
Full textForte, Dorian, Filippo Maltoni, Samantha Bruno, et al. "Single-Cell Metabolic Profiling Integrated with Extracellular Vesicle Analysis Reveals Novel Metabolic Vulnerabilities and Prognostic Biomarkers in Acute Myeloid Leukemia." Blood 142, Supplement 1 (2023): 1598. http://dx.doi.org/10.1182/blood-2023-185909.
Full textKikushige, Yoshikane, Toshihiro Miyamoto, Takahiro Maeda, and Koichi Akashi. "Human Acute Leukemia Is Addicted to Branched-Chain Amino Acid Metabolism to Maintain Leukemia Stemness." Blood 134, Supplement_1 (2019): 2516. http://dx.doi.org/10.1182/blood-2019-129372.
Full textMendler, Jason H., Marlene Balys, Umayal Sivagnanalingam, et al. "Distinct Properties of Leukemia Stem Cells in Primary Refractory Acute Myeloid Leukemia." Blood 126, no. 23 (2015): 685. http://dx.doi.org/10.1182/blood.v126.23.685.685.
Full textQiu, Jiajing, Jana Gjini, Tasleem Arif, Kateri Moore, Miao Lin, and Saghi Ghaffari. "Using mitochondrial activity to select for potent human hematopoietic stem cells." Blood Advances 5, no. 6 (2021): 1605–16. http://dx.doi.org/10.1182/bloodadvances.2020003658.
Full textAntonova, E. I., D. I. Omarova, N. V. Firsova, and K. A. Krasnikova. "The Role of Liver Progenitor Cells in Postembryonic Development of <i>Rana terrestris</i> under Normal Physiological Conditions." Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki 166, no. 1 (2024): 38–65. http://dx.doi.org/10.26907/2542-064x.2024.1.38-65.
Full textChu, Su, Tinisha McDonald, and Ravi Bhatia. "Enhanced Phosphorylation and Altered Localization Lead to Impairment of p27kip Activity in CML Progenitor Cells Despite Enhanced Protein Translation and Expression." Blood 110, no. 11 (2007): 999. http://dx.doi.org/10.1182/blood.v110.11.999.999.
Full textMantel, Charlie, Steven Messina-Graham, Akira Moh, Xin-Yuan Fu, and Hal E. Broxmeyer. "The Earliest Stages of Loss of Stem Cell Self-Renewal in-Vivo Is Linked to Upregulated Biosynthesis of “Quiet” Mitochondria and Is Influenced by CXCR4 Activation and STAT3 Gene Deletion." Blood 114, no. 22 (2009): 2546. http://dx.doi.org/10.1182/blood.v114.22.2546.2546.
Full textIrifune, Hidetoshi, Yu Kochi, Masayasu Hayashi, Yoshikane Kikushige, Toshihiro Miyamoto, and Koichi Akashi. "Identification of GPAT1 As a Novel Therapeutic Target for Acute Leukemia By Inhibiting Leukemia Specific Metabolism." Blood 134, Supplement_1 (2019): 1384. http://dx.doi.org/10.1182/blood-2019-125661.
Full textPeng, Ching-Tien. "Metabolic Reprogramming of Human Mitochondrial NAD(P)+-Dependent-Malic Enzyme 2 in Acute Myeloid Leukemia." Blood 134, Supplement_1 (2019): 5168. http://dx.doi.org/10.1182/blood-2019-123339.
Full textGueller, Saskia, Martina Komor, Julian C. Desmond, et al. "Identification of Putative New Tumor Suppressor Genes in Highly Purified CD34+ Bone Marrow Cells from Patients with Myelodysplastic Syndromes." Blood 104, no. 11 (2004): 204. http://dx.doi.org/10.1182/blood.v104.11.204.204.
Full textZarou, Martha M., Kevin Rattigan, Zuzana Brabcova, et al. "Inhibition of Folate Metabolism Drives Autophagy-Dependent Differentiation and Reduces Survival of Therapy-Resistant Leukaemic Stem Cells." Blood 138, Supplement 1 (2021): 2543. http://dx.doi.org/10.1182/blood-2021-149664.
Full textBosman, Matthieu C. J., Jan J. Schuringa, Wim J. Quax та Edo Vellenga. "Identification of the TAK1-NF-κB Axis As Critical Regulator of AML Stem and Progenitor Cell Survival." Blood 120, № 21 (2012): 2982. http://dx.doi.org/10.1182/blood.v120.21.2982.2982.
Full textRedondo Monte, Enric, Anja Wilding, Georg Leubolt, et al. "Loss of ZBTB7A Facilitates RUNX1/RUNX1T1-Dependent Clonal Expansion and Sensitizes for Metabolic Inhibition." Blood 132, Supplement 1 (2018): 1499. http://dx.doi.org/10.1182/blood-2018-99-114789.
Full textCarter, Bing Z., Po Yee Mak, Wenjing Tao, et al. "Mcl-1/CDK9 Targeting By AZD5991/AZD4573 Overcomes Intrinsic and Acquired Venetoclax Resistance in Vitro and In Vivo in PDX Model of AML through Modulation of Cell Death and Metabolic Functions." Blood 132, Supplement 1 (2018): 768. http://dx.doi.org/10.1182/blood-2018-99-113491.
Full textReiman, Lauren T., My H. Vu, Michael Cotez-Bacolot, Brent L. Wood, and Alexandra E. Kovach. "Flow Cytometric Quantitation of CD34+ Progenitors in Peripheral Blood: An Underutilized Tool in Diagnostic Evaluation of Pancytopenia." Blood 144, Supplement 1 (2024): 1316. https://doi.org/10.1182/blood-2024-205737.
Full textOrchard, Paul, Glen D. Raffel, Carolyn H. Condon, et al. "Preliminary Phase 2 Results Demonstrate Engraftment with Minimal Neutropenia with MGTA-456, a CD34+ Expanded Cord Blood (CB) Product in Patients Transplanted for Inherited Metabolic Disorders (IMD)." Blood 132, Supplement 1 (2018): 3467. http://dx.doi.org/10.1182/blood-2018-99-115102.
Full textLahey, Ryan, Jesper Bonde, and Jan A. Nolta. "Uptake of Protamine Sulphate Complexed Fluorescent Nano-Particles Is Defined by Cell Cycle Status in Primary Human CD34+ Cells: Use of a Multi-Color p27 kip1 Based Flow Cytometric Assay." Blood 106, no. 11 (2005): 1363. http://dx.doi.org/10.1182/blood.v106.11.1363.1363.
Full textMistry, Jayna J., Charlotte Hellmich, Jamie A. Moore, et al. "Daratumumab Inhibits AML Metabolic Capacity and Tumor Growth through Inhibition of CD38 Mediated Mitochondrial Transfer from Bone Marrow Stromal Cells to Blasts in the Leukemic Microenvironment." Blood 134, Supplement_1 (2019): 1385. http://dx.doi.org/10.1182/blood-2019-128592.
Full textThomas, Geethu Emily, Grace Egan, Laura Garcia Prat, et al. "The Metabolic Enzyme Hexokinase 2 Localizes to the Nucleus in AML and Normal Hematopoietic Stem/Progenitor Cells to Maintain Stemness." Blood 136, Supplement 1 (2020): 1–2. http://dx.doi.org/10.1182/blood-2020-135858.
Full textWoolthuis, Carolien M., Hendrik JM de Jonge, Annet Z. Vos, et al. "Gene Expression Profiling In Leukemic Stem Cell-Enriched AML CD34+ Cell Fraction Identifies Target Genes That Predict Prognosis In Normal Karyotype AML." Blood 116, no. 21 (2010): 952. http://dx.doi.org/10.1182/blood.v116.21.952.952.
Full textAlt, Ruediger, Thomas Riemer, Oliver Fiehn, Dietger Niederwieser, and Michael Cross. "Evidence for Restricted Glycolytic Metabolism in Primary CD133+ Cells." Blood 106, no. 11 (2005): 1726. http://dx.doi.org/10.1182/blood.v106.11.1726.1726.
Full textXiang, Wei, Yi Hui Lam, Collin Sng, et al. "Mefloquine Effectively Targets Blast Phase Chronic Myeloid Leukemia through Inducing Oxidative Stress and Lysosomal Disruption." Blood 128, no. 22 (2016): 5426. http://dx.doi.org/10.1182/blood.v128.22.5426.5426.
Full textMajidi, Fatemeh, Oumaima Stambouli, Ron-Patrick Cadeddu, et al. "Effect of the Neddylation Inhibitor Pevonedistat on Normal Hematopoietic Stem Cell Subsets and Immune Cell Composition." Blood 138, Supplement 1 (2021): 4787. http://dx.doi.org/10.1182/blood-2021-150095.
Full textWang, DaQuan, Bo Qiu, Qianwen Liu, et al. "Value of Patlak-Ki from ultra-high sensitivity dynamic total body [18F]FDG PET/CT for evaluation of treatment response to induction immuno-chemotherapy in locally advanced non-small cell lung cancer (LA-NSCLC) patients." Journal of Clinical Oncology 41, no. 16_suppl (2023): e20508-e20508. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.e20508.
Full textBayraktar, Ulas D., and Maricer Escalon. "An Unusual Presentation of Acute Biphenotypic Leukemia without Bone Marrow Involvement." Blood 112, no. 11 (2008): 3995. http://dx.doi.org/10.1182/blood.v112.11.3995.3995.
Full textSong, Byung Hoo, Su Young Son, Hyun Kyu Kim, et al. "Profiling of Metabolic Differences between Hematopoietic Stem Cells and Acute/Chronic Myeloid Leukemia." Metabolites 10, no. 11 (2020): 427. http://dx.doi.org/10.3390/metabo10110427.
Full textGoncalves, Kevin A., Shuping Li, Melissa L. Brooks, Sharon L. Hyzy, Anthony E. Boitano, and Michael P. Cooke. "MGTA-456, a First-in-Class Cell Therapy Produced from a Single Cord Blood Unit, Enables a Reduced Intensity Conditioning Regimen and Enhances Speed and Level of Human Microglia Engraftment in the Brains of NSG Mice." Blood 132, Supplement 1 (2018): 115. http://dx.doi.org/10.1182/blood-2018-99-118258.
Full textGanan-Gomez, Irene, Kelly S. Chien, Feiyang Ma, et al. "The Transcriptional and Epigenetic Reprogramming of Aged Hematopoietic Stem Cells Drives Myeloid Rewiring in Clonal Hematopoiesis-Associated Cytopenias." Blood 138, Supplement 1 (2021): 3273. http://dx.doi.org/10.1182/blood-2021-150663.
Full text