Dissertations / Theses on the topic 'Metal-Air Batteries'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 20 dissertations / theses for your research on the topic 'Metal-Air Batteries.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Hopkins, Brandon J. (Brandon James). "Stopping self-discharge in metal-air batteries." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120466.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 67-78).
Metal-air batteries boast high theoretical energy densities, but negative electrode corrosion can severely reduce their usable capacity and commercial utility. Most methods to mitigate corrosion focus on electrode and electrolyte modification such as electrode alloying, electrolyte additives, and gel and nonaqueous electrolytes. These methods, however, either insufficiently suppress the parasitic reaction or compromise power and energy density. This thesis focuses on a different approach to corrosion mitigation involving electrolyte displacement from the electrode surface. Multiple electrolyte-displacement concepts were generated and investigated. The most promising of the concepts was the reversible displacement of the electrolyte from the electrode surface with an oil. To enable this method, the fundamental physics of underwater oil-fouling resistant surfaces was investigated, tested, and characterized. Design equations that aid in the appropriate selection of electrodes, displacing oils, and separator membranes were also developed. The oil displacement method was demonstrated in a primary (single-use) aluminum-air (Al-air) battery that achieved a 420% increase in useable energy density and was estimated to enable pack-level energy densities as high as 700 Wh 1- and 900 Wh kg-1. This method could, in principle, be used in any of the metal-air batteries, aqueous or nonaqueous, or in other energy storage systems that suffer from corrosion if appropriate displacing oils and separator membranes are found using the discussed design principles. With the oil displacement method, aqueous metal-air batteries that rely on abundant, broadly dispersed materials could provide safe, low-cost, sustainable primary and secondary (rechargeable) batteries for many applications including grid-storage, off-grid storage, robot power, and vehicular propulsion.
by Brandon J. Hopkins.
Ph. D.
Thompson, Stephen. "Bi-functional oxygen catalysts for metal-air flow-batteries." Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/393071/.
Full textKang, ShinYoung. "Ab initio prediction of thermodynamics in alkali metal-air batteries." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/89952.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 93-100).
Electric vehicles ("EVs") require high-energy-density batteries with reliable cyclability and rate capability. However, the current state-of-the-art Li-ion batteries only exhibit energy densities near ~150 Wh/kg, limiting the long-range driving of EVs with one charge and hindering their wide-scale commercial adoption.1-3 Recently, non-aqueous metal-O₂ batteries have drawn attention due to their high theoretical specific energy.2, 4-6 Specifically, the issues surrounding battery studies involve Li-O₂ and Na-O₂ batteries due to their high theoretical specific energies of 3.5 kWh/kg (assuming Li 20 2 as a discharge product in Li-O₂ batteries) and 1.6 and 1.1 kWh/kg (assuming Na₂O₂ and NaO₂ as discharge products, respectively, in Na-O₂ batteries). Since the potential of Li-O₂ batteries as an energy storage system was first proposed in 1996,1 various studies have criticized and verified their shortcomings, such as their low power density, poor cyclability, and poor rate capability. ₇, ₈ Substantial research attempts have been made to identify the cause of the high overpotentials and electrolyte decomposition and to search for better cathode/electrolyte/anode and/or catalyst material combinations. However, Li-O₂ battery technology remains in its infancy primarily due to the lack of understanding of the underlying mechanisms. Therefore, we investigate the charging mechanism, which contributes to the considerable energy loss using first-principles calculations and propose a new charging mechanism based on experimental observations and knowledge concerning Li-ion and Na-ion batteries. Most studies on metal-O₂ batteries have mainly focused on Li-O₂ batteries. However, recently, the promising performance of Na-O₂ systems has been reported.₉, ₁₀ Although Na-O₂ batteries exhibit slightly lower theoretical specific energies than those of the Li-O₂ batteries as specified above, the chemical difference between the two alkali metals substantially distinguishes the electrochemistry properties of Na-O₂ and Li-O₂. In the Na-O₂ system, both NaO₂ and Na₂O₂ are stable compounds, while in the Li-O system, LiO₂ is not a stable compound under standard state conditions (300 K and 1 atm).₁₁, ₁₂ Presumably, due to this chemical difference, the Na-O₂ system has exhibited a much smaller charging overpotential, as low as 0.2 V, when NaO₂ is formed as a discharge product, compared with that in Li-O₂ system, >1 V. Such a low charging overpotential in Na-O₂ batteries demonstrates their potential as a next generation electrochemical system for commercially viable EVs .₉,₁₀ In this thesis, we study the thermodynamic stability of Na-O compounds to identify the phase selection conditions that affect the performance of Na-O₂ batteries.
by ShinYoung Kang.
Ph. D.
Alwast, Dorothea [Verfasser]. "Electrochemical Model Studies on Metal-air and Lithium-ion Batteries / Dorothea Alwast." Ulm : Universität Ulm, 2021. http://d-nb.info/1237750822/34.
Full textHosseini-Benhangi, Pooya. "Bifunctional oxygen reduction/evolution catalysts for rechargeable metal-air batteries and regenerative alkaline fuel cells." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/60227.
Full textApplied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
PEZZOLATO, LORENZO. "Fe-N-C non-noble catalysts for applications in Fuel Cells and Metal Air Batteries." Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2809320.
Full textZan, Lingxing [Verfasser]. "Metal-air Batteries: RRDE and EC-SPM Studies of Electrode Kinetics and Electrode Structure / Lingxing Zan." Bonn : Universitäts- und Landesbibliothek Bonn, 2017. http://d-nb.info/1149154039/34.
Full textLiu, Chenjuan. "Exploration of Non-Aqueous Metal-O2 Batteries via In Operando X-ray Diffraction." Doctoral thesis, Uppsala universitet, Strukturkemi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-330889.
Full textGehring, Markus Verfasser], Rüdiger-A. [Akademischer Betreuer] [Eichel, Dirk Uwe [Akademischer Betreuer] Sauer, and Joachim [Akademischer Betreuer] Mayer. "Electrospun fibres as efficient cathodes for metal-air batteries / Markus Gehring ; Rüdiger-A. Eichel, Dirk Uwe Sauer, Joachim Mayer." Aachen : Universitätsbibliothek der RWTH Aachen, 2020. http://d-nb.info/122621858X/34.
Full textAbdelghani-Idrissi, Soufiane. "La charge rapide d'une batterie métal-air par la maîtrise de la fluidique diphasique." Electronic Thesis or Diss., Université Paris sciences et lettres, 2020. http://www.theses.fr/2020UPSLS013.
Full textThe fast charge of metal-air batteries represent one of the main scientific and technical challenges facing this technology. Oxygen bubbles formed during the charge process has a negative impact on the performances of the cells. Using flowing electrolyte for the evacuation of oxygen bubbles leads to a decrease of the electric potential of the gas evolving electrodes. For a given current, the electrode has more active surface, decreasing its potential. Optical measurement under microscope shows the bimodal distribution of the bubbles sizes. This repartition trends to a uni-modal distribution when the flow rate of the electrolyte increases. Those electrochemical and optical characterizations bring information to develop an analytical modelling for the predictions of the dynamic behavior of these systems. A numerical simulation is also proposed to complete the analytical model. This simulation is able to reproduce the oscillatory behavior at high currents. The optimization of the energy efficiency of the process is done by calculating and choosing an optimal flow rate, corresponding to the best balance between the power gained and the hydraulic power consumed by the flow. The decrease of the hydraulic power needed is done by the adaptation of the geometry of the flow cells. Triangular configuration for the inlet and outlet zones of the flow are tested and shows better characteristics for natural and forced evacuation of the bubbles. A preliminary study and outlooks of the effect of flowing electrolyte on zinc dendrites are presented. Flowing electrolyte increase the time before a short-circuit occurs
De, Villiers Daniel. "The application of new generation batteries in old tactical radios / D. de Villiers." Thesis, North-West University, 2007. http://hdl.handle.net/10394/738.
Full textThesis (M.Ing. (Electronical Engineering))--North-West University, Potchefstroom Campus, 2008.
Bertolotti, Bruno. "Élaboration de membranes échangeuses d’anions à architecture réseaux interpénétrés de polymères pour des batteries lithium-air." Thesis, Cergy-Pontoise, 2013. http://www.theses.fr/2013CERG0676/document.
Full textThis work focuses on the synthesis and characterization of polymer membranes to be used as anion exchange membranes for protection on an air electrode in a new lithium–air battery for electric vehicle. In these materials showing interpenetrating polymer networks (IPN) architecture, a hydrogenated cationic polyelectrolyte network, the poly(epichlorohydrin) (PECH), is associated with a neutral network, which can be either hydrogenated or fluorinated. First, the synthesis of the polyelectrolyte network and the membrane/electrode assembly were optimized. Second, a first IPN series associating the PECH network with a poly(hydroxyethyl methacrylate) network was synthesized. Third, the same PECH network was associated with a fluorinated polymer network. All the materials were characterized, and optimal synthesis methods as well as an optimal composition were determined for each association. The IPNs show improved properties compared with the single PECH network. The air electrode protected by these new anion exchange membranes shows improved stability in the working conditions of the lithium-air battery. Specifically, a lifetime of 1000 h was obtained when the electrode was modified with a fluorinated IPN, a 20-fold increase in the lifetime of the non-modified electrode
Gutsche, Christian [Verfasser]. "Electrochemical Stability of Noble-Metal Based Nanoparticles as Oxygen Reduction and Evolution Catalysts for Vanadium Air Redox Flow Batteries / Christian Gutsche." Aachen : Shaker, 2016. http://d-nb.info/1101184442/34.
Full textAslanbas, Özgür Verfasser], Rüdiger-A. [Akademischer Betreuer] [Eichel, Joachim [Akademischer Betreuer] Mayer, and Egbert [Akademischer Betreuer] Figgemeier. "Synthesis and characterization of Al-Si alloys for anode materials of metal-air batteries / Özgür Aslanbas ; Rüdiger-A. Eichel, Joachim Mayer, Egbert Figgemeier." Aachen : Universitätsbibliothek der RWTH Aachen, 2021. http://d-nb.info/1240765541/34.
Full textQueiroz, Adriana Coêlho. "Síntese e estudo da atividade eletrocatalítica de óxidos de metais de transição e de nanopartículas de prata e ouro para a reação de redução de oxigênio." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/75/75131/tde-25102011-170304/.
Full textThe oxygen reduction reaction (ORR) was studied on electrocatalysts composed by pure and mixed transition metal oxides of Mn, Co, and Ni, including spinel-like structures, and by Ag, Au, and Ag3M/C (M= Au, Pt, Pd e Cu) bimetallic nanoparticles, in alkaline electrolyte. The transition metal oxides were synthesized by thermal decomposition of their nitrates, and the silver and gold-based nanoparticles by chemical reduction using borohydride. The electrocatalysts were characterized by X-Ray Diffraction and X-Ray Absorption Spectroscopy (in the case of the metal oxides). The manganese-based oxide materials showed high activity for the ORR, in which the in situ spectroscopic results evidenced the Mn(IV) to Mn(III) reduction, in the range of the ORR onset. In this case, the electrocatalytic activities were correlated to the transfer of electron from Mn(III) to O2. However, they presented strong deactivation after several potentiodynamic cycles, which was ascribed to the formation of the electrochemically inactive phase of Mn3O4, as indicated by the XRD results, after the electrochemical experiments. On the other hand, the MnCo2O4 spinel-like material showed high activity and stability for the ORR. Its high electocatalytic activity was attributed to the CoII/CoIII redox pair, taking place at higher potentials, in relation to that of the CoOx e MnOx pure phases, due to the Co and Mn interactions in the spinel lattice. Contrarily to the behavior observed for the manganese-based materials, the spinel oxide presented high stability, which was ascribed to the non alteration of its crystallographic structure in the range of potentials tha the ORR takes place. For the Au and Ag-based materials, the electrochemical experiments indicated higher electrocatalytic activities for Ag3Au/C. In this case, its higher activity as associated to two main aspects: (i) to a synergetic effect, in which the gold atoms act in the activation region, facilitating the hydrogen addition, and the neighboring Ag atoms promoting the O-O bond breaking, leading the ORR to the 4-electrons pathway; (ii) to the increased Ag-O bond strength, due to the electronic interaction between Ag and the Au atoms, resulting in a faster O-O bond breaking, enhancing the electrocatalytic activity of the Ag atoms in the Ag3Au/C nanoparticle, in relation to that on the pure Ag. Therefore, the ORR presented lower overpotential and higher number of electrons in the Ag3Au/C electrocatalyst, when compared to the other investigated bimetallic nanoparticles.
Khodayari, Mehdi [Verfasser]. "Fuel Cells, Metal/Air Batteries : characterization of dual thin-layer flow through cell and determination of solubility and diffusion coefficient of oxygen in aqueous and non-aqueous electrolytes / Mehdi Khodayari." Bonn : Universitäts- und Landesbibliothek Bonn, 2015. http://d-nb.info/1077290101/34.
Full textChen, Zhu. "Nitrogen-Doped Carbon Materials as Oxygen Reduction Reaction Catalysts for Metal-Air Fuel Cells and Batteries." Thesis, 2012. http://hdl.handle.net/10012/6718.
Full textAnju, V. G. "Electrocatalysis using Ceramic Nitride and Oxide Nanostructures." Thesis, 2016. http://etd.iisc.ernet.in/handle/2005/2919.
Full textChin, Chih-Chun, and 金智駿. "Preparation of Mesoporous Metal Oxide Composites as Electrocatalysts by Soft Template Method for Cathode Material of Lithium-Air Batteries." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/31888056569858071372.
Full text國立高雄大學
應用化學系碩士班
103
Oxygen reduction reactions ( ORR ) at the air cathode in non-aqueous electrolytes are well-known to influence the performance of Li-air batteries. In this work, highly ordered mesoporous metal oxide composites were designed as electrocatalysts and porous air cathode material in the Li-air battery. The highly ordered mesoporous MnO2/C and TiO2/C composites were synthesized by soft template method and hydrothermal method, combining solvent-evaporation-induced self-assembly and the in situ carbothermal reduction reaction and using the triblock copolymer F127 as the structure-directing agent and resol as the carbon source. In summary, the XRD patterns show metal oxide can be attributed to a pure and well-crystallized MnO2 and TiO2 phase. The metal oxide composites with large specific surface area 424 m2/g ( MnO2/C ) and 599 m2/g ( TiO2/C ). The porous structure of metal oxide composites provides high electrocatalytic active sites and sufficient transmission paths for O2 and electrolyte. Both ordered metal oxide composites show good elecrcatalytic activity toward Oxygen Reduction Reactions ( ORR ) / Oxygen Evolution Reactions ( OER ) in non-aqueous electrolytes. Employing the ordered mesoporous metal oxides as electrocatalyst in Li-air batteries, the Li-air batteries display lower overpotential and good discharge capacity. This result demonstrates ordered mesoporous metal oxide composites are promising cathode electrocatalysts for non-aqueous Li-air batteries.
Chien-JuiLo and 羅建睿. "Fabrication of Co-based metal-organic frameworks/ N-doped reduced graphene oxide nanocomposites as bifunctional electrocatalysts for Zn-air batteries." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/cxkg4p.
Full text