Journal articles on the topic 'Metal ammonia solutions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Metal ammonia solutions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Tran, N. E., and J. J. Lagowski. "Metal Ammonia Solutions: Solutions Containing Argentide Ions." Inorganic Chemistry 40, no. 5 (February 2001): 1067–68. http://dx.doi.org/10.1021/ic000333x.
Full textLeung, Kevin, and Félix S. Csajka. "Lattice Model for Metal Ammonia Solutions." Physical Review Letters 78, no. 19 (May 12, 1997): 3721–24. http://dx.doi.org/10.1103/physrevlett.78.3721.
Full textDeng, Zhihong, Glenn J. Martyna, and Michael L. Klein. "Electronic states in metal-ammonia solutions." Physical Review Letters 71, no. 2 (July 12, 1993): 267–70. http://dx.doi.org/10.1103/physrevlett.71.267.
Full textTran, N. E., and J. J. Lagowski. "ChemInform Abstract: Metal Ammonia Solutions: Solutions Containing Argentide Ions." ChemInform 32, no. 22 (May 26, 2010): no. http://dx.doi.org/10.1002/chin.200122010.
Full textHannongbua, Kiselev, and Heinzinger. "MOLECULAR DYNAMICS SIMULATIONS OF SUPERCRITICAL AMMONIA AND METAL-AMMONIA SOLUTIONS." Condensed Matter Physics 3, no. 2 (2000): 381. http://dx.doi.org/10.5488/cmp.3.2.381.
Full textCarlile, Colin, Ian McL Jamie, John W. White, Michael J. Prager, and William Stead. "Rotational tunnelling of ammonia in two-dimensional metal–ammonia solutions." J. Chem. Soc., Faraday Trans. 87, no. 1 (1991): 73–81. http://dx.doi.org/10.1039/ft9918700073.
Full textSOLIN, S. A. "TWO-DIMENSIONAL METAL-AMMONIA-SOLUTIONS IN GRAPHITE." Le Journal de Physique IV 01, no. C5 (December 1991): C5–311—C5–324. http://dx.doi.org/10.1051/jp4:1991536.
Full textBurkart, Rainer, and Ulrich Schindewolf. "Highly conducting states in metal–ammonia solutions." Physical Chemistry Chemical Physics 2, no. 14 (2000): 3263–68. http://dx.doi.org/10.1039/b002598o.
Full textLeung, Kevin, and Félix S. Csajka. "Metal ammonia solutions: A lattice model approach." Journal of Chemical Physics 108, no. 21 (June 1998): 9050–61. http://dx.doi.org/10.1063/1.476351.
Full textHeinzinger, K. "Computer simulations of metal-liquid ammonia solutions." Journal of Molecular Liquids 88, no. 1 (October 2000): 77–85. http://dx.doi.org/10.1016/s0167-7322(00)00139-2.
Full textDeng, Zhihong, Glenn J. Martyna, and Michael L. Klein. "Quantum simulation studies of metal–ammonia solutions." Journal of Chemical Physics 100, no. 10 (May 15, 1994): 7590–601. http://dx.doi.org/10.1063/1.466852.
Full textMukhomorov, V. K. "Magnetic properties of electrons in metal-ammonia solutions." Technical Physics 42, no. 8 (August 1997): 855–65. http://dx.doi.org/10.1134/1.1258747.
Full textARENDT, P. "A HIGH-CONDUCTING STATE IN LIQUID METAL-AMMONIA SOLUTIONS." Le Journal de Physique IV 01, no. C5 (December 1991): C5–245—C5–249. http://dx.doi.org/10.1051/jp4:1991529.
Full textHoward, Christopher A., and Neal T. Skipper. "Computer Simulations of Fulleride Anions in Metal-Ammonia Solutions." Journal of Physical Chemistry B 113, no. 11 (March 19, 2009): 3324–32. http://dx.doi.org/10.1021/jp8083502.
Full textChuev, Gennady N., and Pascal Quémerais. "Herzfeld instability versus Mott transition in metal–ammonia solutions." Comptes Rendus Physique 8, no. 3-4 (April 2007): 449–55. http://dx.doi.org/10.1016/j.crhy.2007.05.016.
Full textBurkart, Rainer, and Ulrich Schindewolf. "ChemInform Abstract: Highly Conducting States in Metal-Ammonia Solutions." ChemInform 31, no. 42 (October 17, 2000): no. http://dx.doi.org/10.1002/chin.200042005.
Full textSOLIN, S. A. "ChemInform Abstract: Two-Dimensional Metal-Ammonia-Solutions in Graphite." ChemInform 23, no. 32 (August 21, 2010): no. http://dx.doi.org/10.1002/chin.199232256.
Full textLikal’ter, A. A. "The metal-insulator transition and the phase transition in metal-ammonia solutions." Journal of Experimental and Theoretical Physics 84, no. 3 (March 1997): 516–21. http://dx.doi.org/10.1134/1.558170.
Full textZahir, Md Hasan, Shakhawat Chowdhury, Md Abdul Aziz, and Mohammad Mizanur Rahman. "Host–Guest Extraction of Heavy Metal Ions with p-t-Butylcalix[8]arene from Ammonia or Amine Solutions." International Journal of Analytical Chemistry 2018 (July 11, 2018): 1–11. http://dx.doi.org/10.1155/2018/4015878.
Full textQuemerais, P., J. L. Raimbault, and S. Fratini. "Polarization catastrophe in doped cuprates and metal-ammonia solutions. Metal-to-superconductor transition versus phase separation." Journal de Physique IV 12, no. 9 (November 2002): 227–30. http://dx.doi.org/10.1051/jp4:20020400.
Full textMahmudov, F. T. "EXTRACTION OF IONS OF SOME TRANSITION ELEMENTS AND THEIR AMMONIA COMPLEXES FROM SOLUTIONS ON Na-CLINOPTYLOLITE AND Na-MORDENITE." Azerbaijan Chemical Journal, no. 2 (June 2, 2022): 34–39. http://dx.doi.org/10.32737/0005-2531-2022-2-34-39.
Full textTerakado, O., T. Kamiyama, and Y. Nakamura. "Low-field EPR study of the metal–non-metal transition in sodium–ammonia solutions." Journal of the Chemical Society, Faraday Transactions 94, no. 7 (1998): 867–69. http://dx.doi.org/10.1039/a708597d.
Full textCHIEUX, P. "EVIDENCE FOR COARSE STRUCTURE (INTERMEDIATE RANGE ORDER) IN METAL-AMMONIA SOLUTIONS." Le Journal de Physique IV 01, no. C5 (December 1991): C5–373—C5–375. http://dx.doi.org/10.1051/jp4:1991545.
Full textDeng, Zhihong, Michael L. Klein, and Glenn J. Martyna. "Electronic states and the metal–insulator transition in caesium–ammonia solutions." J. Chem. Soc., Faraday Trans. 90, no. 14 (1994): 2009–13. http://dx.doi.org/10.1039/ft9949002009.
Full textPashitskiı̆, É. A. "Did Ogg really observe high-temperature superconductivity in metal-ammonia solutions?" Low Temperature Physics 24, no. 11 (November 1998): 835–36. http://dx.doi.org/10.1063/1.593686.
Full textChuev, Gennady N., and Marina V. Fedotova. "Electron–electron attraction caused by dispersion forces in metal–ammonia solutions." Chemical Physics Letters 556 (January 2013): 138–41. http://dx.doi.org/10.1016/j.cplett.2012.12.005.
Full textChuev, Gennady N., Pascal Quémerais, and Jason Crain. "Nature of the metal–nonmetal transition in metal–ammonia solutions. I. Solvated electrons at low metal concentrations." Journal of Chemical Physics 127, no. 24 (December 28, 2007): 244501. http://dx.doi.org/10.1063/1.2812244.
Full textRoss, Claudia B., Travis Wade, Richard M. Crooks, and Douglas M. Smith. "Electrochemical synthesis of metal nitride ceramic precursors in liquid ammonia electrolyte solutions." Chemistry of Materials 3, no. 5 (September 1991): 768–71. http://dx.doi.org/10.1021/cm00017a002.
Full textHung, Chang-Mao, Jie-Chung Lou, and Chia-Hua Lin. "Wet Air Oxidation of Aqueous Ammonia Solutions Catalyzed by Composite Metal Oxide." Environmental Engineering Science 20, no. 6 (November 2003): 547–56. http://dx.doi.org/10.1089/109287503770736069.
Full textButtersack, Tillmann, Philip E. Mason, Ryan S. McMullen, H. Christian Schewe, Tomas Martinek, Krystof Brezina, Martin Crhan, et al. "Photoelectron spectra of alkali metal–ammonia microjets: From blue electrolyte to bronze metal." Science 368, no. 6495 (June 4, 2020): 1086–91. http://dx.doi.org/10.1126/science.aaz7607.
Full textNicholas, Thomas C., Thomas F. Headen, Jonathan C. Wasse, Christopher A. Howard, Neal T. Skipper, and Andrew G. Seel. "Intermediate Range Order in Metal–Ammonia Solutions: Pure and Na-Doped Ca-NH3." Journal of Physical Chemistry B 125, no. 27 (July 2, 2021): 7456–61. http://dx.doi.org/10.1021/acs.jpcb.1c03843.
Full textNAKAMURA, Y. "PHYSICAL PROPERTIES OF ALKALI METAL-AMMONIA (AMINE) SOLUTIONS STUDIED BY MAGNETIC RESONANCE METHODS." Le Journal de Physique IV 01, no. C5 (December 1991): C5–61—C5–70. http://dx.doi.org/10.1051/jp4:1991507.
Full textArendt, P. "Dissipationless electric current flow through decomposing liquid metal-ammonia solutions between copper electrodes." Electrochimica Acta 30, no. 6 (June 1985): 709–18. http://dx.doi.org/10.1016/0013-4686(85)80117-1.
Full textBardina, E. S., Y. B. Elchishcheva, L. G. Chekanova, and A. S. Maksimov. "Research of the complex formation of neopentanic acid hydrazide with non-ferrous metal ions." Вестник Пермского университета. Серия «Химия» = Bulletin of Perm University. CHEMISTRY 10, no. 2 (2020): 143–49. http://dx.doi.org/10.17072/2223-1838-2020-2-143-149.
Full textBobik, Magdalena, Irena Korus, and Lidia Dudek. "The effect of magnetite nanoparticles synthesis conditions on their ability to separate heavy metal ions." Archives of Environmental Protection 43, no. 2 (June 27, 2017): 3–9. http://dx.doi.org/10.1515/aep-2017-0017.
Full textZhao, Ting Kai, Le Hao Liu, Guang Ming Li, and Mo Tang Tang. "Zinc and Cobalt Recovery from Co-Ni Residue of Zinc Hydrometallurgy by an Ammonia Process." Advanced Materials Research 396-398 (November 2011): 48–51. http://dx.doi.org/10.4028/www.scientific.net/amr.396-398.48.
Full textChuev, Gennady N., and Pascal Quémerais. "Nature of metal–nonmetal transition in metal–ammonia solutions. II. From uniform metallic state to inhomogeneous electronic microstructure." Journal of Chemical Physics 128, no. 14 (April 14, 2008): 144503. http://dx.doi.org/10.1063/1.2883695.
Full textMironov, V. E., G. L. Pashkov, and T. V. Stupko. "Thermodynamics of formation reaction and hydrometallurgical application of metal–ammonia complexes in aqueous solutions." Russian Chemical Reviews 61, no. 9 (September 30, 1992): 944–58. http://dx.doi.org/10.1070/rc1992v061n09abeh001008.
Full textImamura, Hayao, Takashi Yoshimura, and Yoshihisa Sakata. "Alloying of Yb–Cu and Yb–Ag utilizing liquid ammonia metal solutions of ytterbium." Journal of Solid State Chemistry 171, no. 1-2 (February 2003): 254–56. http://dx.doi.org/10.1016/s0022-4596(02)00161-5.
Full textUyama, Haruo, Yasushi Kanzaki, and Osamu Matsumoto. "Ion-exchange on synthetic zeolites in non-aqueous ammonia solutions of alkali metal nitrates." Materials Research Bulletin 22, no. 2 (February 1987): 157–64. http://dx.doi.org/10.1016/0025-5408(87)90066-3.
Full textArendt, P. "Distribution of Fröhlich supercurrents through a gel made from decomposing liquid metal-ammonia solutions." Solid State Communications 70, no. 11 (June 1989): 1001–5. http://dx.doi.org/10.1016/0038-1098(89)90181-6.
Full textKsandrov, Nikolai V., and Olga R. Ozhogina. "ADSORPTION OF AMMONIA WITH ACTIVATED COAL AG-3." IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 61, no. 8 (August 21, 2018): 53. http://dx.doi.org/10.6060/ivkkt201861008.5726.
Full textDye, James L. "The alkali metals: 200 years of surprises." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2037 (March 13, 2015): 20140174. http://dx.doi.org/10.1098/rsta.2014.0174.
Full textZemskova, Larisa, Vladimir Silant’ev, Eduard Tokar, and Andrei Egorin. "Synthesis of Inorganic Compounds in the Matrix of Polysaccharide Chitosan." Biomimetics 6, no. 3 (July 5, 2021): 45. http://dx.doi.org/10.3390/biomimetics6030045.
Full textImamura, Hayao, Koji Nishimura, Takashi Yoshimura, Hiroshi Yoshimochi, Masakazu Ueno, Yoshihisa Sakata, and Susumu Tsuchiya. "Catalysis of lanthanides deposited on oxide from Eu or Yb metal solutions in liquid ammonia." Journal of Molecular Catalysis A: Chemical 165, no. 1-2 (January 2001): 189–97. http://dx.doi.org/10.1016/s1381-1169(00)00414-3.
Full textBilewicz, A., R. Dybczynski, and J. Narbutt. "Ion exchange of some transition metal cations on hydrated titanium dioxide in aqueous ammonia solutions." Journal of Radioanalytical and Nuclear Chemistry Articles 158, no. 2 (April 1992): 273–82. http://dx.doi.org/10.1007/bf02047114.
Full textKułażyński, Marek, Krystyna Bratek, and Jerzy Walendziewski. "Optimization of an active phase composition in the low-temperature nitric oxide reduction catalyst." Polish Journal of Chemical Technology 9, no. 3 (January 1, 2007): 33–37. http://dx.doi.org/10.2478/v10026-007-0049-0.
Full textZabel, H., and D. A. Neumann. "Neutron scattering studies of potassium-ammonia layers in graphite." Canadian Journal of Chemistry 66, no. 4 (April 1, 1988): 666–71. http://dx.doi.org/10.1139/v88-115.
Full textTang, Xiaohui, Marc Debliquy, Driss Lahem, Yiyi Yan, and Jean-Pierre Raskin. "A Review on Functionalized Graphene Sensors for Detection of Ammonia." Sensors 21, no. 4 (February 19, 2021): 1443. http://dx.doi.org/10.3390/s21041443.
Full textKaewpuang-Ngam, Sutasinee, Koji Inazu, and Ken-Ichi Aika. "Selective wet air oxidation of diluted aqueous ammonia solutions over co-precipitated transition metal-aluminium catalysts." Research on Chemical Intermediates 28, no. 5 (July 2002): 471–77. http://dx.doi.org/10.1163/156856702760346888.
Full text