To see the other types of publications on this topic, follow the link: Metal carbene complexes.

Journal articles on the topic 'Metal carbene complexes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Metal carbene complexes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Öfele, K., E. Tosh, C. Taubmann, and W. A. Herrmann. "Carbocyclic Carbene Metal Complexes." Chemical Reviews 109, no. 8 (August 12, 2009): 3408–44. http://dx.doi.org/10.1021/cr800516g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

OEFELE, K., and F. R. KREISSL. "ChemInform Abstract: Transition Metal Carbene and Carbyne Complexes." ChemInform 26, no. 6 (August 18, 2010): no. http://dx.doi.org/10.1002/chin.199506264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fischer, Ernst Otto, Christos Apostolidis, Ernst Dornberger, Alexander C. Filippou, Basil Kanellakopulos, Bernhard Lungwitz, Jakob Müller, Bernhard Powietzka, Jean Rebizant, and Werner Roth. "Carben- und Carbin-Komplexe des Technetiums und Rheniums - Synthese, Struktur und Reaktionen / Carbene and Carbyne Complexes of Technetium and Rhenium - Synthesis, Structure and Reactions." Zeitschrift für Naturforschung B 50, no. 9 (September 1, 1995): 1382–95. http://dx.doi.org/10.1515/znb-1995-0916.

Full text
Abstract:
AbstractSynthesis, structure and reactions of technetium and rhenium complexes bearing metal-carbon multiple bonds are reported. Addition of LiPh to Cp*M (CO)3 (1a : M = Tc; 1b: M = Re) (Cp* = η5-C5Me5) in Et2O yields the acyl complexes Li[Cp*(CO)2MC(O)Ph]·Et2O (2a: M = Tc; 2 b: M = Re). These are converted with Et3OBF4 into the carbene complexes Cp*(CO)2M = C(OEt)Ph (3a, 3b). Reaction of 3a and 3 b with BCl3 affords the carbyne complexes [Cp*(CO)2M ≡ CPh]BCl4 (4a, 4b) in high yield. The acyl complex 2b can be directly converted into the carbyne complex [Cp*(CO)2Re ≡ CPh]Br (5b), when it is treated with oxalyl bromide. Nucleophiles add at the carbynecarbon atoms of 4a and 4b, as demonstrated by the reaction with NaOCy (Cy = cyclohexyl) to afford the carbene complexes Cp*(CO)2M = C(OCy)Ph (6a, 6b). Similarly, reaction of P(OMe)3 with [Cp*(CO)2Re ≡ CPh]Cl (5b'), the latter being generated in situ from 2b and oxalyl chloride, gives the ylide complex {Cp*(CO)2Re = C[P(OMe)3]Ph}Cl (7b'). In comparison, addition of P(OMe)3 to [Cp*(CO)2Tc ≡ CPh]Cl (5a'), generated in situ from 2a and oxalyl chloride, induces a carbvne-carbonvl coupling reaction resulting in the formation of the ketenyl complex . Thermolysis of the compounds 2a, 2b, 4a, 4b and 7b' has been studied in vacuo and the products of decomposition identified by IR spectroscopy. The solid-state structure of the carbene complexes 3 a and 3 b was determined by single crystal X-ray diffraction studies. Both compounds crystallize in the monoclinic space group P21/n with very similar unit cell data. Striking feature of the isostructural carbene complexes is the nearly perpendicular orientation of the carbene ligand relative to the Cp* ring.
APA, Harvard, Vancouver, ISO, and other styles
4

Michalak and Kośnik. "Chiral N-heterocyclic Carbene Gold Complexes: Synthesis and Applications in Catalysis." Catalysts 9, no. 11 (October 25, 2019): 890. http://dx.doi.org/10.3390/catal9110890.

Full text
Abstract:
N-Heterocyclic carbenes have found many applications in modern metal catalysis, due to the formation of stable metal complexes, and organocatalysis. Among a myriad of N-heterocyclic carbene metal complexes, gold complexes have gained a lot of attention due to their unique propensity for the activation of carbon-carbon multiple bonds, allowing many useful transformations of alkynes, allenes, and alkenes, inaccessible by other metal complexes. The present review summarizes synthetic efforts towards the preparation of chiral N-heterocyclic gold(I) complexes exhibiting C2 and C1 symmetry, as well as their applications in enantioselective catalysis. Finally, the emerging area of rare gold(III) complexes and their preliminary usage in asymmetric catalysis is also presented.
APA, Harvard, Vancouver, ISO, and other styles
5

Lin, Joseph C. Y., Roy T. W. Huang, Chen S. Lee, Amitabha Bhattacharyya, Wen S. Hwang, and Ivan J. B. Lin. "Coinage Metal−N-Heterocyclic Carbene Complexes." Chemical Reviews 109, no. 8 (August 12, 2009): 3561–98. http://dx.doi.org/10.1021/cr8005153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Longevial, Jean-François, Mamadou Lo, Aurélien Lebrun, Danielle Laurencin, Sébastien Clément, and Sébastien Richeter. "Molecular complexes and main-chain organometallic polymers based on Janus bis(carbenes) fused to metalloporphyrins." Dalton Transactions 49, no. 21 (2020): 7005–14. http://dx.doi.org/10.1039/d0dt00594k.

Full text
Abstract:
Janus bis(N-heterocyclic carbenes) composed of a porphyrin core with two N-heterocyclic carbene (NHC) heads fused to opposite pyrroles were used as bridging ligands for the preparation of metal complexes.
APA, Harvard, Vancouver, ISO, and other styles
7

Peters, Marius, Adinarayana Doddi, Thomas Bannenberg, Matthias Freytag, Peter G. Jones, and Matthias Tamm. "N-Heterocyclic Carbene-Phosphinidene and Carbene-Phosphinidenide Transition Metal Complexes." Inorganic Chemistry 56, no. 17 (August 22, 2017): 10785–93. http://dx.doi.org/10.1021/acs.inorgchem.7b01798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mungur, Shaheed A., Stephen T. Liddle, Claire Wilson, Mark J. Sarsfield, and Polly L. Arnold. "Bent metal carbene geometries in amido N-heterocyclic carbene complexes." Chemical Communications, no. 23 (2004): 2738. http://dx.doi.org/10.1039/b410074c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Office, Editorial. "The steric and electronic effects of metal-containing substituents on Fischer carbene metal clusters." Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie 28, no. 3 (September 6, 2009): 237–60. http://dx.doi.org/10.4102/satnt.v28i3.61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Liangru, Qi Guo, Yongmei Xiao, and Pu Mao. "Development of ChelatingN-Heterocyclic Carbene Metal Complexes." Chinese Journal of Organic Chemistry 35, no. 9 (2015): 1834. http://dx.doi.org/10.6023/cjoc201503040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Dielmann, Fabian. "The Organometallic Chemistry of Metal Carbene Complexes." Journal of Organometallic Chemistry 923 (September 2020): 121416. http://dx.doi.org/10.1016/j.jorganchem.2020.121416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Wulff, William D., and Scott R. Gilbertson. "Aldol reactions of transition metal carbene complexes." Journal of the American Chemical Society 107, no. 2 (January 1985): 503–5. http://dx.doi.org/10.1021/ja00288a040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Frenking, Gernot, Miquel Solà, and Sergei F. Vyboishchikov. "Chemical bonding in transition metal carbene complexes." Journal of Organometallic Chemistry 690, no. 24-25 (December 2005): 6178–204. http://dx.doi.org/10.1016/j.jorganchem.2005.08.054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Doddi, Adinarayana, Dirk Bockfeld, Thomas Bannenberg, Peter G. Jones, and Matthias Tamm. "N-Heterocyclic Carbene-Phosphinidyne Transition Metal Complexes." Angewandte Chemie 126, no. 49 (October 6, 2014): 13786–90. http://dx.doi.org/10.1002/ange.201408354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Doddi, Adinarayana, Dirk Bockfeld, Thomas Bannenberg, Peter G. Jones, and Matthias Tamm. "N-Heterocyclic Carbene-Phosphinidyne Transition Metal Complexes." Angewandte Chemie International Edition 53, no. 49 (October 6, 2014): 13568–72. http://dx.doi.org/10.1002/anie.201408354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Lindh, Linnea, Pavel Chábera, Nils W. Rosemann, Jens Uhlig, Kenneth Wärnmark, Arkady Yartsev, Villy Sundström, and Petter Persson. "Photophysics and Photochemistry of Iron Carbene Complexes for Solar Energy Conversion and Photocatalysis." Catalysts 10, no. 3 (March 10, 2020): 315. http://dx.doi.org/10.3390/catal10030315.

Full text
Abstract:
Earth-abundant first row transition metal complexes are important for the development of large-scale photocatalytic and solar energy conversion applications. Coordination compounds based on iron are especially interesting, as iron is the most common transition metal element in the Earth’s crust. Unfortunately, iron-polypyridyl and related traditional iron-based complexes generally suffer from poor excited state properties, including short excited-state lifetimes, that make them unsuitable for most light-driven applications. Iron carbene complexes have emerged in the last decade as a new class of coordination compounds with significantly improved photophysical and photochemical properties, that make them attractive candidates for a range of light-driven applications. Specific aspects of the photophysics and photochemistry of these iron carbenes discussed here include long-lived excited state lifetimes of charge transfer excited states, capabilities to act as photosensitizers in solar energy conversion applications like dye-sensitized solar cells, as well as recent demonstrations of promising progress towards driving photoredox and photocatalytic processes. Complementary advances towards photofunctional systems with both Fe(II) complexes featuring metal-to-ligand charge transfer excited states, and Fe(III) complexes displaying ligand-to-metal charge transfer excited states are discussed. Finally, we outline emerging opportunities to utilize the improved photochemical properties of iron carbenes and related complexes for photovoltaic, photoelectrochemical and photocatalytic applications.
APA, Harvard, Vancouver, ISO, and other styles
17

Jo, Minyoung, Jingbai Li, Alina Dragulescu-Andrasi, Andrey Yu Rogachev, and Michael Shatruk. "Incorporation of coinage metal–NHC complexes into heptaphosphide clusters." Dalton Transactions 49, no. 37 (2020): 12955–59. http://dx.doi.org/10.1039/d0dt03119d.

Full text
Abstract:
A Me3Si-protected P7 cage reacts with N-heterocyclic-carbene complexes of coinage metals to yield a mononuclear Cu(i) complex featuring a Cu(η4-P7) core and a trinuclear Au(i) complex with linearly coordinated metal ions attached to the P7 cluster.
APA, Harvard, Vancouver, ISO, and other styles
18

Fehlhammer, Wolf Peter, Robert Metzner, Peter Luger, and Zbigniew Dauter. "Metal Complexes of Functional Isocyanides, XXV. Amino(hydrazino)carbene Complexes." Chemische Berichte 128, no. 11 (November 1995): 1061–68. http://dx.doi.org/10.1002/cber.19951281102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Wulff, William D., Ralph W. Kaesler, Glen A. Peterson, and Peng Cho Tang. "Two-alkyne annulations of transition-metal carbene complexes via in situ generated vinyl carbene complexes." Journal of the American Chemical Society 107, no. 4 (February 1985): 1060–62. http://dx.doi.org/10.1021/ja00290a053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Herrmann, Wolfgang A., Karl Öfele, Denise v. Preysing, and Eberhardt Herdtweck. "Metal complexes of acyclic diaminocarbenes: links between N-heterocyclic carbene (NHC)- and Fischer-carbene complexes." Journal of Organometallic Chemistry 684, no. 1-2 (November 2003): 235–48. http://dx.doi.org/10.1016/s0022-328x(03)00754-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Visbal, Renso, and M. Concepción Gimeno. "N-heterocyclic carbene metal complexes: photoluminescence and applications." Chem. Soc. Rev. 43, no. 10 (2014): 3551–74. http://dx.doi.org/10.1039/c3cs60466g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Jiang, Li, Bodong Zhang, Guillaume Médard, Ari Paavo Seitsonen, Felix Haag, Francesco Allegretti, Joachim Reichert, Bernhard Kuster, Johannes V. Barth, and Anthoula C. Papageorgiou. "N-Heterocyclic carbenes on close-packed coinage metal surfaces: bis-carbene metal adatom bonding scheme of monolayer films on Au, Ag and Cu." Chemical Science 8, no. 12 (2017): 8301–8. http://dx.doi.org/10.1039/c7sc03777e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Hasson, Mohammed Mujbel, Basim H. Al-Zaidi, and Ahmad H. Ismail. "Synthesis and Characterization of Ag(I) Complexes Derived from New N-Heterocyclic Carbenes." Asian Journal of Chemistry 31, no. 5 (March 28, 2019): 1149–52. http://dx.doi.org/10.14233/ajchem.2019.21877.

Full text
Abstract:
Two new unsymmetrical imidazolium salts viz., [1-(4-ethylphenyl)-3-propyl-1H-imidazole-3-ium bromide] (3) and [1-(2,6-dimethylphenyl)-3-propyl-1H-imidazole-3-ium bromide] (4) have been synthesized via the reaction of propyl bromide with imidazole derivatives, [1-(4-ethylphenyl)-1Himidazole] (1) and [1-(2,6-dimethylphenyl)-1H-imidazole] (2) in absence of solvent. Then two new N-heterocyclic carbene silver complexes (5 and 6) were prepared through the reaction of imidazoluim salts (3 and 4) as a source of N-heterocyclic carbene with Ag2O by in situ method. These complexes can be used in the future as a transfer agent for preparing other transitional metal carbine complexes (NHCs) via transmetallation method. The formation of these compounds was confirmed by spectral analysis.
APA, Harvard, Vancouver, ISO, and other styles
24

Messelberger, Julian, Annette Grünwald, Philipp Stegner, Laura Senft, Frank W. Heinemann, and Dominik Munz. "Transmetalation from Magnesium–NHCs—Convenient Synthesis of Chelating π-Acidic NHC Complexes." Inorganics 7, no. 5 (May 22, 2019): 65. http://dx.doi.org/10.3390/inorganics7050065.

Full text
Abstract:
The synthesis of chelating N-heterocyclic carbene (NHC) complexes with considerable π-acceptor properties can be a challenging task. This is due to the dimerization of free carbene ligands, the moisture sensitivity of reaction intermediates or reagents, and challenges associated with the workup procedure. Herein, we report a general route using transmetalation from magnesium–NHCs. Notably, this route gives access to transition-metal complexes in quantitative conversion without the formation of byproducts. It therefore produces transition-metal complexes outperforming the conventional routes based on free or lithium-coordinated carbene, silver complexes, or in situ metalation in dimethyl sulfoxide (DMSO). We therefore propose transmetalation from magnesium–NHCs as a convenient and general route to obtain NHC complexes.
APA, Harvard, Vancouver, ISO, and other styles
25

Cole, Marcus L., Matthew R. Gyton, and Jason B. Harper. "Metal Complexes of an Ionic Liquid-Derived Carbene." Australian Journal of Chemistry 64, no. 8 (2011): 1133. http://dx.doi.org/10.1071/ch11227.

Full text
Abstract:
A range of metal carbene complexes containing the ionic liquid-derived N-heterocyclic carbene (NHC) 1-nbutyl-3-methylimidazol-2-ylidene (IBuMe, 1) have been prepared by (i) direct ligand substitution using the free NHC ([Mo(CO)5(IBuMe)] 2), (ii) transmetallation using the silver salt [AgCl(IBuMe)] (3) ([RhCl(NBD)(IBuMe)] (4) and [IrCl(COD)(IBuMe)] (5), NBD = 2,5-norbornadiene, COD = 1,5-cyclooctadiene) and (iii) direct reaction of a metal acetate with the hydrochloride salt of 1 (trans-[PdCl2(IBuMe)] (6)). The dicarbonyl cis-[RhCl(CO)2(IBuMe)] (7) has been prepared by diene substitution under a carbon monoxide atmosphere. The molecular structures of 2, 4, 5 and 6 are reported and the sigma donation and steric properties of 1 are discussed relative to those of common imidazol-2-ylidene ligands.
APA, Harvard, Vancouver, ISO, and other styles
26

Frisch, Philipp, and Shigeyoshi Inoue. "Coinage metal complexes of NHC-stabilized silyliumylidene ions." Chemical Communications 54, no. 97 (2018): 13658–61. http://dx.doi.org/10.1039/c8cc07754a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Feichtner, Kai-Stephan, and Viktoria H. Gessner. "Cooperative bond activation reactions with carbene complexes." Chemical Communications 54, no. 50 (2018): 6540–53. http://dx.doi.org/10.1039/c8cc02198h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wang, Ban, Isaac G. Howard, Jackson W. Pope, Eric D. Conte, and Yongming Deng. "Bis(imino)pyridine iron complexes for catalytic carbene transfer reactions." Chemical Science 10, no. 34 (2019): 7958–63. http://dx.doi.org/10.1039/c9sc02189b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Adams, Richard D. "Metal cluster complexes containing heteroatom-substituted carbene ligands." Chemical Reviews 89, no. 8 (December 1989): 1703–12. http://dx.doi.org/10.1021/cr00098a004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wulff, William D., Peng-Cho Tang, Kin-Shing Chan, J. Stuart McCallum, Dominic C. Yang, and Scott R. Gilbertson. "Cycloadditions and annulations of transition metal carbene complexes." Tetrahedron 41, no. 24 (January 1985): 5813–32. http://dx.doi.org/10.1016/s0040-4020(01)91421-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Liu, Bin, Yin Zhang, Daichao Xu, and Wanzhi Chen. "Facile synthesis of metal N-heterocyclic carbene complexes." Chemical Communications 47, no. 10 (2011): 2883. http://dx.doi.org/10.1039/c0cc05260d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Oehninger, Luciano, Riccardo Rubbiani, and Ingo Ott. "N-Heterocyclic carbene metal complexes in medicinal chemistry." Dalton Trans. 42, no. 10 (2013): 3269–84. http://dx.doi.org/10.1039/c2dt32617e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Liu, Shiuh-Tzung, Rong-Zhi Ku, Chung-Yuan Liu, and Fu-Mei Kiang. "Oxidative cleavage of metal carbene complexes by iodine." Journal of Organometallic Chemistry 543, no. 1-2 (September 1997): 249–50. http://dx.doi.org/10.1016/s0022-328x(97)00216-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Hindi, Khadijah M., Matthew J. Panzner, Claire A. Tessier, Carolyn L. Cannon, and Wiley J. Youngs. "The Medicinal Applications of Imidazolium Carbene−Metal Complexes." Chemical Reviews 109, no. 8 (August 12, 2009): 3859–84. http://dx.doi.org/10.1021/cr800500u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Osseili, Hassan, Khai‐Nghi Truong, Thomas P. Spaniol, Laurent Maron, Ulli Englert, and Jun Okuda. "Titanium Carbene Complexes Stabilized by Alkali Metal Amides." Angewandte Chemie International Edition 58, no. 6 (January 3, 2019): 1833–37. http://dx.doi.org/10.1002/anie.201812579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Casey, Charles P., Stefan Kraft, and Douglas R. Powell. "[1,3]-Metal Shifts in Rhenium Alkynyl Carbene Complexes." Organometallics 20, no. 13 (June 2001): 2651–53. http://dx.doi.org/10.1021/om0103299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wulff, W. D., D. C. Yang, and C. K. Murray. "Cyclopropanations and cycloadditions of transition metal carbene complexes." Pure and Applied Chemistry 60, no. 1 (January 1, 1988): 137–44. http://dx.doi.org/10.1351/pac198860010137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Liu, Chung-Yuan, Der-Yi Chen, Gene-Hsiang Lee, Shie-Ming Peng, and Shiuh-Tzung Liu. "Synthesis of Cyclic Diamino-Substituted Metal Carbene Complexes." Organometallics 15, no. 3 (January 1996): 1055–61. http://dx.doi.org/10.1021/om950735q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chen, Jiabi, and Bohua Wang. "Studies on olefin-coordinating transition metal carbene complexes." Journal of Organometallic Chemistry 440, no. 1-2 (November 1992): 67–78. http://dx.doi.org/10.1016/0022-328x(92)83485-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Jiabi, Chen, Yu Yong, Hu Linghai, and Jin Zhongsheng. "Studies on olefin-coordinating transition metal carbene complexes." Journal of Organometallic Chemistry 447, no. 1 (March 1993): 113–22. http://dx.doi.org/10.1016/0022-328x(93)80280-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Santamaría, Javier, and Enrique Aguilar. "Beyond Fischer and Schrock carbenes: non-heteroatom-stabilized group 6 metal carbene complexes – a general overview." Organic Chemistry Frontiers 3, no. 11 (2016): 1561–88. http://dx.doi.org/10.1039/c6qo00206d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Gangopadhyay, Sumana, Tarun Mistri, Malay Dolai, Rabiul Alam, and Mahammad Ali. "Chemistry of transition metal carbene complexes: nucleophilic substitution reactions of cyanamide anion to Fischer carbene complexes." Dalton Trans. 42, no. 2 (2013): 567–76. http://dx.doi.org/10.1039/c2dt31454a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Iwasaki, Fujiko, Masanori Yasui, Satoshi Yoshida, Hideyuki Nishiyama, Souichi Shimamoto, and Noboru Matsumura. "Crystal and Molecular Structures of Novel Metal–Carbene Complexes III. Rh–Carbene Complexes and Cu Complex." Bulletin of the Chemical Society of Japan 69, no. 10 (October 1996): 2759–70. http://dx.doi.org/10.1246/bcsj.69.2759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Pichon, Delphine, Michele Soleilhavoup, Jennifer Morvan, Glen P. Junor, Thomas Vives, Christophe Crévisy, Vincent Lavallo, et al. "The debut of chiral cyclic (alkyl)(amino)carbenes (CAACs) in enantioselective catalysis." Chemical Science 10, no. 33 (2019): 7807–11. http://dx.doi.org/10.1039/c9sc02810b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Mazzoni, Rita, Fabio Marchetti, Andrea Cingolani, and Valerio Zanotti. "Bond Forming Reactions Involving Isocyanides at Diiron Complexes." Inorganics 7, no. 3 (February 26, 2019): 25. http://dx.doi.org/10.3390/inorganics7030025.

Full text
Abstract:
The versatility of isocyanides (CNR) in organic chemistry has been tremendously enhanced by continuous advancement in transition metal catalysis. On the other hand, the urgent need for new and more sustainable synthetic strategies based on abundant and environmental-friendly metals are shifting the focus towards iron-assisted or iron-catalyzed reactions. Diiron complexes, taking advantage of peculiar activation modes and reaction profiles associated with multisite coordination, have the potential to compensate the lower activity of Fe compared to other transition metals, in order to activate CNR ligands. A number of reactions reported in the literature shows that diiron organometallic complexes can effectively assist and promote most of the “classic” isocyanide transformations, including CNR conversion into carbyne and carbene ligands, CNR insertion, and coupling reactions with other active molecular fragments in a cascade sequence. The aim is to evidence the potential offered by diiron coordination of isocyanides for the development of new and more sustainable synthetic strategies for the construction of complex molecular architectures.
APA, Harvard, Vancouver, ISO, and other styles
46

Bidal, Yannick D., Mathieu Lesieur, Mohand Melaimi, David B. Cordes, Alexandra M. Z. Slawin, Guy Bertrand, and Catherine S. J. Cazin. "A simple access to transition metal cyclopropenylidene complexes." Chemical Communications 51, no. 23 (2015): 4778–81. http://dx.doi.org/10.1039/c4cc10375k.

Full text
Abstract:
The first example of a BAC–Cu complex, its outstanding catalytic activity in Click chemistry and its use as a carbene-transfer reagent to easily access Au-, Pd–, Ir– and Rh–BAC compounds are reported.
APA, Harvard, Vancouver, ISO, and other styles
47

Bernasconi, Claude F., Aquiles E. Leyes, Mark L. Ragains, Yan Shi, Huan Wang, and William D. Wulff. "Physical Organic Chemistry of Transition Metal Carbene Complexes. 14.1Thermodynamic Acidity Measurements of Fischer Carbene Complexes in Acetonitrile." Journal of the American Chemical Society 120, no. 34 (September 1998): 8632–39. http://dx.doi.org/10.1021/ja980608w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ren, Li, Austin C. Chen, Andreas Decken, and Cathleen M. Crudden. "Chiral bidentate N-heterocyclic carbene complexes of Rh and Pd." Canadian Journal of Chemistry 82, no. 12 (December 1, 2004): 1781–87. http://dx.doi.org/10.1139/v04-165.

Full text
Abstract:
The synthesis of a new chiral, bidentate oxazoline/imidazolidene carbene precursor is described. This species is reacted with various metal salts in the presence of a base to generate rhodium and palladium complexes, which are characterized spectroscopically and crystallographically.Key words: chiral N-heterocyclic carbene, rhodium, palladium, oxazolidine, asymmetric catalysis.
APA, Harvard, Vancouver, ISO, and other styles
49

Hameury, Sophie, Pierre de Frémont, and Pierre Braunstein. "Metal complexes with oxygen-functionalized NHC ligands: synthesis and applications." Chemical Society Reviews 46, no. 3 (2017): 632–733. http://dx.doi.org/10.1039/c6cs00499g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Mori, Miwako. "Novel Development of Metathesis Reaction Using Metal Carbene Complexes." Journal of Synthetic Organic Chemistry, Japan 63, no. 5 (2005): 423–39. http://dx.doi.org/10.5059/yukigoseikyokaishi.63.423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography