Academic literature on the topic 'Metal catalysed'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Metal catalysed.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Metal catalysed"

1

Rajesh, Nimmakuri, and Dipak Prajapati. "Indium(iii) catalysed regio- and stereoselective hydrothiolation of bromoalkynes." RSC Adv. 4, no. 61 (2014): 32108–12. http://dx.doi.org/10.1039/c4ra04359f.

Full text
Abstract:
Hydrothiolation of bromoalkynes has been reported for the first time under metal catalysed conditions. Indium(iii) trifluoromethanesulfonate was demonstrated as the first catalyst which can catalyse the hydrothiolation of bromoalkynes with absolute regio- and stereoselectivity to generate synthetically valuable (Z)-β-bromo vinyl sulfides in good yields.
APA, Harvard, Vancouver, ISO, and other styles
2

Lukey, CA, MA Long, and JL Garnett. "Aromatic Hydrogen Isotope Exchange Reactions Catalyzed by Iridium Complexes in Aqueous Solution." Australian Journal of Chemistry 48, no. 1 (1995): 79. http://dx.doi.org/10.1071/ch9950079.

Full text
Abstract:
Sodium hexachloroiridate (III) and sodium hexachloroiridate (IV) have been used as homogeneous catalysts for hydrogen isotope exchange between benzenoid compounds and water. The ideal solvent consisted of 50 mole % acetic acid/water, and the optimum temperature was found to be 160°C. Under these conditions the rate of incorporation of deuterium into benzene was significant (typically 15% D in 6 h), and reduction to iridium metal was minimized. The active catalytic species was identified as a solvated iridium(III) species, which is also postulated to be the active catalyst in solutions containing hexachloroiridate (IV). The kinetics of exchange in benzene catalysed by sodium hexachloroiridate (III) were elucidated, and found to be more complex than for the corresponding sodium tetrachloroplatinate (II) catalysed exchange, in that a two-term rate dependence was found for catalyst concentration and the reaction was inversely dependent on hydrogen ion concentration. The reaction was found to be independent of chloride ion concentration, this confirming that the active catalyst is a solvated species. Isotopic labelling in all compounds was confined to the aromatic ring, and most substituted benzenes exhibited deactivation of the ortho positions, indicating that a dissociative π-complex exchange mechanism was operating. This was confirmed by exchange into naphthalene, where it was found that labelling was predominantly in the β position. Facile exchange into nitrobenzene provided good evidence of homogeneous catalysis, and not catalysis by precipitated metal.
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Jian, and Yi Fan Zhang. "The Study of Divalent Metal Ion Catalysts on Phenol-Formaldehyde Resol Resins." Applied Mechanics and Materials 71-78 (July 2011): 818–21. http://dx.doi.org/10.4028/www.scientific.net/amm.71-78.818.

Full text
Abstract:
The curing characteristic of phenol-formaldehyde resol resins catalyzed with magnesium hydroxide, calcium hydroxide and barium hydroxide was studied in this study.The effects of catalysts on chemical structure of phenol formaldehyde resin was investigated by fourier transform infrared.The results indicated that divalent metal ions catalysts played an important role influence both the cure rate and cure time.Phenol formaldehyde resin catalysed by diffierent catalysts showed diffierent addition of formaldehyde onto ortho positions of phenolic rings.The order of the divalent metal ions effectiveness studied in alkaline conditions is calcium hydroxide, barium hydroxide and magnesium hydroxide.
APA, Harvard, Vancouver, ISO, and other styles
4

Nyembe, Sanele, Gebhu Ndlovu, Poslet Shumbula, Richard Harris, Nosipho Moloto, and Lucky Sikhwivhilu. "Laser Assisted Catalytic Growth of Silicon Nanowires Using Gold and Nickel Catalysts." Journal of Nanoscience and Nanotechnology 21, no. 10 (October 1, 2021): 5260–65. http://dx.doi.org/10.1166/jnn.2021.19448.

Full text
Abstract:
Laser assisted synthesis of silicon nanowires (SiNWs) was successfully achieved through the use of gold and nickel as catalysts. The diameter of the resulting SiNWs was found to be dependent on that of the catalyst in the case of gold catalyst. The gold catalysed silicon nanowires were unevenly curved and branched owing to the high kinetic energy possessed by gold nanoparticles (AuNPs) at relatively high processing temperature. The use of nickel as catalyst resulted in the formation of several SiNWs on a single nickel catalyst crystallite due to interconnection of the nickel metal crystallites at processing temperature. The morphology of SiNWs catalysed by both nickel and gold was controlled by optimising the laser energy during ablation.
APA, Harvard, Vancouver, ISO, and other styles
5

Ceder, Rosa Ma, Arnald Grabulosa, Guillermo Muller, and Mercè Rocamora. "Metal catalysed hydrovinylation." Catalysis Science & Technology 3, no. 6 (2013): 1446. http://dx.doi.org/10.1039/c3cy00084b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Suan, Zhenguang Sun, Qi Liu, Hang Ye, and Kunpeng Wang. "Self-catalysed hydrogenation of heavy oil and coal mixtures." Polish Journal of Chemical Technology 25, no. 2 (June 1, 2023): 8–14. http://dx.doi.org/10.2478/pjct-2023-0011.

Full text
Abstract:
Abstract Coal liquefaction and heavy oil processing have become the urgent need for national energy strategic technology reserves in China. However, the inactivation of solid catalysts in these processes is an inevitable problem. Therefore, a self-catalysed method was proposed. The properties of raw oil could be changed by adding a modifier, as it has the function of self-catalysis, and the additional catalyst is no longer needed. The effect of 200 ppm modifier on the hydrogenation of heavy oil and 500 ppm on the hydrogenation of coal and oil were investigated. The results showed that modifiers could be miscible with heavy oil at 50~100 °C and could change the properties of oil. When the temperature exceeded 250 °C, the sulfur element in the heavy oil combined with the metal element brought in by the modifier to form a particle with the size of 2–8 nm, which could interact with the hydrogen molecule to activate the hydrogen molecule. Activated hydrogen atoms further formed the complexes with nickel, vanadium, calcium, iron, and other elements in heavy oil to achieve the purpose of purifying and lightening the oil phase. Therefore, the self-catalysed method could be widely used in oil refining and would greatly promote the development of the oil refining and catalysis industry.
APA, Harvard, Vancouver, ISO, and other styles
7

Saha, Debasree, and Chhanda Mukhopadhyay. "Metal Nanoparticles: An Efficient Tool for Heterocycles Synthesis and Their Functionalization via C-H Activation." Current Organocatalysis 6, no. 2 (June 24, 2019): 79–91. http://dx.doi.org/10.2174/2213337206666181226152743.

Full text
Abstract:
Background: Metal nanoparticles have been extensively used in the synthesis of organic molecules during the last few decades especially due to their high catalytic activity. Organic reactions involving C-H functionalisations are very much in demand as they provide a direct method of derivatisation of organic molecules, thus making the process economical. In the recent years, metal nanoparticles catalysed C-H activation reactions have led to the design of useful molecules especially heterocyclic motifs which form the core structure of drugs and thus have high biological and industrial importance. Methods: In this review, we present a collection of reactions where metal nanoparticles are instrumental in the synthesis and functionalization of heterocycles via C-H activation. The review consists of three units namely, Nano-copper catalysed C-H activation reactions, nano-palladium catalysed CH activation reactions and other nano-metals catalysed C-H activation reactions. Results: The discussion reflects the scope of nano-metals as effective catalysts for the synthesis and functionalization of heterocycles as well as the efficiency of nano-metals towards catalysing economic and environmentally viable reaction protocols. Conclusion: The theme of this review is to correlate nanometal catalysis, heterocyclic synthesis and C-H activation, each of which in itself forms an integral part of modern day chemical research. Thus, the review will hopefully highlight the need for future development and research in this area and be instrumental in guiding researchers towards fulfilling that goal.
APA, Harvard, Vancouver, ISO, and other styles
8

Guangqing, Zhang, Shenjun Qin, Li Zhen, Han Haiyan, Li Hui, and Tao Chang. "Coupling reaction of epoxide and carbon dioxide catalysed by alkali metal salts in the presence of ß-cyclodextrin derivatives." World Journal of Engineering 14, no. 2 (April 10, 2017): 159–64. http://dx.doi.org/10.1108/wje-12-2016-0172.

Full text
Abstract:
Purpose This study aims to investigate the coupling reaction of epoxide and CO2 catalysed by alkali metal salts in the presence of ß-cyclodextrin (ß-CD) derivatives to generate cyclic carbonates at various conditions. Design/methodology/approach The coupling reaction was catalysed by alkali metal salts. The effects of the co-catalysts were investigated by using the conversion rate of raw materials. The affecting factors, such as reaction temperature, amount of the co-catalyst and reaction time, were explored. The possible mechanism of the coupling reaction was discussed. Findings Results showed that the structure of ß-CD is an important factor influencing the catalytic activity for the coupling reaction of epoxide with CO2. The catalytic system of 2,3,6-trimethyl-ß-CD with potassium iodide (KI) showed a high catalytic activity. The protocol was expanded to various epoxides, which provided the corresponding cyclic carbonates in excellent yields. The apparent decrease in the yields was not detected after four recycling times. Moreover, the mechanism for the synergetic effect of the catalyst was proposed. Originality/value The coupling reactions were achieved in the presence of different structure of ß-CD as co-catalysts. The affecting of substituent of ß-CD were investigated.
APA, Harvard, Vancouver, ISO, and other styles
9

Ralser, Markus. "The RNA world and the origin of metabolic enzymes." Biochemical Society Transactions 42, no. 4 (August 1, 2014): 985–88. http://dx.doi.org/10.1042/bst20140132.

Full text
Abstract:
An RNA world has been placed centre stage for explaining the origin of life. Indeed, RNA is the most plausible molecule able to form both a (self)-replicator and to inherit information, necessities for initiating genetics. However, in parallel with self-replication, the proto-organism had to obtain the ability to catalyse supply of its chemical constituents, including the ribonucleotide metabolites required to replicate RNA. Although the possibility of an RNA-catalysed metabolic network has been considered, it is to be questioned whether RNA molecules, at least on their own, possess the required catalytic capacities. An alternative scenario for the origin of metabolism involves chemical reactions that are based on environmental catalysts. Recently, we described a non-enzymatic glycolysis and pentose phosphate pathway-like reactions catalysed by metal ions [mainly Fe(II)] and phosphate, simple inorganic molecules abundantly found in Archaean sediments. While the RNA world can serve to explain the origin of genetics, the origin of the metabolic network might thus date back to constraints of environmental chemistry. Interestingly, considering a metal-catalysed origin of metabolism gives rise to an attractive hypothesis about how the first enzymes could have formed: simple RNA or (poly)peptide molecules could have bound the metal ions, and thus increased their solubility, concentration and accessibility. In a second step, this would have allowed substrate specificity to evolve.
APA, Harvard, Vancouver, ISO, and other styles
10

Badarau, Adriana, Christian Damblon, and Michael I. Page. "The activity of the dinuclear cobalt-β-lactamase from Bacillus cereus in catalysing the hydrolysis of β-lactams." Biochemical Journal 401, no. 1 (December 11, 2006): 197–203. http://dx.doi.org/10.1042/bj20061002.

Full text
Abstract:
Metallo-β-lactamases are native zinc enzymes that catalyse the hydrolysis of β-lactam antibiotics, but are also able to function with cobalt(II) and require one or two metal-ions for catalytic activity. The hydrolysis of cefoxitin, cephaloridine and benzylpenicillin catalysed by CoBcII (cobalt-substituted β-lactamase from Bacillus cereus) has been studied at different pHs and metal-ion concentrations. An enzyme group of pKa 6.52±0.1 is found to be required in its deprotonated form for metal-ion binding and catalysis. The species that results from the loss of one cobalt ion from the enzyme has no significant catalytic activity and is thought to be the mononuclear CoBcII. It appears that dinuclear CoBcII is the active form of the enzyme necessary for turnover, while the mononuclear CoBcII is only involved in substrate binding. The cobalt-substituted enzyme is a more efficient catalyst than the native enzyme for the hydrolysis of some β-lactam antibiotics suggesting that the role of the metal-ion is predominantly to provide the nucleophilic hydroxide, rather than to act as a Lewis acid to polarize the carbonyl group and stabilize the oxyanion tetrahedral intermediate.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Metal catalysed"

1

Shasha, Adelle. "Metal-Catalysed Hydroamination." Science. School of Chemistry, 2007. http://hdl.handle.net/2123/1710.

Full text
Abstract:
Doctor of Philosophy(PhD),
This thesis describes the synthesis of terminal and internal amino and amidoalkynes and their hydroamination (cyclisation) catalysed by the complex (bis(N-methylimidazol-2-yl)methane)dicarbonylrhodium(I) tetraphenylborate (1). A series of analogous palladium complexes were also prepared and investigated for catalytic hydroamination. The scope of the rhodium(I) complex (1) for the intramolecular hydroamination of more complex amino and amidoalkyne substrates was investigated. This was made possible with the synthesis of aliphatic substrates, namely, 4 pentyn 1 amide (3) and 5 hexyn 1 amide (4) and a number of aromatic substrates, namely, 1, 4 diamino-2, 5 diethynylbenzene (5), 1, 4-diamino-2, 5 bis(phenylethynyl)benzene (6), 2, 3-diamino-1, 4-diethynylbenzene (7), 2, 3-diamino-1, 4-bis(phenylethynyl)benzene (8), 1, 5-bis(acetamido)-2, 4-diethynylbenzene (9), N-(acetyl)-2-ethynylbenzylamine (10) and N-(acetyl)-2-(phenylethynyl)benzylamine (11). The rhodium(I) complex (1) catalytically cyclised the aliphatic 4 pentyn 1 amide (3) regioselectively to the 6 membered ring, 3, 4 dihydro 2 pyridone (64) as the sole product. Attempts to cyclise 5 hexyn 1 amide (4) to produce either the 6 or 7 membered ring were unsuccessful. Compounds 5, 6, 7 and 8 were doubly cyclised to 1, 5 dihydro pyrrolo[2, 3 f]indole (71), 1, 5-dihydro-2, 6-diphenyl-pyrrolo[2, 3 f]indole (73), 1, 8-dihydro-pyrrolo[2, 3 g]indole (74) and 1, 8-dihydro-2, 7-diphenyl-pyrrolo[2, 3 g]indole (75) respectively. The aromatic amides with terminal acetylenes 9 and 10 cyclised to give 1, 7 diacetyl pyrrolo[3, 2 f]indole (76) and N (acetyl) 1, 2 dihydroisoquinoline (77) respectively. However, attempts to cyclise 11 were unsuccessful. Thus the rhodium(I) complex (1) successfully catalysed via hydroamination both terminal and internal acetylenic amine and amide substrates, to give pyridones, indoles and isoquinolines. Cationic and neutral palladium complexes incorporating the bidentate heterocyclic nitrogen donor ligand bis(N-methylimidazol-2-yl)methane (bim; 2) were synthesised: [Pd(bim)Cl2] (15), [Pd(bim)2][BF4]2 (17) [Pd(bim)(Cl)(CH3)] (14), [Pd(bim)(CH3)(NCCH3)][BF4] (16). All of the complexes were active as catalysts for the intramolecular hydroamination reaction, using the cyclisation of 4 pentyn 1 amine (21) to 2 methyl 1 pyrroline (22) as the model test reaction. Percentage conversions, turnover numbers and reaction profiles for each complex were compared to the rhodium(I) complex (1). These studies have shown that the catalytic activity was not significantly dependent on the bim donor ligand or the choice of metal. Substitution of the bim (2) ligand with the COD ligand and the use of methanol as the solvent did impact significantly on the efficiency of the hydroamination reactions.
APA, Harvard, Vancouver, ISO, and other styles
2

Shasha, Adelle. "Metal-Catalysed Hydroamination." Thesis, The University of Sydney, 2006. http://hdl.handle.net/2123/1710.

Full text
Abstract:
This thesis describes the synthesis of terminal and internal amino and amidoalkynes and their hydroamination (cyclisation) catalysed by the complex (bis(N-methylimidazol-2-yl)methane)dicarbonylrhodium(I) tetraphenylborate (1). A series of analogous palladium complexes were also prepared and investigated for catalytic hydroamination. The scope of the rhodium(I) complex (1) for the intramolecular hydroamination of more complex amino and amidoalkyne substrates was investigated. This was made possible with the synthesis of aliphatic substrates, namely, 4 pentyn 1 amide (3) and 5 hexyn 1 amide (4) and a number of aromatic substrates, namely, 1, 4 diamino-2, 5 diethynylbenzene (5), 1, 4-diamino-2, 5 bis(phenylethynyl)benzene (6), 2, 3-diamino-1, 4-diethynylbenzene (7), 2, 3-diamino-1, 4-bis(phenylethynyl)benzene (8), 1, 5-bis(acetamido)-2, 4-diethynylbenzene (9), N-(acetyl)-2-ethynylbenzylamine (10) and N-(acetyl)-2-(phenylethynyl)benzylamine (11). The rhodium(I) complex (1) catalytically cyclised the aliphatic 4 pentyn 1 amide (3) regioselectively to the 6 membered ring, 3, 4 dihydro 2 pyridone (64) as the sole product. Attempts to cyclise 5 hexyn 1 amide (4) to produce either the 6 or 7 membered ring were unsuccessful. Compounds 5, 6, 7 and 8 were doubly cyclised to 1, 5 dihydro pyrrolo[2, 3 f]indole (71), 1, 5-dihydro-2, 6-diphenyl-pyrrolo[2, 3 f]indole (73), 1, 8-dihydro-pyrrolo[2, 3 g]indole (74) and 1, 8-dihydro-2, 7-diphenyl-pyrrolo[2, 3 g]indole (75) respectively. The aromatic amides with terminal acetylenes 9 and 10 cyclised to give 1, 7 diacetyl pyrrolo[3, 2 f]indole (76) and N (acetyl) 1, 2 dihydroisoquinoline (77) respectively. However, attempts to cyclise 11 were unsuccessful. Thus the rhodium(I) complex (1) successfully catalysed via hydroamination both terminal and internal acetylenic amine and amide substrates, to give pyridones, indoles and isoquinolines. Cationic and neutral palladium complexes incorporating the bidentate heterocyclic nitrogen donor ligand bis(N-methylimidazol-2-yl)methane (bim; 2) were synthesised: [Pd(bim)Cl2] (15), [Pd(bim)2][BF4]2 (17) [Pd(bim)(Cl)(CH3)] (14), [Pd(bim)(CH3)(NCCH3)][BF4] (16). All of the complexes were active as catalysts for the intramolecular hydroamination reaction, using the cyclisation of 4 pentyn 1 amine (21) to 2 methyl 1 pyrroline (22) as the model test reaction. Percentage conversions, turnover numbers and reaction profiles for each complex were compared to the rhodium(I) complex (1). These studies have shown that the catalytic activity was not significantly dependent on the bim donor ligand or the choice of metal. Substitution of the bim (2) ligand with the COD ligand and the use of methanol as the solvent did impact significantly on the efficiency of the hydroamination reactions.
APA, Harvard, Vancouver, ISO, and other styles
3

Sutherland, Ian Michael. "Metal-catalysed asymmetric hydrogenation." Thesis, University of Hull, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rountree, S. M. "Metal catalysed olefin metathesis." Thesis, Queen's University Belfast, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.517512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

McNally, Steven John. "Metal catalysed intermolecular hydroacylation." Thesis, University of Bath, 2003. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Paliga, James Francis. "Developing Earth-abundant metal-catalysts for hydrofunctionalisation." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31115.

Full text
Abstract:
The iron-catalysed hydromagnesiation of styrene derivatives has been developed further from previous publications, expanding the electrophile scope to enable the regioselective formation of new carbon-carbon and carbon-heteroatom bonds (Scheme A1). A commercially available pre-catalyst and ligand were used to give an operationally simple procedure that did not require prior synthesis of a catalyst. This work also investigated the hydromagnesiation of dienes, using a screen of ligands commonly used in transition metal catalysis. An investigation into the magnesium-catalysed hydroboration of olefins was also carried out. Although mostly unsuccessful, it was demonstrated that in the presence of a magnesium catalyst, a small amount of vinyl boronic ester could be formed from an alkyne (Scheme A2). Simple magnesium salts were also investigated for the reduction of carbonyls. Lastly, this work explored the titanium-catalysed hydrosilylation of olefins, using a novel activation method developed within the group (Scheme A3). The results were compared to those published previously using traditional organometallic activation methods and attempts at identifying conditions to improve chemoselectivity were carried out.
APA, Harvard, Vancouver, ISO, and other styles
7

Stubbs, Naomi E. "Metal-catalysed and metal-free dehydrogenation of amine-boranes." Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.686189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hall, Tracey Jane. "Mechanisms of metal-catalysed enantioselective hydrogenation." Thesis, University of Hull, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

McLean, William Neil. "Metal catalysed reactions in organic chemistry." Thesis, University of Liverpool, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.257123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cadu, Alban. "Noble Metal Catalysed Reductions and Rearrangements." Doctoral thesis, Uppsala universitet, Syntetisk organisk kemi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-272383.

Full text
Abstract:
The focus of this thesis has been organometallic catalysis applied to compounds containing heteroatoms which are usually poisonous to metal catalysts, by channelling their innate reactivity advantageously. The studies described in this thesis concentrate, in the first part, on iridium catalysed asymmetric hydrogenation (papers I and II) and in the second part, on gold catalysed internal rearrangements (papers III and IV). In each case, two classes of compounds are studied: pyridinium salts or sulphurous compounds. The asymmetric hydrogenation of pyridinium compounds was performed with 2% loading of N,P-ligated Ir catalyst with I2 additive (paper I) to achieve moderate to good enantiomeric excess (up to 98%). In paper II, olefinic sulphones were hydrogenated with an efficient 0.5% catalytic loading. In most cases full conversion was obtained and with good to excellent ees (up to 99%). The products of these reductions are chiral compounds, which could constitute further chemical building blocks. Palladium and gold were used sequentially in paper III, in order to perform a “Click” thiol-yne reaction followed by a semi-Pinacol rearrangement, leading to isolated yields of up to 98%. In paper IV The gold catalysed rearrangement of alkyl-pyridinium diynes was conducted, with a number of substrates providing >90% NMR yield. A highly selective hydrogenation was performed with a heterogeneous palladium catalyst to yield single diastereomer products. This methodology consists of up to three steps, with two catalysts in one pot.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Metal catalysed"

1

1937-, Murahashi Shunʼichi, Davies Stephen G, and International Union of Pure and Applied Chemistry., eds. Transition metal catalysed reactions. Oxford: Blackwell Science, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dyson, Paul, and Geldbach Tilmann, eds. Metal Catalysed Reactions in Ionic Liquids. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3915-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

M, Roberts Stanley, ed. Metal catalysed carbon-carbon bond-forming reactions. Chichester, West Sussex, England: John Wiley, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Roberts, Stanley M., Jianliang Xiao, John Whittall, and Tom E. Pickett, eds. Catalysts for Fine Chemical Synthesis, Volume 3, Metal Catalysed Carbon-Carbon Bond-Forming Reactions. Chichester, UK: John Wiley & Sons, Ltd, 2004. http://dx.doi.org/10.1002/0470862017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Baker, R. T. K., 1938-, Tauster S. J. 1935-, Dumesic J. A. 1949-, American Chemical Society. Division of Petroleum Chemistry., American Chemical Society. Division of Industrial and Engineering Chemistry., American Chemical Society. Division of Colloid and Surface Chemistry., and American Chemical Society Meeting, eds. Strong metal-support interactions. Washington, DC: The Society, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

A, Stevenson Scott, ed. Metal-support interactions in catalysis, sintering, and redispersion. New York: Van Nostrand Reinhold Co., 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Supported metals in catalysis. 2nd ed. London : Imperial College Press: Distributed by World Scientific, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1937-, Anderson James A., and Fernández Garcia Marcos, eds. Supported metals in catalysis. London: Imperial College Press, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

1962-, Anderson James A., and Fernández Garcia Marcos, eds. Supported metals in catalysis. Hackensack, NJ: World Scientific, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hideo, Kurosawa, and Yamamoto Akio 1930-, eds. Fundamentals of molecular catalysis. Amsterdam: Elsevier, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Metal catalysed"

1

Wells, Peter B. "Selectivity in Metal-Catalysed Hydrogenation." In Surface Chemistry and Catalysis, 295–349. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-6637-0_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Štefane, Bogdan, and Franc Požgan. "Metal-Catalysed Transfer Hydrogenation of Ketones." In Topics in Current Chemistry Collections, 1–67. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43051-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chaloner, Penny A., Miguel A. Esteruelas, Ferenc Joó, and Luis A. Oro. "Homogeneous Transfer Hydrogenation Catalysed by Metal Complexes." In Catalysis by Metal Complexes, 87–118. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-017-1791-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hertrich, Maximilian Franz, and Matthias Beller. "Metal-Catalysed Hydrogenation of CO2 into Methanol." In Organometallics for Green Catalysis, 1–16. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/3418_2018_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Skoda-Földes, Rita. "ILs in Transition Metal-Catalysed Alkoxy- and Aminocarbonylation." In Ionic Liquids (ILs) in Organometallic Catalysis, 145–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/3418_2013_63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Neuhaus, James D., Rik Oost, Jérémy Merad, and Nuno Maulide. "Sulfur-Based Ylides in Transition-Metal-Catalysed Processes." In Sulfur Chemistry, 429–75. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-25598-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gennaro, Armando, Abdirisak A. Isse, and Elio Vianello. "Electrochemical Reduction of CO2 Catalysed by Transition Metal Complexes." In Molecular Electrochemistry of Inorganic, Bioinorganic and Organometallic Compounds, 311–16. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1628-2_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bruce, Michael I. "Electron Transfer-Catalysed Substitution Reactions of Metal Cluster Carbonyls." In Paramagnetic Organometallic Species in Activation/Selectivity, Catalysis, 407–22. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0877-2_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gani, David, and John Wilkie. "Metal ions in the mechanism of enzyme-catalysed phosphate monoester hydrolyses." In Metal Sites in Proteins and Models, 133–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-62874-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pringle, Paul G., David Brewin, Martin B. Smith, and Kerry Worboys. "Metal-Catalysed Hydrophosphination as a Route to Water-Soluble Phosphines." In Aqueous Organometallic Chemistry and Catalysis, 111–22. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0355-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Metal catalysed"

1

Kónya, Z., N. Nagaraju, A. Tamási, K. M. Mukhopadhyay, A. Fonseca, and J. B. Nagy. "Metal mixtures catalysed carbon nanotube synthesis." In ELECTRONIC PROPERTIES OF NOVEL MATERIALS--SCIENCE AND TECHNOLOGY OF MOLECULAR NANOSTRUCTURES. ASCE, 1999. http://dx.doi.org/10.1063/1.59856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Richards, Paul, M. W. Vincent, K. Johansen, and G. Mogensen. "Metal Emissions, NO2 and HC Reduction from a Base Metal Catalysed DPF/FBC System." In SAE 2006 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2006. http://dx.doi.org/10.4271/2006-01-0420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Healy, Olivia M., Donald Pan, Jesse Soucheck, Wendy H. Yang, Gregory Hollis, Jason P. Nolan, Brandon LaMere, et al. "MICROBIALLY-CATALYSED ANAEROBIC METAL REDOX CYCLING BY AN ACIDOPHILIC, GEOBACTER SP. FEAM09." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-281051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lou, Diming, Yajuan Chen, Yunhua Zhang, Peng Wan, Piqiang Tan, Zhiyuan Hu, Liang Fang, and Tong Wang. "Study on Soot Oxidation Characteristics of Ce and La Modified Pt-Pd CDPF Catalysts." In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0390.

Full text
Abstract:
<div class="section abstract"><div class="htmlview paragraph">The catalyzed diesel particulate filter with Pt and Pd noble metals as the main loaded active components are widely used in the field of automobile engines, but the high cost makes it face huge challenges. Rare earth element doping can improve the soot oxidation performance of the catalyzed diesel particulate filter and provide a new way to reduce its cost. In this paper, thermogravimetric tests and chemical reaction kinetic calculations were used to explore the effect of Pt-Pd catalysts doped Ce, and La rare earth elements on the oxidation properties of soot. The results shown that, among Pt-Pd-5%Ce, Pt-Pd-5%La, and Pt-Pd-5%Ce-5%La catalysts, Pt-Pd-5%La catalyst has the highest soot conversion, the highest low-temperature oxidation speed, and the activation energy is the smallest. Compared with soot, this catalyst reduced <i>T<sub>10</sub></i> and <i>T<sub>20</sub></i> by 82% and 26%, respectively, meaning the catalytic activity of Pt-Pd-5%La catalyst was the best. With the decrease of catalyst/soot ratios, the soot conversion and oxidation speed of Pt-Pd and Pt-Pd-5%La catalysts decreased, and characteristic temperature increased. In both catalyst formulations, samples with catalyst/soot ratio of 5 showed the best catalytic activity, and the other samples with smaller catalyst/soot ratios showed less difference. The study revealed the influence of doping elements and catalyst/soot ratios on the oxidation characteristics and reaction kinetics of soot, which has a guiding significance for optimizing the doping scheme of rare earth elements and realizing the reduction of noble metals.</div></div>
APA, Harvard, Vancouver, ISO, and other styles
5

Karakurkchi, A., N. Sakhnenko, M. Ved, I. Parsadanov, and S. Menshov. "Nanostructured Oxide-Metal Catalysts for Intra-Cylinder Catalysis." In 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP). IEEE, 2018. http://dx.doi.org/10.1109/nap.2018.8914840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Das, Randip K., B. B. Ghosh, Souvik Bhattacharyya, and Maya DuttaGupta. "Catalytic Control of SI Engine Emissions Over Ion-Exchanged X-Zeolites." In ASME 1997 Turbo Asia Conference. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-aa-077.

Full text
Abstract:
Three catalysts based on X-zeolite have been developed by exchanging its Na+ ion with Copper, Iron and Nickel metal ions and tested in a SI engine exhaust for a wide range of exhaust and operating conditions. Of the three catalysts, the Cu-X catalyst exhibits the best NOx and CO conversion performance while Ni-X shows slightly better performance compared to the Fe-X catalyst at any catalyst temperature. Unlike noble metals, the doped X-zeolite catalysts, studied here, exhibit significant NOx reduction for a wide λ range and exhibit a slow rate of decrease with increase in λ ratio. Back pressure developed across the catalyst bed is found to be well-afford able and power loss due to back pressure is only 0.216% at space velocity of 52500 /h. During 30 hours of testing of each catalyst, no significant deactivation of any catalyst is observed.
APA, Harvard, Vancouver, ISO, and other styles
7

Ghosh, Bankim B., Prokash Chandra Roy, Mita Ghosh, Paritosh Bhattacharya, Rajsekhar Panua, and Prasanta K. Santra. "Control of S.I. Engine Exhaust Emissions Using Non-Precious Catalyst (ZSM-5) Supported Bimetals and Noble Metals as Catalyst." In ASME 2005 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ices2005-1025.

Full text
Abstract:
Three Way Catalysts (TWC) are extensively used for simultaneous control of three principal automotive pollutants, namely carbon monoxide (CO), Oxides of nitrogen (NOx), and hydrocarbon (HC). Most of works on three way catalytic converter have been carried out with noble metals such as Platinum, Rhodium, and Iridium have been tried individually and in different combinations and proportions. Noble metal catalysts give very good performance of reduction of (NOx), CO and HC in the narrow range of stoichiometric Air Fuel ratio. Noble metals are costly and not abundantly available. These draw backs of the noble metal catalysts have inspired to search for the alternative catalysts, which will perform well over the wide range of A/F ratio and are economical and abundantly available. This paper discusses the processing of ZSM-5 to Cu-Ion- Exchanged ZSM-5, ZSM-5 supported Cu-Pt bimetallic catalyst and Cu-Rh bimetallic catalyst and placing them in a three staged converter to study the reduction efficiencies of exhaust emissions CO, NOx, and HC in a 800 cc Maruti S. I. Engine. The experiments are carried out at 1500 rpm, 17.6 A/F ratio, different catalyst bed temperatures and different engine loads 0%, 17.5%, 35%, 52.5%, and 70% of full load. The results achieved are the maximum reduction of CO 90% at 375 °C NOx 90% at 375 °C and HC 61% at 380 °C. The same engine was also run for Noble metal converter (NMC) (EURO-II) purchased from an authorized Maruti distributor and the maximum reduction achieved were CO 89% at 375° C, NOx 91% at 375° C, and HC 70% at 390° C comparable to Zeolite Catalytic Converter (ZCC).
APA, Harvard, Vancouver, ISO, and other styles
8

Hui, K. S., Christopher Y. H. Chao, C. W. Kwong, and M. P. Wan. "Performance of Transition Metal Ions Exchanged Zeolite 13X in Greenhouse Gas Reduction." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41360.

Full text
Abstract:
This study investigated the performance of multi-transition metal (Cu, Cr, Ni and Co) ions exchanged zeolite 13X catalysts on methane emission abatement, especially at methane level of the exhaust from natural gas fueled vehicles. Catalytic activity of methane combustion using multi-ions exchanged catalyst was studied under different parameters: mole % of metal loading, inlet velocity and inlet methane concentration at atmospheric pressure and 500 °C. Performance of the catalysts was investigated and explained in terms of the apparent activation energy, number of active sites and BET surface area of the catalyst. This study showed that the multi-ions exchanged catalyst outperformed the single-ions exchanged and the acidified 13X catalysts. Lengthening the residence time could also lead to higher methane conversion %. Catalytic activity of the catalysts was influenced by the mole % of metal loading which played important roles in affecting the apparent activation energy of methane combustion, active sites and also the BET surface area of the catalyst. Increasing mole % of metal loading in the catalyst decreased the apparent activation energy for methane combustion and also the BET surface area of the catalyst. In view of these, there existed an optimized mole % of metal loading where the highest catalytic activity was observed.
APA, Harvard, Vancouver, ISO, and other styles
9

"Syngas production via combined dry and steam reforming methane over Ni-based catalyst: A review." In Sustainable Processes and Clean Energy Transition. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902516-3.

Full text
Abstract:
Abstract. Global energy consumption has eventually increased as a result of the growing world population. Various problems arise as a result. The accumulation of greenhouse gases (GHGs), which led to a shift in the world's climate, is the most problematic. Combined dry and steam reforming of methane (CDRSM) is a highly advantageous method since it uses two of the most significant GHGs, CH4 and CO2, to produce syngas, an intermediate product to produce valuable fuels. Ni-based catalysts are inexpensive, compared to many noble metals, and exhibit good reaction activity. However, deactivation, coking, and sintering of catalysts continue to be the major obstacles to commercialization. Due to better and more stable catalytic structure, which is both coke and sintering resistant at high temperatures, bimetallic catalysts have established increased activity and prolonged durability when compared to monometallic catalysts. This review highlights recent advancements in Ni-based catalysts for CDSRM by emphasizing factors such as catalyst support, bimetallic catalyst, promoters, and strong metal-support interactions (SMSI).
APA, Harvard, Vancouver, ISO, and other styles
10

Ito, Kyohei, Shuhei Inoue, and Yukihiko Matsumura. "Synthesis of Single-Walled Carbon Nanotube Containing Platinum Group Element." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44257.

Full text
Abstract:
To prepare homogeneous nanoparticles is a key issue for catalytic reaction because it directly connects to the control of the reaction. Using the sidewall of SWCNT as a catalyst supporter, the size of nanoparticle can be controlled, because the particle size should be affected by the interaction between SWCNT and metal species and its curvature. In this study, we focused on the direct synthesis of SWCNT with highly dispersed platinum group metal species. As a result, adding an adequate amount of platinum group metals into catalysts never disturbs the synthesis of SWCNT. Referring to TGA measurement, the presence of metal attached and/or metal involved SWCNT is suggested. Furthermore, SEM images show many nanoparticles are on SWCNT. When ruthenium catalyst is used, ruthenium nanoparticles are observed on the surface of nano carbon materials, which looks like SWCNT. These results indicate the possibility of direct synthesis of metal-containing SWCNT in CVD technique.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Metal catalysed"

1

Ravindra Datta, Ajeet Singh, Manuela Serban, and Istvan Halasz. Supported Molten Metal Catalysis. A New Class of Catalysts. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/889459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bertrand, Guy. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization. Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1253630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gates, B. C. Metal-support bonds in supported metal catalysts. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6446860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gladysz, J. A. Ligand intermediates in metal-catalyzed reactions. Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/5977342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gladysz, John A. Ligand Intermediates in Metal-Catalyzed Reactions. Office of Scientific and Technical Information (OSTI), July 1999. http://dx.doi.org/10.2172/758776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Boszormenyi, Istvan. Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study. Office of Scientific and Technical Information (OSTI), May 1991. http://dx.doi.org/10.2172/10115869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Boszormenyi, I. Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study. Office of Scientific and Technical Information (OSTI), May 1991. http://dx.doi.org/10.2172/6827194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Berry, John F. Studies of Metal-Metal Bonded Compounds in Catalysis. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1417486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dosch, R., H. Stephens, F. Stohl, B. Bunker, and C. Peden. Hydrous metal oxide-supported catalysts. Office of Scientific and Technical Information (OSTI), February 1990. http://dx.doi.org/10.2172/7015232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Henrich, V. Model catalyst studies of active sites and metal support interactions on vanadia and vanadia-supported catalysts. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5484103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography