Academic literature on the topic 'Metal injection molding'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Metal injection molding.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Metal injection molding"

1

OKUBO, Kenji. "Metal Injection Molding." Journal of the Japan Society for Technology of Plasticity 56, no. 651 (2015): 261–64. http://dx.doi.org/10.9773/sosei.56.261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hourng, Lih-Wu, and Yau Si Lin. "Numerical Simulation of Debinding Process in Metal Injection Molding." International Journal of Modeling and Optimization 4, no. 6 (December 2014): 421–25. http://dx.doi.org/10.7763/ijmo.2014.v4.411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bazlov, V. A., T. Z. Mamuladze, K. N. Kharitonov, M. V. Efimenko, O. I. Golenkov, A. A. Pronskikh, A. A. Panchenko, and V. V. Pavlov. "CAPABILITIES INJECTION MOLDING OF METAL POWDERS (MIM – METAL INJECTION MOLDING) THE PRODUCTION OF MEDICAL PRODUCTS." International Journal of Applied and Fundamental Research (Международный журнал прикладных и фундаментальных исследований), no. 2 2020 (2020): 64–68. http://dx.doi.org/10.17513/mjpfi.13011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hartwig, T., G. Veltl, F. Petzoldt, H. Kunze, R. Scholl, and B. Kieback. "Powders for metal injection molding." Journal of the European Ceramic Society 18, no. 9 (January 1998): 1211–16. http://dx.doi.org/10.1016/s0955-2219(98)00044-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Miranda, Rosa. "Handbook of metal injection molding." International Journal of Environmental Studies 70, no. 1 (February 2013): 165. http://dx.doi.org/10.1080/00207233.2013.763661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zheng, Zou Shun, and Rui Rui Leng. "The Intelligent Control Method of the Density of the Metal Injection Molding Billet Based on ANN." Materials Science Forum 749 (March 2013): 161–67. http://dx.doi.org/10.4028/www.scientific.net/msf.749.161.

Full text
Abstract:
According to the metal powder injection molding process, the main influence factors of injection molding billet density distribution (such as: injection velocity, injection temperature, injection pressure, etc) was analyzed and a multiple input & multiple output BP neural network model for injection molding was build up to predict the density distribution of the billet intelligently based on ANN and GA. In addition, in light of the requirements for the density distribution of the metal injection molding billet, the influence factors were controlled intelligently. Applying this model in the metal injecting process, the density distribution of billet was predicted according to the injection parameters and the injection parameters was optimized according to the required density distribution of the billet. As the result, the error was less than 5% between the prediction values and the actual values of the density distribution of billet. With the optimized injection parameters to the injection process, the density distribution of billet closed to the requirements was achieved.
APA, Harvard, Vancouver, ISO, and other styles
7

Michaeli, Walter, and Raffael Bielzer. "Metal injection molding: Shaping sintered metal parts." Advanced Materials 3, no. 5 (May 1991): 260–62. http://dx.doi.org/10.1002/adma.19910030511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

C, Veeresh Nayak, Ramesh MR, Vijay Desai, and Sudip Kumar Samanta. "Sintering metal injection molding parts of tungsten-based steel using microwave and conventional heating methods." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 233, no. 11 (December 19, 2018): 2138–46. http://dx.doi.org/10.1177/0954405418816853.

Full text
Abstract:
In recent years, the near net shape metal injection molding process combines desirable features of plastic injection molding and powder metallurgy processes to gain high strength-to-weight ratio for manufacturing complex-shaped parts. The metal injection molding process consists of mixing, molding, debinding, and sintering. Microwave processing has attracted much attention in global research because of its unique features such as its ability to heat and sinter a wide variety of metals and its significant advantages in energy efficiency, processing speed, and compatibility. Also, it presents few environmental risks and can produce refined microstructures. The injected samples to be sintered are composed of fine tool steel metal powder and binders, stearic acid, paraffin wax, low-density polyethylene, and polyethylene glycol (600). In recent years, microwave-assisted post-treatment is considered a novel method for processing green parts. In this work, the green parts are subjected to high-intensity microwave fields which operate at a frequency of 2.45 GHz. Metal injection molding compacts were sintered using multi-mode microwave radiation. The sintering of a metal injection molding compact by microwaves has hardly been reported. The metal injection molding compact showed better results than those produced by sintering with conventional heating. This study evaluates the effect of conventional sintering and microwave sintering on mechanical properties. By optimizing the sintering process, increased sintered hardness, a more homogeneous microstructure, and greater shrinkage were obtained using microwave-assisted sintering.
APA, Harvard, Vancouver, ISO, and other styles
9

NISHIYABU, Kazuaki, Kenichi KAKISHITA, Akio YUZUKI, Toshiko OSADA, and Shigeo TANAKA. "Advantages of Micro Metal Injection Molding by Minute Mixing-Injection Molding Machine." Proceedings of the Materials and processing conference 2004.12 (2004): 81–82. http://dx.doi.org/10.1299/jsmemp.2004.12.81.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Muhamad, Norhamidi, Che Hassan Che Harun, and Murtadhahadi. "C-14 OPTIMISATION OF INJECTION PARAMETERS IN METAL INJECTION MOLDING (MIM) PROCESS(Session: EDM/MIM)." Proceedings of the Asian Symposium on Materials and Processing 2006 (2006): 61. http://dx.doi.org/10.1299/jsmeasmp.2006.61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Metal injection molding"

1

Adames, Juan M. "Characterization of Polymeric Binders for Metal Injection Molding (MIM) Process." University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1194319407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hemrick, James Gordan. "Release characteristics of 17-4PH stainless steel metal injection molding in SLA epoxy molds." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/19646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kong, Xiangji. "Development and characterization of polymer- metallic powder feedstocks for micro-injection molding." Phd thesis, Université de Franche-Comté, 2011. http://tel.archives-ouvertes.fr/tel-00844736.

Full text
Abstract:
Micro-Powder Injection Moulding (Micro-PIM) technology is one of the key technologies that permit to fit with the increasing demands for smaller parts associated to miniaturization and functionalization in different application fields. The thesis focuses first on the elaboration and characterization of polymer-powder mixtures based on 316L stainless steel powders, and then on the identification of physical and material parameters related to the sintering stage and to the numerical simulations of the sintering process. Mixtures formulation with new binder systems based on different polymeric components have been developed for 316L stainless steel powders (5 µm and 16 µm). The characterization of the resulting mixtures for each group is carried out using mixing torque tests and viscosity tests. The mixture associated to the formulation comprising polypropylene + paraffin wax + stearic acid is well adapted for both powders and has been retained in the subsequent tests, due to the low value of the mixing torque and shear viscosity. The critical powder volume loading with 316L stainless steel powder (5 µm) according to the retained formulation has been established to 68% using four different methods. Micro mono-material injection (with 316L stainless steel mélange) and bi-material injection (with 316L stainless steel mélange and Cu mélange) are properly investigated. Homogeneity tests are observed for mixtures before and after injection. A physical model well suited for sintering stage is proposed for the simulation of sintering stage. The identification of physical parameters associated to proposed model are defined from the sintering stages in considering 316L stainless steel (5 µm)mixtures with various powder volume loadings (62%, 64% and 66%). Beam-bending tests and free sintering tests and thermo-Mechanical-Analyses (TMA) have also investigated. Three sintering stages corresponding to heating rates at 5 °C/min, 10 °C/min and 15 °C/min are used during both beam-bending tests and free sintering tests. On basis of the results obtained from dilatometry measurements, the shear viscosity module G, the bulk viscosity module K and the sintering stress σs are identified using Matlab® software. Afterwards, the sintering model is implemented in the Abaqus® finite element code, and appropriate finite elements have been used for the support and micro-specimens, respectively. The physical material parameters resulting from the identification experiments are used to establish the proper 316L stainless steel mixture, in combination with G, K and σs parameters. Finally, the sintering stages up to 1200 °C with three heating rates (5 °C/min, 10 °C/min and 15 °C/min) are also simulated corresponding to the four micro-specimen types (powder volume loading of 62%, 64% and 66%). The simulated shrinkages and relative densities of the sintered micro-specimens are compared to the experimental results indicating a proper agreement
APA, Harvard, Vancouver, ISO, and other styles
4

Bombera, Mojmír. "Návrh technologie výroby plastového emblému automobilu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230862.

Full text
Abstract:
The project elaborated in scope of engineering studies branch 2307. The project is submitting design of production technology of car emblem. Different manufacturing technologies have been compared based on study of technical literature. Most suitable technologies have been chosen such as pressure die casting, especially aluminum alloys and plastic injection molding. Plastic part is metal plated afterwards in order to get desired metal look. Part of this project is injection molding tool design inclusive technical, technological and economic analysis.
APA, Harvard, Vancouver, ISO, and other styles
5

Mariot, Paulo. "Ferro puro moldado por injeção para aplicação em Stents biodegradáveis." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/150294.

Full text
Abstract:
Na presente pesquisa, produziu-se amostras de ferro puro poroso como biomaterial degradável visando a aplicação em stents, pelo processo de moldagem por injeção de pós metálicos (MPI). Os efeitos da fração volumétrica de ferro puro na mistura de injeção e da temperatura de sinterização na porosidade, microestrutura, propriedades mecânicas, propriedades de superfície, de degradação in vitro e de biocompatibilidade, foram investigados. Os resultados obtidos foram comparados com o ferro puro fabricado por fusão e com o aço inoxidável AISI 316-L. Encontrou-se que o grau de porosidade remanescente nas amostras sinterizadas foi o principal fator influenciando as propriedades mecânicas e de superfície, influenciando indiretamente os demais resultados. O ferro puro produzido por MPI exibiu valores de limite de escoamento entre 59 e 114 MPa e limite de resistência máximo de 210 MPa, com alongamento entre 10 e 50 %. A alta ductilidade é uma propriedade especialmente requerida em materiais para potencial aplicação em stents. Suas taxas de degradação em solução de Hank foram superiores às do ferro puro fabricado por fusão. O material fabricado com mistura de injeção contendo fração de ferro de 66 % (acima da fração crítica) mostrou o maior alongamento e boa taxa de degradação, um resultado interessante, pois segundo a literatura, valores acima da fração volumétrica crítica não são amplamente explorados. Os testes de biocompatibilidade mostraram excelente hemocompatibilidade do ferro puro fabricado por MPI com as células do sangue. Todas as condições testadas mostraram um nível de citotoxicidade abaixo do recomendado pela norma vigente, mas este dependendo da concentração de íons de ferro empregada e do grau de porosidade. Entre todas as condições de ensaio investigadas, as amostras contendo fração volumétrica de ferro de 62 % inicialmente na mistura de injeção e sinterizadas a 1120 oC, apresentaram a melhor combinação de propriedades para aplicação em stents. Concluiu-se que a MPI é um método tecnicamente viável como rota de produção de tubos de parede fina precursores para fabricação de stents biodegradáveis.
In the present research, an attempt was made to produce porous pure iron, as a metallic degradable biomaterial potentially for stent application, via the MIM route. The effects of iron powder loading and sintering temperature on the porosity, microstructure, mechanical properties, surface properties and in vitro degradation behavior of MIM iron were investigated. The results obtained were compared to those of cast iron. It was found that the amount of porosity remained in the as-sintered specimens had a major effect on their surface and mechanical properties. The MIM pure iron showed yield strength values between 59 and 114 MPa and maximum tensile strength of 210 MPa, with elongation values between 10 and 50 %. A high ductility is a specially required property of stent materials. Its degradation rates in Hank’s solution were superior to the degradation rate of cast iron. The material made from the feedstock containing 66 % of iron powder, above the critical powder loading, showed the highest elongation and a good in vitro degradation rate. This result is interesting, once according to the literature, powder loadings above the critical value are not well explored. The biocompatibility tests showed excellent hemocompatibility of MIM pure iron with blood cells. All conditions tested showed toxicity level below the values determined by current standards, but depending of Fe ions concentration and porosity level. Between all the conditions tested in the present investigation, the 62 % powder loading sample, sintered at 1120 oC, showed the best combination of properties for stent application. In conclusion, MIM is a promising method to be developed as a new route to produce thin-wall tubes for biodegradable stents.
APA, Harvard, Vancouver, ISO, and other styles
6

Afraz, Syed Ali. "Mechanical, Microstructural and Corrosion performance for MIM materials based on coarse (-45µm) powders of ferritic stainless steel." Thesis, KTH, Materialvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-127680.

Full text
Abstract:
The purpose of this research is to investigate the mechanical, microstructural and corrosion performance of the ferritic stainless steel coarse powders, used in Metal Injection Molding (MIM) process. Three coarser powders made by Höganäs AB, were examined along with a commercially available fine MIM powder and samples from sheet metal. The studied powders were individually mixed with binders and then injection molded in the shape of dog bone shaped tensile bars. These green samples were then debinded and sintered to examine under different characterization methods. The methods used for examining the samples were tensile test, hardness test, metallography, SEM, chemical analysis, and salt spray test. After a comparative study of these different materials, it turns out that the chemical composition and the process parameters have more effect on materials properties compared to only particle size distribution in studied materials. After this study, 434 coarse powder was preferred upon the PolyMIM 430 fine powder, because of its lower price and same performance as that of PolyMIM 430.
APA, Harvard, Vancouver, ISO, and other styles
7

Tavares, André Carvalho. "Avaliação de misturas injetáveis aplicadas à fabricação de micro componente para pinças de biópsias por moldagem de pós por injeção." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/116649.

Full text
Abstract:
A moldagem de pós por injeção (MPI) foi empregada neste trabalho para a fabricação de micro componentes de uma pinça de biópsia, através do desenvolvimento de misturas injetáveis. Utilizou-se a liga de aço inoxidável AISI 316L, liga reconhecidamente biocompatível, para obtenção dos micro componentes. Determinando a quantidade de 39% em volume para fração orgânica das quatro formulações de misturas injetáveis produzidas neste trabalho. Os polímeros estruturais empregados foram o PP, o PEBDL, o PEAD e o PMMA. Como material auxiliar de fluxo foi utilizada a parafina e para agente surfactante, o ácido esteárico. O desenvolvimento do sistema de extração química do polímero auxiliar de fluxo com solvente e posterior extração térmica do ligante em forno convencional e em um reator a plasma foram testados, ainda se empregou estes para testes em sinterização a temperaturas 1200°C, 1250°C e 1300°C. A extração química foi realizada com hexano atingindo 2,41% em massa de material extraído das amostras, após seis horas em um sistema aquecido entre 60°C e 70°C e uma atmosfera de vácuo. As amostras foram testadas química, física, mecânica e eletroquimicamente. Obteve-se os melhores resultados em termos de densificação de 7,05 g/cm³ para as amostras extraídas a plasma e sinterizadas a 1300 °C à vácuo em forno tubular. Isso significa uma densificação de 88,96% comparada a densidade do material comercial cuja a densidade é 7,93 g/cm³. As microdurezas encontradas nas amostras sinterizadas a 1300 °C em um forno convencional obtiveram valores de 208HV se mostrando maiores do que os 165HV obtido de um material maciço fabricado pelo extrusão e comercialmente vendido. Encontrou-se a dureza de 55HRB nas amostras processadas a 1300 °C, devido a presença de poros em componentes sinterizados. Nos componentes maciços foram medidos a dureza de 88HRB que foi maior que os resultados das amostras sinterizadas. As análises metalográficas mostraram um tamanho de grão variando entre, 30 e 50μm, se comparado ao tamanho de partícula médio do D90 de foi de 8,59 μm, se estima que este aumento foi entorno de três vezes e meia. Os testes químicos revelaram que a extração térmica em reatores a plasma melhoram significativamente os níveis de C, N, H e S quando comparados ao processo de extração térmica em forno convencional. A redução dos níveis de carbono residual, resultaram em diminuição do carboneto de cromo nas amostras, provocando uma menor corrosão. As amostras sinterizadas a 1200 °C a plasma apresentaram os melhores resultados de corrosão.
The powders injection molding (PIM) was used in this research, with objective to manufacture micro component, for application in biopsy forceps being developed injectable mixtures . It was used the powder stainless steel AISI 316L alloy, material biocompatible, to obtain the micro components. Through tests was determining the amount optimal volume in 39 % for the organic fraction of the four formulations of injectable mixtures produced in this research. The structural polymers used were PP , LLDPE , HDPE and PMMA . The paraffin was used as auxiliary material flow, the surfactant agent employed that was stearic acid . The development of chemical debiding and the thermal extraction for binder system, was used the conventional furnace and in a plasma reactor were tested also be employed for these tests sintering temperature 1200 ° C , 1250 °C and 1300 °C. Chemical extraction was performed with hexane achieving 2.41 % by extracted mass of sample material, after six hours in a heated system between 60 °C and 70 °C and a vacuum atmosphere. The samples were tested analysis by chemical , physical , mechanical and electrochemical.If it obtained the best results in terms of densification of 7.05g/cm ³ for plasma samples extracted and sintering at 1300 °C in vacuum tube furnace . This means densification of 88.96 % compared to the density of commercial material whose density is 7.93 g/cm ³ . The microhardness found in the samples sintered at 1300°C in a conventional furnace obtained 208HV microhardness showing larger than the commercial 165HV. Found that the HRB hardness of 55 in the samples processed at 1300 °C, due to the presence of pores in sintered parts. In the extruded components were measured hardness of 88HRB which was higher than the results of the sintered samples. The metallographic analysis showing a grain size ranging between 30 and 50μm , compared to the average particle size D90 was 8,59 microns is estimated that this increase was around three and half times . The chemical tests revealed that the thermal plasma extraction reactor significantly improve the levels of C, N , H and S compared to the process heat extraction in a conventional furnace . The residual carbon levels significantly improved, which helps to avoid the formation of chromium carbides , which aumnetou corrosion resistance . The best results in terms of corrosion were found for the samples sintered at 1200 ° C the plasma.
APA, Harvard, Vancouver, ISO, and other styles
8

Tourneroche, Paul. "Développement de mélanges chargés en poudres d'aluminure de titane pour moulage par injection et applications aéronautiques." Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2057.

Full text
Abstract:
La réduction de l’impact des activités humaines sur l’environnement est au sujet de nombreux programmes de recherche. Ainsi, dans le domaine du transport aérien a été créé le projet Clean-Sky, regroupant les thèmes de recherche associés. La thèse, partie de ce dernier, a pour objectif de réduire l’impact environnemental de la production de composants en alliages avancés à base de Titane. La production actuelle ayant une empreinte écologique non négligeable, un procédé de fabrication alternatif est étudié, il s’agit du moulage par injection de poudres métalliques. La première partie de cette consiste donc en la recherche d’une formulation de mélange optimale parmi les solutions classiques et innovantes. Elles sont triées en fonction de leurs aptitudes, déterminées par caractérisations physico-chimiques, à assurer le bon déroulement de chaque étape du procédé. Un nombre réduit de solution étant ainsi dégagé, il s’agit de passer aux étapes d’injection, de déliantage et de frittage. Plusieurs géométries de pièces sont testées dans chacun de ces cas, afin de valider l’adaptation aux différentes contraintes imposées. Lors de ces trois phases, des analyses physico-chimiques complètes permettent de mettre en avant la ou les formulations les plus aptes à permettre la production de ces composants. Une fois la solution fixée, chaque étape du procédé est optimisées, afin de faciliter le transfert industriel et d’assurer la rentabilité du nouveau processus de fabrication. Ces travaux de doctorat ont permis de mettre en avant deux formulations, répondant aux critères définis en début de thèse. Les étapes de mélange, injection, déliantage et frittage ont été optimisées et le transfert industriel est possible
Reducing the ecological footprint of human activities is, today, the aim of most of the research programs. In Europe, the « Clean Sky » project funds research activities to make air transport « greener ». This PhD, being part of it, is about improving production of Titanium Aluminide based components. Nowadays production having a strong environmental impact, an alternative way has been investigated: metal injection molding. The first step of this work was focused on a bibliographic study, to select relevant, common and innovative mixtures to be used in the process. Throughout the process, these mixtures have been tested, physically and chemically analyzed, to get data about the optimal mixture. Several components geometries have been tested, during injection, debinding, and sintering steps. Once the mixture(s) chosen, process’ parameters have been optimized to make industrial transfer easier, and lower its overall cost. The developments achieved during this PhD led to two qualified mixtures, and optimized mixing, molding, debinding and sintering steps
APA, Harvard, Vancouver, ISO, and other styles
9

Rohne, Clemens, Michael Schreiter, Jens Sumpf, Klaus Nendel, and Lothar Kroll. "Hybrid Conveyor Chains – Calculation, Design and Manufacturing." Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-231781.

Full text
Abstract:
The following paper will illustrate the development of a multiflex chain in hybrid construction. The aim of this novel chain variant is to improve the stiffness and strength in comparison to conventional plastic slide chains. A two part multiflex chain with a chain pitch of 33.5 mm and a structural width of 83 mm was used as the basis for the development of the hybrid multiflex chain. The hybrid multiflex chain is supposed to be integrated in already existing layouts of chain conveyors. The load bearing structure of the single chain links is manufactured in the metal die cast procedure while taking the constructive, production related, and operational aspects into consideration and subsequently covered in the injection molding process with plastics commonly used for multiflex chains. The evaluation of the improved stiffness and strength takes place in the course of extensive test series
In der folgenden Abhandlung wird die Entwicklung einer Multiflex-Kette in Hybridbauweise erläutert. Mit dieser neuartigen Kettenvariante soll eine Steifigkeits- und Festigkeitssteigerung gegenüber den konventionellen Kunststoffgleitketten erzielt werden. Als Ausgangsbasis für die Entwicklung der hybriden Förderkette dient eine zweiteilig ausgeführte Multiflex-Kette mit der Teilung von 33,5 mm und einer Baubreite von 83 mm. Die hybride Förderkette soll in bestehende Layouts von Kettenförderern integriert werden können. Unter Beachtung konstruktiver, fertigungstechnischer und betrieblicher Aspekte wird die lasttragende Struktur der einzelnen Kettenglieder im Metalldruckgussprozess gefertigt und anschließend mit einem, für Multiflex-Ketten üblichen Kunststoff im Spritzgießprozess ummantelt. Die Evaluierung der Steifigkeits- bzw. Festigkeitssteigerung erfolgt im Rahmen umfangreicher Versuchsreihen
APA, Harvard, Vancouver, ISO, and other styles
10

Oliveira, Alex Sandro Matos de. "Fabricação de pinças de biópsias a partir do processo de micromoldagem de pós metálicos por injeção com aplicação à endoscopia flexível." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/108505.

Full text
Abstract:
Neste trabalho foi desenvolvido o projeto e fabricação de quatro componentes de uma pinça de biópsia (concha, garfo, oito e haste), através da micromoldagem de pós metálicos por injeção. A matéria prima utilizada neste trabalho é conhecida comercialmente como CATAMOLD® 316L A. Corpos de prova foram obtidos através da injeção em uma injetora de baixa pressão para determinação da quantidade de pó de aço inoxidável 316L e sistema aglutinante contida na matéria prima. Ensaios de injetabilidade foram realizados para análise do comportamento da matéria prima no processo de injeção. Foram avaliados os parâmetros de injeção (temperatura de injeção, temperatura do molde e velocidade de injeção) e as variáveis de saída (pressão de injeção, massa, segregação entre pó e sistema aglutinante e densidade). A influência dos parâmetros de injeção sobre as variáveis de injeção foi analisada através do delineamento estatístico via Redes Neurais Artificiais (RNA), com a utilização do programa Statgraphics® Centurion XV. Os corpos de prova obtidos na injetora de baixa pressão apresentaram alta quantidade de pó de aço inoxidável (92,2% em massa). Devido a esta alta concentração de pó, os ensaios de injetabilidade realizados na injetora de alta pressão apresentaram valores elevados para as pressões de injeção, variando de 1641 a 2115 bars para que houvesse o preenchimento total das cavidades. O molde microusinado para os componentes da pinça se mostrou eficiente na fabricação dos componentes, porém apresentou dificuldades na extração das peças. Mesmo com a obtenção de todos os componentes a montagem da pinça não foi realizada, visto que as furações de montagem foram retiradas no projeto, consequentemente não foram usinados. Depois de microinjetados, os componentes da pinça foram sinterizados e apresentaram variação dimensional de 0,01 a 0,29 mm em relação às dimensões de projeto e variação na contração de 7,05 a 13,33%, diferentes dos 14,30% citados no catálogo do CATAMOLD® 316L A.
In this work the design and manufacture of four components of the biopsy forceps (ladle, fork, eight and rod), by metal powder injection molding was developed. The feedstock used in this work is known commercially as CATAMOLD® 316L A. Specimens were obtained by injection into a low-pressure injection molding machine for determining the amount of 316L stainless steel powder and binder system contained in the feedstock. Mouldability tests were performed to analyze the behavior of the feedstock in the injection process. The injection parameters (injection temperature, mold temperature and injection speed) and output variables (injection pressure, mass segregation between powder and binder system and density) were evaluated. The influence of injection parameters on the variables of injection was analyzed using the statistical design via Artificial Neural Networks (ANN), using the software Statgraphics® Centurion XV. The specimens obtained at low pressure injection showed high amount of stainless steel powder (92.2 wt%). Due to this high concentration of power, mouldability tests were performed in high-pressure injection showed high values for injection pressures ranging from 1641 to 2115 bars so that there was the complete filling of cavities. The micromachined mold for the components of the forceps proved efficient in the manufacture of components, but presented difficulties in the extraction of parts. Even with the obtaining of the all the components the biopsy forceps was not assembled, since the mounting holes were taken in the project, and therefore were not machined. After injected , the components of the forceps were sintered and showed dimensional variation from 0.01 to 0.29 mm in relation to project dimensions and variation in contraction from 7.05 to 13.33% , different from those 14.30% cited in the catalog of CATAMOLD® 316L A
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Metal injection molding"

1

Lall, Chaman. Soft magnetism: Fundamentals for powder metallurgy and metal injection molding. Princeton, N.J: Metal Powder Industries Federation, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Billiet, R. L. A practical guide to metal and ceramic injection moulding. New York: Elsevier Advanced Technology, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

International Powder Metallurgy Conference (1988 Orlando, Fla.). Metal injection molding: Preprint of a seminar held at the 1988 International Powder Metallurgy Conference, Orlando, Florida, June 7, 1988. Princeton: Metal Powder Industries Federation, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brimacombe Memorial Symposium (2000 Vancouver, Canada). The Brimacombe Memorial Symposium: October 1-4, 2000, Vancouver, British Columbia, Canada. Edited by Irons Gordon A. 1950-, Cramb A, Canadian Institute of Mining, Metallurgy and Petroleum., Minerals, Metals and Materials Society., Iron and Steel Society, and Metallurgical Society of CIM. Montreal: Canadian Institute of Mining, Metallurgy and Petroleum, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Powder Injection Molding Symposium (1992 San Franciso, Calif.). Powder Injection Molding Symposium, 1992: Proceedings of the 1992 Powder Injection Molding Symposium sponsored by the Metal Powder Industries Federation and the American Powder Metallurgy Institute, June 21-26, 1992, San Francisco, California. Princeton, N.J: Metal Powder Industries Federation, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Magnesium injection molding. New York, N.Y: Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

German, Randall M. Injection molding of metals and ceramics. Princeton, N.J., U.S.A: Metal Powder Industries Federation, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

German, Randall M. The powder injection molding industry: An industry and market report. State College, PA: Innovative Material Solutions, Inc., 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

M, Kuznet͡sov I͡U. Gazodinamika prot͡sessov vduvanii͡a poroshkov v zhidkiĭ metall. Cheli͡abinsk: "Metallurgii͡a," Cheli͡abinskoe otd-nie, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Compendium on metal injection molding. Princeton, N.J: Metal Powder Industries Federation, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Metal injection molding"

1

Stevenson, James F. "Powder Metal Injection Molding." In Injection Molding, 309–40. München: Carl Hanser Verlag GmbH & Co. KG, 2009. http://dx.doi.org/10.3139/9783446433731.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Beuers, J., and M. Poniatowski. "Metal Injection Molding." In Sintering ’87, 230–36. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1373-8_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Miura, Hideshi, Toshiko Osada, and Yoshinori Itoh. "Metal Injection Molding (MIM) Processing." In Springer Series in Biomaterials Science and Engineering, 27–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46842-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fu, Gang, Ngiap Hiang Loh, Shu Beng Tor, and Bee Yen Tay. "Metal Injection Molding at Micro-Scales (µMIM)." In Micro-Manufacturing, 347–69. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118010570.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wolff, M., J. G. Schaper, M. Dahms, T. Ebel, R. Willumeit-Römer, and T. Klassen. "Metal Injection Molding (MIM) of Mg-Alloys." In TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings, 239–51. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72526-0_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yoshinouchi, Takashi, Nobuyasu Tsuno, Shuji Ikeda, and Hiroki Yoshizawa. "Metal Injection Molding of Alloy 718 for Aerospace Applications." In 8th International Symposium on Superalloy 718 and Derivatives, 437–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119016854.ch34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nishiyabu, Kazuaki, Kenichi Kakishita, and Shigeo Tanaka. "Micro Metal Injection Molding Using Hybrid Micro/Nano Powders." In Progress in Powder Metallurgy, 381–84. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-419-7.381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Miura, Hideshi, Toshiko Osada, Shigeo Tanaka, and Makoto Uemura. "Micro Metal Injection Molding Process for High Performance Titanium Alloy." In THERMEC 2006, 3667–72. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.3667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Machado, Ricardo, Waldyr Ristow, P. R. Alba, Aloísio Nelmo Klein, Paulo A. P. Wendhausen, and D. Fusão. "Plasma Assisted Debinding and Sintering (PADS) – Metal Injection Molding Application." In Materials Science Forum, 224–29. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-423-5.224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Itoh, Yoshinori, Hideshi Miura, Kenji Sato, and Mitsuo Niinomi. "Fabrication of Ti-6Al-7Nb Alloys by Metal Injection Molding." In Progress in Powder Metallurgy, 357–60. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-419-7.357.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Metal injection molding"

1

Katoh, Tatsuhiko, Kazuyuki Nishikawa, and Makoto Endoh. "Permeable Metal Die for Plastic Injection Molding." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/950565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McCabe, Tim. "Metal Injection Molding (MIM) Materials and Design." In SAE 2010 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2010. http://dx.doi.org/10.4271/2010-01-1321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Johnson, John L., Lye King Tan, Pavan Suri, and Randall M. German. "Metal Injection Molding of Multi-Functional Materials." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41151.

Full text
Abstract:
Metal injection molding (MIM) enables processing of multi-functional components with combinations of properties including, magnetic and non-magnetic; magnetic response and corrosion resistance; controlled porosity and high thermal conductivity; high inertial weight and high strength; high thermal conductivity and low thermal expansion coefficient; wear resistance and high toughness; high thermal conductivity and good glass-to-metal sealing; high elastic modulus and high damping capacity; and magnetic response and electrical resistance. Such materials can be processed by MIM by co-injection molding and co-sintering, but compositions and sintering cycles must be optimized to minimize stresses arising from shrinkage mismatch while providing the desired properties To determine compatible combinations, individual materials, including various stainless steels and tool steels are mixed with a thermoplastic binder and injection molded. Debound components are subjected to dilatometry to determine dimensional change during sintering. The compatibility of these materials is predicted based on calculations of the thermal stress during co-sintering of concentric rings. For this geometry, shrinkage mismatches result in both radial stresses, which are the highest at the interface and lead to interfacial separation, as well as hoop stresses, which lead to radial cracking. These stresses are dependent on the thicknesses of the inner and outer rings. Defect-free components can be produced when the tensile hoop stresses do not exceed the intrinsic strengths of the component materials. Based on the dilatometry results, low stresses are predicted between a combination of magnetic and non-magnetic stainless steel and between a combination of austenitic stainless steel and tool steel. Example MIM bi-material components are processed from these combinations. The magnetic properties of the tough/wear-resistant bi-material are measured. General predictions and processing guidelines for other multi-functional materials are given.
APA, Harvard, Vancouver, ISO, and other styles
4

Pervikov, Aleksandr, Nikolay Rodkevich, Elena Glazkova, and Marat Lerner. "Bimodal metal micro-nanopowders for powder injection molding." In MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2017): Proceedings of the 11th International Conference on Mechanics, Resource and Diagnostics of Materials and Structures. Author(s), 2017. http://dx.doi.org/10.1063/1.5017393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mathew, Boney A., and Richard Mastromatteo. "Ceramic & amp; Metal Injection Molding for Automotive Applications." In International Mobility Technology Conference and Exhibit. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-3844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nokata, Makoto, and Takahiro Omori. "Development of catheter grasping forceps by metal injection molding." In 2017 International Symposium on Micro-NanoMechatronics and Human Science (MHS). IEEE, 2017. http://dx.doi.org/10.1109/mhs.2017.8305202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yoshinouchi, T., H. Yoshizawa, N. Tsuno, and S. Ikeda. "Metal Injection Molding of Alloy 718 for Aerospace Applications." In Superalloys. John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.7449/2014/superalloys_2014_437_446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Leers, Michael, E. Liermann, P. Imgrund, L. Kramer, and J. Volkert. "Expansion matched heat sinks made by μ-metal injection molding." In SPIE LASE, edited by Mark S. Zediker. SPIE, 2010. http://dx.doi.org/10.1117/12.842064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jung, M. K., K. C. Jang, D. G. Lee, M. H. Kim, Francisco Chinesta, Yvan Chastel, and Mohamed El Mansori. "A Study on the Optimization for Metal Injection Molding Process." In INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES (AMPT2010). AIP, 2011. http://dx.doi.org/10.1063/1.3552525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Heaney, Donald F. "Powder Injection Molding of Implantable Grade Materials." In ASME 2006 International Manufacturing Science and Engineering Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/msec2006-21049.

Full text
Abstract:
In this paper the attributes of powder injection molding that influence the ability to implant a material are evaluated. Specific emphasis is given to technology readiness of stainless steel, titanium and cobalt chromium alloys since these are the most common alloys that are both implantable and metal injection moldable. Issues such as ductility and strengthening are discussed. Also, component size capability of the technology is discussed since prosthetic replacement pushes the upper size limit of the technology and implantable micro devices that require MEMS (MicroElectroMechanical Systems) scale features push the lower limit.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Metal injection molding"

1

Kramer, D. P., R. T. Massey, and D. L. Halcomb. Injection molding-sealing of glass to low melting metals. Office of Scientific and Technical Information (OSTI), July 1985. http://dx.doi.org/10.2172/5527032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography