Academic literature on the topic 'Metal insulator transition'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Metal insulator transition.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Metal insulator transition"

1

Schlottmann, P., and C. S. Hellberg. "Metal-insulator transition in dirty Kondo insulators." Journal of Applied Physics 79, no. 8 (1996): 6414. http://dx.doi.org/10.1063/1.362014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

CHEN, DONG-MENG, and LIANG-JIAN ZOU. "ORBITAL INSULATORS AND ORBITAL ORDER–DISORDER INDUCED METAL–INSULATOR TRANSITION IN TRANSITION-METAL OXIDES." International Journal of Modern Physics B 21, no. 05 (February 20, 2007): 691–706. http://dx.doi.org/10.1142/s0217979207036618.

Full text
Abstract:
The role of orbital ordering on metal–insulator transition in transition-metal oxides is investigated by the cluster self-consistent field approach in the strong correlation regime. A clear dependence of the insulating gap of single-particle excitation spectra on the orbital order parameter is found. The thermal fluctuation drives the orbital order–disorder transition, diminishes the gap and leads to the metal–insulator transition. The unusual temperature dependence of the orbital polarization in the orbital insulator is also manifested in the resonant X-ray scattering intensity.
APA, Harvard, Vancouver, ISO, and other styles
3

Malinenko, V. P., L. A. Aleshina, A. L. Pergament, and G. V. Germak. "Switching Effects and Metal−Insulator Transition in Manganese Oxide." Journal on Selected Topics in Nano Electronics and Computing 1, no. 1 (December 2013): 44–50. http://dx.doi.org/10.15393/j8.art.2013.3005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, D., B. Chung, Y. Shi, G. Y. Kim, N. Campbell, F. Xue, K. Song, et al. "Isostructural metal-insulator transition in VO2." Science 362, no. 6418 (November 29, 2018): 1037–40. http://dx.doi.org/10.1126/science.aam9189.

Full text
Abstract:
The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an inter
APA, Harvard, Vancouver, ISO, and other styles
5

Milligan, R. F., and G. A. Thomas. "The Metal-Insulator Transition." Annual Review of Physical Chemistry 36, no. 1 (October 1985): 139–58. http://dx.doi.org/10.1146/annurev.pc.36.100185.001035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Hangdong, Jinhu Yang, Qi Li, Zhuan Xu, and Minghu Fang. "Metal–insulator transition in." Physica B: Condensed Matter 404, no. 1 (January 2009): 52–54. http://dx.doi.org/10.1016/j.physb.2008.10.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Harigaya, Kikuo. "Metal-insulator transition inC60polymers." Physical Review B 52, no. 11 (September 15, 1995): 7968–71. http://dx.doi.org/10.1103/physrevb.52.7968.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tsurubayashi, M., K. Kodama, M. Kano, K. Ishigaki, Y. Uwatoko, T. Watanabe, K. Takase, and Y. Takano. "Metal-insulator transition in Mott-insulator FePS3." AIP Advances 8, no. 10 (October 2018): 101307. http://dx.doi.org/10.1063/1.5043121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Weidemann, Sebastian, Mark Kremer, Stefano Longhi, and Alexander Szameit. "Topological triple phase transition in non-Hermitian Floquet quasicrystals." Nature 601, no. 7893 (January 19, 2022): 354–59. http://dx.doi.org/10.1038/s41586-021-04253-0.

Full text
Abstract:
AbstractPhase transitions connect different states of matter and are often concomitant with the spontaneous breaking of symmetries. An important category of phase transitions is mobility transitions, among which is the well known Anderson localization1, where increasing the randomness induces a metal–insulator transition. The introduction of topology in condensed-matter physics2–4 lead to the discovery of topological phase transitions and materials as topological insulators5. Phase transitions in the symmetry of non-Hermitian systems describe the transition to on-average conserved energy6 and
APA, Harvard, Vancouver, ISO, and other styles
10

Ling, Yi. "Holographic lattices and metal–insulator transition." International Journal of Modern Physics A 30, no. 28n29 (October 20, 2015): 1545013. http://dx.doi.org/10.1142/s0217751x1545013x.

Full text
Abstract:
This paper is an extension of the talk given at the conference on Gravitation and Cosmology/The Fourth Galileo-Xu Guangqi Meeting. We intend to present a short review on recent progress on the construction of holographic lattices and its application to metal–insulator transition (MIT), which is a fundamentally important phenomenon in condensed matter physics. We will firstly implement the Peierls phase transition by constructing holographic charge density waves which are induced by the spontaneous breaking of translational symmetry. Then we turn to the holographic realization of metal–insulato
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Metal insulator transition"

1

Mottaghizadeh, Alireza. "Non-conventional insulators : metal-insulator transition and topological protection." Electronic Thesis or Diss., Paris 6, 2014. http://www.theses.fr/2014PA066652.

Full text
Abstract:
Ce manuscrit présente une étude expérimentale de phase isolante non-conventionnelle, l'isolant d'Anderson, induit par le désordre, l'isolant de Mott, induit par les interactions de Coulomb, et les isolants topologiques.Dans une première partie du manuscrit, je décrirais le développement d'une méthode pour étudier la réponse de charge de nanoparticules par Microscopie à Force Electrostatique (EFM). Cette méthode a été appliquée à des nanoparticules de magnétite (Fe3O4), un matériau qui présente une transition métal-isolant, i.e. la transition de Verwey, lors de son refroidissement en dessous d'
APA, Harvard, Vancouver, ISO, and other styles
2

Mottaghizadeh, Alireza. "Non-conventional insulators : metal-insulator transition and topological protection." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066652/document.

Full text
Abstract:
Ce manuscrit présente une étude expérimentale de phase isolante non-conventionnelle, l'isolant d'Anderson, induit par le désordre, l'isolant de Mott, induit par les interactions de Coulomb, et les isolants topologiques.Dans une première partie du manuscrit, je décrirais le développement d'une méthode pour étudier la réponse de charge de nanoparticules par Microscopie à Force Electrostatique (EFM). Cette méthode a été appliquée à des nanoparticules de magnétite (Fe3O4), un matériau qui présente une transition métal-isolant, i.e. la transition de Verwey, lors de son refroidissement en dessous d'
APA, Harvard, Vancouver, ISO, and other styles
3

Vale, J. G. "The nature of the metal-insulator transition in 5d transition metal oxides." Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/1538695/.

Full text
Abstract:
A number of 5d transition metal oxides (TMOs) either undergo, or lie proximate to, a metal-insulator transition (MIT). However these MITs frequently depart from a Mott-Hubbard picture, in which the interactions are dominated by the interplay between the on-site Coulomb repulsion and electronic bandwidth. In 5d TMOs the sizeable intrinsic spin-orbit coupling plays an important role, and gives rise to electronic and magnetic ground states -- at both sides of the MIT -- that cannot be adequately described within a purely L-S coupling scenario. In this thesis the aim is to understand the role of s
APA, Harvard, Vancouver, ISO, and other styles
4

Milde, Frank. "Disorder induced metal insulator transition in anisotropic systems." Doctoral thesis, [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=963658441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Villagonzalo, Cristine. "Thermoelectric Transport at the Metal-Insulator Transition in Disordered Systems." Doctoral thesis, Universitätsbibliothek Chemnitz, 2001. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200100602.

Full text
Abstract:
This dissertation demonstrates the behavior of the electronic transport properties in the presence of a temperature gradient in disordered systems near the metal-insulator transition. In particular, we first determine the d.c. conductivity, the thermopower, the thermal conductivity, the Lorenz number, the figure of merit, and the specific heat of a three-dimensional Anderson model of localization by two phenomenological approaches. Then we also compute the d.c. conductivity, the localization length and the Peltier coefficient in one dimension by a new microscopic approach based on the recursi
APA, Harvard, Vancouver, ISO, and other styles
6

Asal, Rasool Abid. "The metal-insulator transition in the amorphous silicon-nickel system." Thesis, University of Leicester, 1993. http://hdl.handle.net/2381/35586.

Full text
Abstract:
Amorphous thin films of Si1-yNiy:H have been prepared over a wide range of compositions by radio-frequency sputtering in an argon/hydrogen plasma and their properties studied by various techniques. Transmission electron microscope investigations confirmed that the films were amorphous and the composition of the films was determined by EDAX. The principal object of the study is to investigate the nature of the semiconductor-metal transition in the a-Si1-yNiy:H system. The system has been shown to exhibit a semiconductor-to-metal transition as a function of concentration at approximately y = 0.2
APA, Harvard, Vancouver, ISO, and other styles
7

Madaras, Scott. "Insulator To Metal Transition Dynamics Of Vanadium Dioxide Thin Films." W&M ScholarWorks, 2020. https://scholarworks.wm.edu/etd/1616444322.

Full text
Abstract:
Vanadium Dioxide (VO2) is a strongly correlated material which has been studied for many decades. VO2 has been proposed for uses in technologies such as optical modulators, IR modulators, optical switches and Mott memory devices. These technologies are taking advantage of VO2’s insulator to metal transition (IMT) and the corresponding changes to the optical and material properties. The insulator to metal transition in VO2 can be accessed by thermal heating, applied electric field, or ultra-fast photo induced processes. Recently, thin films of VO2 grown on Titanium Dioxide doped with Niobium (T
APA, Harvard, Vancouver, ISO, and other styles
8

Collins-McIntyre, Liam James. "Transition-metal doped Bi2Se3 and Bi2Te3 topological insulator thin films." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:480ea55a-5cac-4bab-a992-a3201f10f4c5.

Full text
Abstract:
Topological insulators (TIs) are recently predicted, and much studied, new quantum materials. These materials are characterised by their unique surface electronic properties; namely, behaving as band insulators within their bulk, but with spin-momentum locked surface or edge states at their interface. These surface/edge crossing states are protected by the underlying time-reversal symmetry (TRS) of the bulk band structure, leading to a robust topological surface state (TSS) that is resistant to scattering from impurities which do not break TRS. Their surface band dispersion has a characteristi
APA, Harvard, Vancouver, ISO, and other styles
9

Ho, Kai-Chung. "Monte carlo studies of metal-insulator transition in granular system /." View Abstract or Full-Text, 2002. http://library.ust.hk/cgi/db/thesis.pl?PHYS%202002%20HO.

Full text
Abstract:
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2002.<br>Includes bibliographical references (leaves 47-48). Also available in electronic version. Access restricted to campus users.
APA, Harvard, Vancouver, ISO, and other styles
10

Lam, Jennifer. "The nature of the metal-insulator transition in SiGe quantum wells." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq20977.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Metal insulator transition"

1

Gebhard, Florian. The Mott Metal-Insulator Transition. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-14858-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gebhard, Florian. The mott metal-insulator transition: Models and methods. New York: Springer, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

mer, Nils Blu. Mott-Hubbard metal-insulator transition and optical conductivity in high dimensions. Aachen: Shaker, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cheng, Minghao. Spectroscopy of the Temperature and Current Driven Metal-Insulator Transition in Ca₂RuO₄. [New York, N.Y.?]: [publisher not identified], 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

F, Mott N. Metal-insulator transitions. 2nd ed. London: Taylor & Francis, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

International Conference on Heavy Doping and the Metal-Insulator Transition in Semiconductors (1984 Santa Cruz). Heavy doping and the metal-insulator transition in semiconductors: International conference, University of California at Santa Cruz, California, U.S.A., 30 July-3 August 1984. Edited by Landsberg P. T. 1922-. New York: Pergamon Press, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rao, C. N. R. 1934- and Mott, N. F. Sir, 1905-, eds. Metal-insulator transitions revisited. London, UK: Taylor & Francis, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fritzsche, Hellmut. Localization and Metal-Insulator Transitions. Boston, MA: Springer US, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fritzsche, Hellmut, and David Adler, eds. Localization and Metal-Insulator Transitions. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2517-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hellmut, Fritzsche, Adler David 1935-1987, and Mott, N. F. Sir, 1905-, eds. Localization and metal-insulator transitions. New York: Plenum Press, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Metal insulator transition"

1

Kramer, Bernhard, Gerd Bergmann, and Yvan Bruynseraede. "Metal-Insulator Transition." In Springer Series in Solid-State Sciences, 257–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82516-3_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Minomura, Shigeru. "Pressure-Induced Insulator-Metal Transition." In Localization and Metal-Insulator Transitions, 63–76. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2517-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Okuma, S., F. Komori, and S. Kobayashi. "The Metal-Insulator Transition in Disordered Metals." In Springer Proceedings in Physics, 78–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73554-7_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hensel, F., S. Jüngst, F. Noll, and R. Winter. "Metal-Nonmetal Transition and the Critical Point Phase Transition in Fluid Cesium." In Localization and Metal-Insulator Transitions, 109–17. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2517-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Redmer, Ronald, and Bastian Holst. "Metal–Insulator Transition in Dense Hydrogen." In Metal-to-Nonmetal Transitions, 63–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-03953-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Economou, E. N., and A. C. Fertis. "Metal — Insulator Transition in Doped Semiconductors." In Localization and Metal-Insulator Transitions, 269–80. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2517-8_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Turkevich, Leonid A. "Exciton Condensation and the Mott Transition." In Localization and Metal-Insulator Transitions, 259–68. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2517-8_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Itoh, Kohei M. "Metal-Insulator Transition in Doped Semiconductors." In Springer Proceedings in Physics, 128–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Milde, F., R. A. Römer, and M. Schreiber. "Metal-insulator transition in anisotropic systems." In Springer Proceedings in Physics, 148–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Markoš, P. "Universality of the Metal-Insulator Transition." In Quantum Dynamics of Submicron Structures, 99–102. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0019-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Metal insulator transition"

1

GRENET, T. "METAL-INSULATOR TRANSITION IN QUASICRYSTALS." In Proceedings of the Spring School on Quasicrystals. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793201_0015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gorelov, B. M., V. V. Dyakin, K. P. Konin, and D. V. Morozovska. "Metal-insulator transition in barium dioxide." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kim, Inho, Deok-Kyu Kim, and Eun Soo Lee. "Insulator-Metal Transition Simulation of Nonideal Plasmas." In IEEE Conference Record - Abstracts. 2005 IEEE International Conference on Plasma Science. IEEE, 2005. http://dx.doi.org/10.1109/plasma.2005.359079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sachdev, Subir. "Local moments near the metal-insulator transition." In Frontiers in condensed matter theory. AIP, 1990. http://dx.doi.org/10.1063/1.39735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

SHIMA, HIROYUKI, and TSUNEYOSHI NAKAYAMA. "METAL-INSULATOR TRANSITION IN 1D CORRELATED DISORDER." In Proceedings of the 1st International Symposium on TOP2005. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772879_0043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mandrus, D., L. Forro, C. Kendziora, and L. Mihaly. "Metal-insulator transition in doped Bi2Sr2Ca1−xYxCu2O8." In Superconductivity and its applications. AIP, 1992. http://dx.doi.org/10.1063/1.42112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Krishnan, M., Ashish Mishra, Durgesh Singh, Venkatesh R., Mohan Gangrade, and V. Ganesan. "Metal insulator transition in nickel substituted FeSi." In DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5029005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Osofsky, Michael S., Robert J. Soulen, Jr., J. H. Claassen, Huengsoo J. Kim, and James S. Horwitz. "Enhanced superconductivity near the metal-insulator transition." In International Symposium on Optical Science and Technology, edited by Ivan Bozovic and Davor Pavuna. SPIE, 2002. http://dx.doi.org/10.1117/12.455491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Qu, Luman, Marton Voros, and Gergely T. Zimanyi. "Metal-insulator transition in nanoparticle solar cells." In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE, 2016. http://dx.doi.org/10.1109/pvsc.2016.7750004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Charipar, Nicholas A., Heungsoo Kim, Nicholas Bingham, Ryan Suess, Kristin M. Charipar, Scott A. Mathews, Raymond C. Y. Auyeung, and Alberto Piqué. "Harnessing the metal-insulator transition for tunable metamaterials." In Metamaterials, Metadevices, and Metasystems 2017, edited by Nader Engheta, Mikhail A. Noginov, and Nikolay I. Zheludev. SPIE, 2017. http://dx.doi.org/10.1117/12.2275864.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Metal insulator transition"

1

Hood, R. Q., and G. Galli. Insulator to Metal Transition in Fluid Hydrogen. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/15003860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bastea, M., and R. Cauble. Metal-Insulator Transition in Li and LiH - Final Report. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/15008095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kohlman, R. S., and A. J. Epstein. Insulator-Metal Transition and Inhomogeneous Metallic State in Conducting Polymers. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada330213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cobden, David H. Mesoscopic Effects and Metal-Insulator Transition in Vanadium Oxide Nanowires. Fort Belvoir, VA: Defense Technical Information Center, July 2012. http://dx.doi.org/10.21236/ada579160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Neumeier, J. J., M. F. Hundley, A. L. Cornelius, and K. Andres. Volume-based considerations for the metal-insulator transition of CMR oxides. Office of Scientific and Technical Information (OSTI), March 1998. http://dx.doi.org/10.2172/658143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Averitt, Richard D. Conductivity Dynamics of the Metal to Insulator Transition in EuNiO3/LANiO3 Superlattices. Fort Belvoir, VA: Defense Technical Information Center, January 2016. http://dx.doi.org/10.21236/ad1008800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sarachik, Myriam P. Thermal Conductivity and Thermopower near the 2D Metal-Insulator transition, Final Technical Report. Office of Scientific and Technical Information (OSTI), February 2015. http://dx.doi.org/10.2172/1170416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Derakhshan, Shahab, and Yohannes Abate. Near-Field Nanoscopy of Metal-Insulator Phase Transitions Towards Synthesis of Novel Correlated Transition Metal Oxides and Their Interaction with Plasmon Resonances. Fort Belvoir, VA: Defense Technical Information Center, January 2016. http://dx.doi.org/10.21236/ad1007386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Medarde, M., F. Fauth, A. Furrer, P. Lacorre, and K. Conder. Giant oxygen isotope effect on the metal-insulator transition of RNiO{sub 3} perovskites. Office of Scientific and Technical Information (OSTI), August 1998. http://dx.doi.org/10.2172/290921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Regan, Michael J. Anisotropic phase separation through the metal-insulator transition in amorphous Mo-Ge and Fe-Ge alloys. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10127772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!