Academic literature on the topic 'Metal oxide semiconductors'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Metal oxide semiconductors.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Metal oxide semiconductors"

1

Jeon, Yunchae, Donghyun Lee, and Hocheon Yoo. "Recent Advances in Metal-Oxide Thin-Film Transistors: Flexible/Stretchable Devices, Integrated Circuits, Biosensors, and Neuromorphic Applications." Coatings 12, no. 2 (February 4, 2022): 204. http://dx.doi.org/10.3390/coatings12020204.

Full text
Abstract:
Thin-film transistors using metal oxides have been investigated extensively because of their high transparency, large area, and mass production of metal oxide semiconductors. Compatibility with conventional semiconductor processes, such as photolithography of the metal oxide offers the possibility to develop integrated circuits on a larger scale. In addition, combinations with other materials have enabled the development of sensor applications or neuromorphic devices in recent years. Here, this paper provides a timely overview of metal-oxide-based thin-film transistors focusing on emerging app
APA, Harvard, Vancouver, ISO, and other styles
2

Pandit, Bhishma, and Jaehee Cho. "AlGaN Ultraviolet Metal–Semiconductor–Metal Photodetectors with Reduced Graphene Oxide Contacts." Applied Sciences 8, no. 11 (November 1, 2018): 2098. http://dx.doi.org/10.3390/app8112098.

Full text
Abstract:
AlGaN semiconductors are promising materials in the field of ultraviolet (UV) detection. We fabricated AlGaN/GaN UV metal–semiconductor–metal (MSM) photodiodes with two back-to-back interdigitated finger electrodes comprising reduced graphene oxide (rGO). The rGO showed high transparency below the wavelength of 380 nm, which is necessary for a visible-blind photodetector, and showed outstanding Schottky behavior on AlGaN. As the photocurrent, dark current, photoresponsivity, detectivity, and cut-off wavelength were investigated with the rGO/AlGaN MSM photodiodes with various Al mole fractions,
APA, Harvard, Vancouver, ISO, and other styles
3

Díaz, Carlos, Marjorie Segovia, and Maria Luisa Valenzuela. "Solid State Nanostructured Metal Oxides as Photocatalysts and Their Application in Pollutant Degradation: A Review." Photochem 2, no. 3 (August 5, 2022): 609–27. http://dx.doi.org/10.3390/photochem2030041.

Full text
Abstract:
Most dyes used in various industries are toxic and carcinogenic, thus posing a serious hazard to humans as well as to the marine ecosystem. Therefore, the impact of dyes released into the environment has been studied extensively in the last few years. Heterogeneous photocatalysis has proved to be an efficient tool for degrading both atmospheric and aquatic organic contaminants. It uses the sunlight in the presence of a semiconductor photocatalyst to accelerate the remediation of environmental contaminants and the destruction of highly toxic molecules. To date, photocatalysis has been considere
APA, Harvard, Vancouver, ISO, and other styles
4

Matsumoto, Y., H. Koinuma, T. Hasegawa, I. Takeuchi, F. Tsui, and Young K. Yoo. "Combinatorial Investigation of Spintronic Materials." MRS Bulletin 28, no. 10 (October 2003): 734–39. http://dx.doi.org/10.1557/mrs2003.215.

Full text
Abstract:
AbstractHigh-throughput synthesis and characterization techniques have been effective in discovering new materials and performing rapid mapping of phase diagrams. The application of the combinatorial strategy to explore doped transition-metal oxides has led to the discovery of a transparent room-temperature ferromagnetic oxide in Co-doped anatase TiO2. The discovery has triggered a wave of studies into other metal oxide systems in pursuit of diluted magnetic semiconductors. In this article, we describe recent combinatorial studies of magnetic transition-metal oxides, germanium-based magnetic s
APA, Harvard, Vancouver, ISO, and other styles
5

Robertson, John, and Zhaofu Zhang. "Doping limits in p-type oxide semiconductors." MRS Bulletin 46, no. 11 (November 2021): 1037–43. http://dx.doi.org/10.1557/s43577-021-00211-3.

Full text
Abstract:
AbstractThe ability to dope a semiconductor depends on whether the Fermi level can be moved into its valence or conduction bands, on an energy scale referred to the vacuum level. For oxides, there are various suitable n-type oxide semiconductors, but there is a marked absence of similarly suitable p-type oxides. This problem is of interest not only for thin-film transistors for displays, or solar cell electrodes, but also for back-end-of-line devices for the semiconductor industry. This has led to a wide-ranging search for p-type oxides using high-throughput calculations. We note that some pro
APA, Harvard, Vancouver, ISO, and other styles
6

Yoshitake, Michiko. "General Method for Predicting Interface Bonding at Various Oxide–Metal Interfaces." Surfaces 7, no. 2 (June 3, 2024): 414–27. http://dx.doi.org/10.3390/surfaces7020026.

Full text
Abstract:
Interface termination bonding between metal oxide and metals is discussed from the viewpoint of thermodynamics. The method of interface termination prediction proposed by the authors for Al2O3–metal and ZnO–metal interfaces is extended to a general interface between metal-oxide and metals. The extension of the prediction method to the interface between metal oxides and elemental semiconductors is also discussed. Information on interface bonding was extracted by carefully examining the experimental results and first-principles calculations in the references. The extracted information on interfa
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Jungho, and Jiwan Kim. "Synthesis of NiO for various optoelectronic applications." Ceramist 25, no. 3 (September 30, 2022): 320–31. http://dx.doi.org/10.31613/ceramist.2022.25.3.02.

Full text
Abstract:
Oxide semiconductors have developed rapidly in a short period of time in various industrial fields due to their ability to be easily manufactured at low temperatures and recoverability of electrical properties. Among these oxide semiconductors, nickel oxide (NiO) is one of the most studied transition metal oxides. NiO is a p-type semiconductor with a wide band gap at room temperature, and has advantages of low toxicity, low cost, and excellent stability. Due to these advantages, NiO is widely used in various industrial fields such as gas sensors. In this paper, various synthesis methods of NiO
APA, Harvard, Vancouver, ISO, and other styles
8

Wu, Jianhao. "Performance comparison and analysis of silicon-based and carbon-based integrated circuits under VLSI." Applied and Computational Engineering 39, no. 1 (February 21, 2024): 244–50. http://dx.doi.org/10.54254/2755-2721/39/20230605.

Full text
Abstract:
Since 1960, the semiconductor industry has invented Metal Oxide Semiconductor Field Effect Transistor (MOSFET) and Complementary Metal Oxide Semiconductor (CMOS) technologies. Subsequently, the semiconductor-based integrated circuit industry has led a new generation of information revolution, driving the rapid development of various electronic circuit technologies worldwide. With the physical limitations of the silicon semiconductor process, Moores Law is also approaching its physical limit. In the search for new semiconductor materials, carbon nanotube semiconductors have become one of the ca
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Jiawei. "Recent Progress of β-Ga2O3 and Transition Metal doped β- Ga2O3 Structure and Properties". Highlights in Science, Engineering and Technology 99 (18 червня 2024): 247–52. http://dx.doi.org/10.54097/er1nze77.

Full text
Abstract:
Oxide semiconductor material formed from oxygen and a metal is a compound semiconductor material. Important oxide semiconductor materials include Cu2O, ZnO, SnO2, Fe2O3, TiO2, ZrO2, CoO, WO3, Ga2O3 and others. Oxide semiconductors have been receiving strong attention and are widely used in different fields such as solar cells and photovoltaic technology. Due to the development of technology, the high-performance techniques demand more from the parts. Semiconductor is an intensively researched substance that can be used in a wide range of technologies. β-Ga2O3 is a metal oxide that has good pro
APA, Harvard, Vancouver, ISO, and other styles
10

Adhikari, Sangeeta, and Debasish Sarkar. "Metal oxide semiconductors for dye degradation." Materials Research Bulletin 72 (December 2015): 220–28. http://dx.doi.org/10.1016/j.materresbull.2015.08.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Metal oxide semiconductors"

1

Peleckis, Germanas. "Studies on diluted oxide magnetic semiconductors for spin electronic applications." Access electronically, 2006. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20070821.145447/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Kehuey. "Strain effects on the valence band of silicon piezoresistance in p-type silicon and mobility enhancement in strained silicon pMOSFET /." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0008390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Al-Ahmadi, Ahmad Aziz. "Complementary orthogonal stacked metal oxide semiconductor a novel nanoscale complementary metal oxide semiconductor architecture /." Ohio : Ohio University, 2006. http://www.ohiolink.edu/etd/view.cgi?ohiou1147134449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Kou-chen. "Si1-xGex/Si vertical MOSFETs and sidewall strained Si devices : design and fabrication /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Höhr, Timm. "Quantum-mechanical modeling of transport parameters for MOS devices /." Konstanz : Hartnung-Gorre, 2006. http://www.loc.gov/catdir/toc/fy0707/2007358987.html.

Full text
Abstract:
Originally presented as the author's thesis (Swiss Federal Institute of Technology), Diss. ETH No. 16228.<br>Summary in German and English, text in English. Includes bibliographical references (p. 123-132).
APA, Harvard, Vancouver, ISO, and other styles
6

Gurcan, Zeki B. "0.18 [mu]m high performance CMOS process optimization for manufacturability /." Online version of thesis, 2005. http://hdl.handle.net/1850/5197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wu, Ting. "Design of terabits/s CMOS crossbar switch chip /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?ELEC%202003%20WU.

Full text
Abstract:
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2003.<br>Includes bibliographical references (leaves 100-105). Also available in electronic version. Access restricted to campus users.
APA, Harvard, Vancouver, ISO, and other styles
8

Wu, Xu Sheng. "Three dimensional multi-gates devices and circuits fabrication, characterization, and modeling /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?ELEC%202005%20WUX.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Modzelewski, Kenneth Paul. "DC parameter extraction technique for independent double gate MOSFETs a thesis presented to the faculty of the Graduate School, Tennessee Technological University /." Click to access online, 2009. http://proquest.umi.com/pqdweb?index=11&did=1759989211&SrchMode=1&sid=1&Fmt=6&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1250600320&clientId=28564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Trivedi, Vishal P. "Physics and design of nonclassical nanoscale CMOS devices with ultra-thin bodies." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0009860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Metal oxide semiconductors"

1

Nicollian, E. H. MOS (metal oxide semiconductor) physics and technology. Hoboken, N.J: Wiley-Interscience, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

J, Dumin D., ed. Oxide reliability: A summary of silicon oxide wearout, breakdown, and reliability. [River Edge, NJ]: World Scientific, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sato, Norio. Electrochemistry at metal and semiconductor electrodes. Amsterdam: Elsevier, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhao, Yi. Wafer level reliability of advanced CMOS devices and processes. New York: Nova Science Publishers, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lancaster, Don. CMOS cookbook. 2nd ed. Indianapolis, Ind: H.W. Sams, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pfaffli, Paul. Characterisation of degradation and failure phenomena in MOS devices. Konstanz [Germany]: Hartung-Gorre, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

T, Andre Noah, and Simon Lucas M, eds. MOSFETS: Properties, preparations to performance. New York: Nova Science Publishers, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Korec, Jacek. Low voltage power MOSFETs: Design, performance and applications. New York: Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Paul, Reinhold. MOS-Feldeffekttransistoren. Berlin: Springer-Verlag, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shoji, Masakazu. CMOS digital circuit technology. Englewood Cliffs, N.J: Prentice Hall, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Metal oxide semiconductors"

1

Hussain, Aftab M. "Metal Oxide Semiconductors." In Introduction to Flexible Electronics, 81–94. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003010715-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Janotti, A., J. B. Varley, J. L. Lyons, and C. G. Van de Walle. "Controlling the Conductivity in Oxide Semiconductors." In Functional Metal Oxide Nanostructures, 23–35. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9931-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baratto, Camilla, Elisabetta Comini, Guido Faglia, Matteo Ferroni, Andrea Ponzoni, Alberto Vomiero, and Giorgio Sberveglieri. "Transparent Metal Oxide Semiconductors as Gas Sensors." In Transparent Electronics, 417–42. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470710609.ch17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fukumura, Tomoteru, and Masashi Kawasaki. "Magnetic Oxide Semiconductors: On the High-Temperature Ferromagnetism in TiO2- and ZnO-Based Compounds." In Functional Metal Oxides, 89–131. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527654864.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Swapnalin, Jhilmil, Prasun Banerjee, Chetana Sabbanahalli, Dinesh Rangappa, Kiran Kumar Kondamareddy, and Dharmapura H. K. Murthy. "Computational Techniques on Optical Properties of Metal-Oxide Semiconductors." In Optical Properties and Applications of Semiconductors, 155–66. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003188582-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jongh, L. J. "Superconductivity by Local Pairs (Bipolarons) in Doped Metal Oxide Semiconductors." In Mixed Valency Systems: Applications in Chemistry, Physics and Biology, 223–46. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3606-8_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ameen, Sadia, M. Shaheer Akhtar, Hyung-Kee Seo, and Hyung Shik Shin. "Metal Oxide Semiconductors and their Nanocomposites Application Towards Photovoltaic and Photocatalytic." In Advanced Energy Materials, 105–66. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118904923.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hartnagel, H. L., and V. P. Sirkeli. "The Use of Metal Oxide Semiconductors for THz Spectroscopy of Biological Applications." In IFMBE Proceedings, 213–17. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31866-6_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Körösi, L., K. Mogyorósi, R. Kun, J. Németh, and I. Dékány. "Preparation and photooxidation properties of metal oxide semiconductors incorporated in layer silicates." In From Colloids to Nanotechnology, 27–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-45119-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Weik, Martin H. "metal-oxide semiconductor." In Computer Science and Communications Dictionary, 1009. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_11446.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Metal oxide semiconductors"

1

Seo, Young-Ho, Seung-Woo Do, Yong-Hyun Lee, Jae-Sung Lee, Jisoon Ihm, and Hyeonsik Cheong. "Deuterium Process to Improve Gate Oxide Integrity in Metal-Oxide-Silicon (MOS) Structure." In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Satsangi, Vibha R. "Metal oxide semiconductors in PEC splitting of water." In Solar Energy + Applications, edited by Jinghua Guo. SPIE, 2007. http://dx.doi.org/10.1117/12.734795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Dong Uk, Seon Pil Kim, Hyo Jun Lee, Dong Seok Han, Eun Kyu Kim, Hee-Wook You, Won-Ju Cho, Young-Ho Kim, Jisoon Ihm, and Hyeonsik Cheong. "Study on transparent and flexible memory with metal-oxide nanocrystals." In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tristiantoro, Roby, Andani Achmad, and Syafaruddin. "System of Breath Analyzer based on Metal-Oxide Semiconductors." In 2022 6th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE). IEEE, 2022. http://dx.doi.org/10.1109/icitisee57756.2022.10057693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vecchi, P., A. Piccioni, I. Carrai, R. Mazzaro, F. Boscherini, P. Ceroni, S. Caramori, and L. Pasquini. "Nanostructured metal oxide semiconductors for photoelectrocatalytic conversion of solar energy." In 2023 IEEE Nanotechnology Materials and Devices Conference (NMDC). IEEE, 2023. http://dx.doi.org/10.1109/nmdc57951.2023.10344113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Balakumar, S., and R. Ajay Rakkesh. "Core/shell nano-structuring of metal oxide semiconductors and their photocatalytic studies." In SOLID STATE PHYSICS: PROCEEDINGS OF THE 57TH DAE SOLID STATE PHYSICS SYMPOSIUM 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4790898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ng, A., X. Liu, Y. C. Sun, A. B. Djurišić, A. M. C. Ng, and W. K. Chan. "Effect of electron collecting metal oxide layer in normal and inverted structure polymer solar cells." In THE PHYSICS OF SEMICONDUCTORS: Proceedings of the 31st International Conference on the Physics of Semiconductors (ICPS) 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4848343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Osseily, Hassan Amine, and Ali Massoud Haidar. "Octal to binary conversion using multi-input floating gate complementary metal oxide semiconductors." In 2011 10th International Symposium on Signals, Circuits and Systems (ISSCS). IEEE, 2011. http://dx.doi.org/10.1109/isscs.2011.5978644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Rui, Linsen Bie, Tze-Ching Fung, Eric Kai-Hsiang Yu, Chumin Zhao, and Jerzy Kanicki. "High performance amorphous metal-oxide semiconductors thin-film passive and active pixel sensors." In 2013 IEEE International Electron Devices Meeting (IEDM). IEEE, 2013. http://dx.doi.org/10.1109/iedm.2013.6724703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Osseily, Hassan Amine, and Ali Massoud Haidar. "Hexadecimal to binary conversion using multi-input floating gate complementary metal oxide semiconductors." In 2015 International Conference on Applied Research in Computer Science and Engineering (ICAR). IEEE, 2015. http://dx.doi.org/10.1109/arcse.2015.7338134.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Metal oxide semiconductors"

1

Bryant, R. E. Two Papers on a Symbolic Analyzer for MOS (Metal-Oxide Semiconductors) Circuits. Fort Belvoir, VA: Defense Technical Information Center, December 1987. http://dx.doi.org/10.21236/ada188617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hane, G. J., M. Yorozu, T. Sogabe, and S. Suzuki. Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators. Office of Scientific and Technical Information (OSTI), April 1985. http://dx.doi.org/10.2172/5621417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Wei. Complimentary Metal Oxide Semiconductor (CMOS)-Memristor Hybrid Nanoelectronics. Fort Belvoir, VA: Defense Technical Information Center, June 2011. http://dx.doi.org/10.21236/ada544310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ludeke, R. Spatially Resolved Transport Studies and Microscopy of Ultrathin Metal-Oxide-Semiconductor Structures. Fort Belvoir, VA: Defense Technical Information Center, August 1997. http://dx.doi.org/10.21236/ada329531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Griffin, Timothy E. Pulsed Capacitance Measurement of Silicon Carbide (SiC) Schottky Diode and SiC Metal Oxide Semiconductor. Fort Belvoir, VA: Defense Technical Information Center, November 2006. http://dx.doi.org/10.21236/ada458317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, Timothy C., and Robert M. Proie. A Subthreshold Digital Library Using a Dynamic-Threshold Metal-Oxide Semiconductor (DTMOS) and Transmission Gate Logic. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada608589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xu, Yang. A 94GHz Temperature Compensated Low Noise Amplifier in 45nm Silicon-on-Insulator Complementary Metal-Oxide Semiconductor (SOI CMOS). Fort Belvoir, VA: Defense Technical Information Center, January 2014. http://dx.doi.org/10.21236/ada596171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!