Journal articles on the topic 'Metal oxide semiconductors, Complimentary'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Metal oxide semiconductors, Complimentary.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Moreno, Mauricio. "Complimentary metal-oxide semiconductor linear photosensor array for 3-D reconstruction applications." Optical Engineering 43, no. 10 (2004): 2448. http://dx.doi.org/10.1117/1.1786939.
Full textSerov, Alexander, Wiendelt Steenbergen, and Frits de Mul. "Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor." Optics Letters 27, no. 5 (2002): 300. http://dx.doi.org/10.1364/ol.27.000300.
Full textMartin, Lucy C., David T. Clark, Ewan P. Ramsay, et al. "Comparison of Oxide Quality for Monolithically Fabricated SiC CMOS Structures." Materials Science Forum 717-720 (May 2012): 773–76. http://dx.doi.org/10.4028/www.scientific.net/msf.717-720.773.
Full textLakestani, Fereydoun. "Full-field optical coherence tomography with a complimentary metal-oxide semiconductor digital signal processor camera." Optical Engineering 45, no. 1 (2006): 015601. http://dx.doi.org/10.1117/1.2158968.
Full textSederberg, S., V. Van, and A. Y. Elezzabi. "Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor- and photonic-compatible platform." Applied Physics Letters 96, no. 12 (2010): 121101. http://dx.doi.org/10.1063/1.3365020.
Full textKim, Tae-Hoon, Cihan Yilmaz, Sivasubramanian Somu, and Ahmed Busnaina. "3-D Perpendicular Assembly of Single Walled Carbon Nanotubes for Complimentary Metal Oxide Semiconductor Interconnects." Journal of Nanoscience and Nanotechnology 14, no. 5 (2014): 3673–76. http://dx.doi.org/10.1166/jnn.2014.7942.
Full textMartin, Lucy Claire, David T. Clark, E. P. Ramsay, et al. "Charge Pumping Analysis of Monolithically Fabricated 4H-SiC CMOS Structures." Materials Science Forum 740-742 (January 2013): 891–94. http://dx.doi.org/10.4028/www.scientific.net/msf.740-742.891.
Full textEndoh, Tetsuo, Fumitaka Iga, Shoji Ikeda, et al. "The Performance of Magnetic Tunnel Junction Integrated on the Back-End Metal Line of Complimentary Metal–Oxide–Semiconductor Circuits." Japanese Journal of Applied Physics 49, no. 4 (2010): 04DM06. http://dx.doi.org/10.1143/jjap.49.04dm06.
Full textFritze, M., J. Burns, P. W. Wyatt, et al. "Sub-100 nm silicon on insulator complimentary metal–oxide semiconductor transistors by deep ultraviolet optical lithography." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 18, no. 6 (2000): 2886. http://dx.doi.org/10.1116/1.1314387.
Full textRishton, S. A. "New complimentary metal–oxide semiconductor technology with self-aligned Schottky source/drain and low-resistance T gates." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 15, no. 6 (1997): 2795. http://dx.doi.org/10.1116/1.589730.
Full textLin, S., H. Cui, L. Wu, W. Wang та X. Sun. "Design of broadside-coupled parallel line millimetre-wave filters by standard 0.18-μm complimentary metal oxide semiconductor technology". IET Microwaves, Antennas & Propagation 6, № 1 (2012): 72. http://dx.doi.org/10.1049/iet-map.2011.0024.
Full textMorifuji, Eiji. "Impact of Mechanical Stress on Hot-Carrier Lifetime and Time-Dependent Dielectric Breakdown in Downscaled Complimentary Metal–Oxide–Semiconductor." Japanese Journal of Applied Physics 48, no. 2 (2009): 021206. http://dx.doi.org/10.1143/jjap.48.021206.
Full textAyón, A. A., K. Ishihara, R. A. Braff, H. H. Sawin, and M. A. Schmidt. "Application of the footing effect in the micromachining of self-aligned, free-standing, complimentary metal–oxide–semiconductor compatible structures." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 17, no. 4 (1999): 2274–79. http://dx.doi.org/10.1116/1.581760.
Full textUraoka, Yukiharu, Hiroshi Yano, Tomoaki Hatayama, and Takashi Fuyuki. "Comprehensive Study on Reliability of Low-Temperature Poly-Si Thin-Film Transistors under Dynamic Complimentary Metal-Oxide Semiconductor Operations." Japanese Journal of Applied Physics 41, Part 1, No. 4B (2002): 2414–18. http://dx.doi.org/10.1143/jjap.41.2414.
Full textChang, J. F., and Y. S. Lin. "DC∼10.5 GHz complimentary metal oxide semiconductor distributed amplifier with RC gate terminal network for ultra-wideband pulse radio systems." IET Microwaves, Antennas & Propagation 6, no. 2 (2012): 127. http://dx.doi.org/10.1049/iet-map.2011.0231.
Full textLi, V. Z.-Q., M. R. Mirabedini, R. T. Kuehn, et al. "Rapid thermal chemical vapor deposition ofin situboron-doped polycrystalline silicon-germanium films on silicon dioxide for complimentary-metal-oxide-semiconductor applications." Applied Physics Letters 71, no. 23 (1997): 3388–90. http://dx.doi.org/10.1063/1.120344.
Full textParikh, Pritesh, Corey Senowitz, Don Lyons, et al. "Three-Dimensional Nanoscale Mapping of State-of-the-Art Field-Effect Transistors (FinFETs)." Microscopy and Microanalysis 23, no. 5 (2017): 916–25. http://dx.doi.org/10.1017/s1431927617012491.
Full textMurata, M., K. Yamauchi, H. Kojima, A. Yokoyama, T. Inoue, and T. Iwamori. "Parasitic Channel Induced by Spin‐On‐Glass in a Double‐Level Metallization Complimentary Metal Oxide Semiconductor Process: Its Formation and Method of Suppression." Journal of The Electrochemical Society 140, no. 8 (1993): 2346–56. http://dx.doi.org/10.1149/1.2220821.
Full textLiebmann, L. "Application of proximity synchrotron orbital radiation lithography and deep ultraviolet phase-shifted-mask lithography to sub-quarter-micron complimentary metal oxide semiconductor devices." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 12, no. 6 (1994): 3943. http://dx.doi.org/10.1116/1.587579.
Full textRamesh, Tatapudi, Gurugubelli Upendra, Bandaru Sravani Krishna, et al. "A comparative study to diagnose the accuracy of E-speed film, complimentary metal oxide semiconductor and storage phosphor systems in the detection of proximal caries: An in vitro study." International Journal of Dental Research 4, no. 1 (2016): 1. http://dx.doi.org/10.14419/ijdr.v4i1.5717.
Full textGrados, Hugo Ricardo Jiménez, Leandro T. Manera, Ricardo Wada, et al. "DC Improvements and Low-Frequency 1/fNoise Characteristics of Complimentary Metal–Oxide–Semiconductor Transistors with a Single n+-Doped Polycrystalline Si/SiGe Gate Stack." Japanese Journal of Applied Physics 49, no. 4 (2010): 04DC04. http://dx.doi.org/10.1143/jjap.49.04dc04.
Full textSmith, A., Qi Li, Agin Vyas, et al. "Carbon-Based Electrode Materials for Microsupercapacitors in Self-Powering Sensor Networks: Present and Future Development." Sensors 19, no. 19 (2019): 4231. http://dx.doi.org/10.3390/s19194231.
Full textDu, Yankang, and Shuming Chen. "A Novel Layout-Based Single Event Transient Injection Approach to Evaluate the Soft Error Rate of Large Combinational Circuits in Complimentary Metal-Oxide-Semiconductor Bulk Technology." IEEE Transactions on Reliability 65, no. 1 (2016): 248–55. http://dx.doi.org/10.1109/tr.2015.2427372.
Full textPabo, Eric F., Garrett Oakes, Ron Miller, et al. "Enabling Wafer Level Processes for CIS Manufacturing." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2010, DPC (2010): 002393–413. http://dx.doi.org/10.4071/2010dpc-tha36.
Full textAdhikari, Sangeeta, and Debasish Sarkar. "Metal oxide semiconductors for dye degradation." Materials Research Bulletin 72 (December 2015): 220–28. http://dx.doi.org/10.1016/j.materresbull.2015.08.009.
Full textKiriakidis, George, and Vassilios Binas. "Metal oxide semiconductors as visible light photocatalysts." Journal of the Korean Physical Society 65, no. 3 (2014): 297–302. http://dx.doi.org/10.3938/jkps.65.297.
Full textToriumi, Akira. "0.1μm complementary metal–oxide–semiconductors and beyond". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14, № 6 (1996): 4020. http://dx.doi.org/10.1116/1.588635.
Full textSaha, H., and C. Chaudhuri. "Complementary Metal Oxide Semiconductors Microelectromechanical Systems Integration." Defence Science Journal 59, no. 6 (2009): 557–67. http://dx.doi.org/10.14429/dsj.59.1560.
Full textAnta, Juan A. "Electron transport in nanostructured metal-oxide semiconductors." Current Opinion in Colloid & Interface Science 17, no. 3 (2012): 124–31. http://dx.doi.org/10.1016/j.cocis.2012.02.003.
Full textTutov, E. A., S. V. Ryabtsev, E. E. Tutov, and E. N. Bormontov. "Silicon MOS structures with nonstoichiometric metal-oxide semiconductors." Technical Physics 51, no. 12 (2006): 1604–7. http://dx.doi.org/10.1134/s1063784206120097.
Full textCAROTTA, M., V. GUIDI, G. MARTINELLI, M. NAGLIATI, D. PUZZOVIO, and D. VECCHI. "Sensing of volatile alkanes by metal-oxide semiconductors." Sensors and Actuators B: Chemical 130, no. 1 (2008): 497–501. http://dx.doi.org/10.1016/j.snb.2007.09.053.
Full textHossein-Babaei, Faramarz, Saeed Masoumi, and Amirreza Noori. "Seebeck voltage measurement in undoped metal oxide semiconductors." Measurement Science and Technology 28, no. 11 (2017): 115002. http://dx.doi.org/10.1088/1361-6501/aa82a4.
Full textHamers, Robert J., Scott A. Chambers, Paul E. Evans, et al. "Molecular and biomolecular interfaces to metal oxide semiconductors." physica status solidi (c) 7, no. 2 (2010): 200–205. http://dx.doi.org/10.1002/pssc.200982472.
Full textZhou, Xinran, Xiaowei Cheng, Yongheng Zhu, et al. "Ordered porous metal oxide semiconductors for gas sensing." Chinese Chemical Letters 29, no. 3 (2018): 405–16. http://dx.doi.org/10.1016/j.cclet.2017.06.021.
Full textPandit, Bhishma, and Jaehee Cho. "AlGaN Ultraviolet Metal–Semiconductor–Metal Photodetectors with Reduced Graphene Oxide Contacts." Applied Sciences 8, no. 11 (2018): 2098. http://dx.doi.org/10.3390/app8112098.
Full textWang, Yucheng, Yuming Zhang, Tiqiang Pang, et al. "Ionic behavior of organic–inorganic metal halide perovskite based metal-oxide-semiconductor capacitors." Physical Chemistry Chemical Physics 19, no. 20 (2017): 13002–9. http://dx.doi.org/10.1039/c7cp01799e.
Full textBiswas, Somnath, Jakub Husek, Stephen Londo, and L. Robert Baker. "Highly Localized Charge Transfer Excitons in Metal Oxide Semiconductors." Nano Letters 18, no. 2 (2018): 1228–33. http://dx.doi.org/10.1021/acs.nanolett.7b04818.
Full textRim, You Seung, Huajun Chen, Bowen Zhu, et al. "Interface Engineering of Metal Oxide Semiconductors for Biosensing Applications." Advanced Materials Interfaces 4, no. 10 (2017): 1700020. http://dx.doi.org/10.1002/admi.201700020.
Full textXu, Kang, Yi Wang, Yuda Zhao, and Yang Chai. "Modulation doping of transition metal dichalcogenide/oxide heterostructures." Journal of Materials Chemistry C 5, no. 2 (2017): 376–81. http://dx.doi.org/10.1039/c6tc04640a.
Full textOhkubo, S., Y. Ashida, T. Utsumi, K. Hongo, and G. Nogami. "The Role of Metal Hydrides in Electrode Reactions on Metal Oxide Semiconductors." Journal of The Electrochemical Society 143, no. 10 (1996): 3273–78. http://dx.doi.org/10.1149/1.1837197.
Full textWickramasinghe, Thushan E., Gregory Jensen, Ruhi Thorat, Miles Lindquist, Shrouq H. Aleithan, and Eric Stinaff. "Complementary growth of 2D transition metal dichalcogenide semiconductors on metal oxide interfaces." Applied Physics Letters 117, no. 21 (2020): 213104. http://dx.doi.org/10.1063/5.0027225.
Full textChen, Y. L., G. L. Liou, H. H. Hsu, et al. "Low-Voltage Metal-Oxide Thin Film Transistors Using P-Type Tin-Oxide Semiconductors." Journal of Nanoscience and Nanotechnology 19, no. 9 (2019): 5619–23. http://dx.doi.org/10.1166/jnn.2019.16563.
Full textChen, Huajun, You Seung Rim, Isaac Caleb Wang, et al. "Quasi-Two-Dimensional Metal Oxide Semiconductors Based Ultrasensitive Potentiometric Biosensors." ACS Nano 11, no. 5 (2017): 4710–18. http://dx.doi.org/10.1021/acsnano.7b00628.
Full textBraginsky, L. "Light absorption at the interface of transition-metal oxide semiconductors." Solar Energy Materials and Solar Cells 64, no. 1 (2000): 15–27. http://dx.doi.org/10.1016/s0927-0248(00)00038-6.
Full textSrivastava, S. K., P. Magudapathy, P. Gangopadhyay, S. Amirthapandian, Santanu Bera, and A. Das. "Ag nanoparticles in compound metal oxide semiconductors: Syntheses and characterizations." Thin Solid Films 681 (July 2019): 86–92. http://dx.doi.org/10.1016/j.tsf.2019.04.039.
Full textThomas, Stuart R., Pichaya Pattanasattayavong, and Thomas D. Anthopoulos. "Solution-processable metal oxide semiconductors for thin-film transistor applications." Chemical Society Reviews 42, no. 16 (2013): 6910. http://dx.doi.org/10.1039/c3cs35402d.
Full textJanesick, James. "Lux transfer: Complementary metal oxide semiconductors versus charge-coupled devices." Optical Engineering 41, no. 6 (2002): 1203. http://dx.doi.org/10.1117/1.1476692.
Full textJi, Haocheng, Wen Zeng, and Yanqiong Li. "Gas sensing mechanisms of metal oxide semiconductors: a focus review." Nanoscale 11, no. 47 (2019): 22664–84. http://dx.doi.org/10.1039/c9nr07699a.
Full textHo, Dongil, Hyewon Jeong, Sunwoo Choi, and Choongik Kim. "Organic materials as a passivation layer for metal oxide semiconductors." Journal of Materials Chemistry C 8, no. 43 (2020): 14983–95. http://dx.doi.org/10.1039/d0tc02379e.
Full textKim, Hojoong, and Jang-Yeon Kwon. "Enzyme immobilization on metal oxide semiconductors exploiting amine functionalized layer." RSC Advances 7, no. 32 (2017): 19656–61. http://dx.doi.org/10.1039/c7ra01615h.
Full text