To see the other types of publications on this topic, follow the link: Metal-oxide thin-films.

Dissertations / Theses on the topic 'Metal-oxide thin-films'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Metal-oxide thin-films.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Snyder, Mark Q. "Modification of Semi-metal Oxide and Metal Oxide Powders by Atomic Layer Deposition of Thin Films." Fogler Library, University of Maine, 2007. http://www.library.umaine.edu/theses/pdf/SnyderMQ2007.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kiisk, Valter. "Optical investigation of metal-oxide thin films /." Online version, 2006. http://dspace.utlib.ee/dspace/bitstream/10062/115/1/kiiskvalter.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ponja, Sapna D. "Metal oxide thin films for optoelectronic applications." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10045545/.

Full text
Abstract:
This thesis details the use of aerosol assisted chemical vapour deposition to deposit transparent conducting oxide thin films. Transparent conducting oxides are a special class of materials that exhibit high optical transparency as well as good electrical conductivity, two properties usually in contradiction with each other. The combination of these properties in one material has established an essential role for transparent conducting oxides in a range of applications such as flat screen displays, photovoltaic cells, gas sensors, low-emissive coatings and light emitting diodes. Aerosol assisted chemical vapour deposition is increasingly becoming recognised as a simple, low-cost and reliable technique for depositing thin films. It involves generating an aerosol mist from a solution containing the precursors that is transported with the aid of an inert or reactive carrier gas into the reaction chamber where deposition takes place on a heated substrate. Two of the attractive features of this method are its versatility in allowing the use of precursors that are not suitable for conventional chemical vapour deposition methods as the method depends on solubility rather than volatility and the facility to use multiple precursors simultaneously within a single vessel. The focus of this work is on doping and co-doping of metal oxide thin films, namely ZnO and SnO2, to enhance their optoelectronic properties. The ZnO films were doped with group III elements aluminium or gallium, and the SnO2 films were doped with multivalent elements antimony or tungsten. All four systems were co-doped by introducing fluorine to replace the oxygen ion in the lattice. Fluorine was used as the co-dopant because of its established use in fluorine doped tin(IV) oxide transparent conducting oxides, a commercially available product. Co-doping has received less attention compared with single cation doping largely because of the limitations of other deposition methods. The rationale for co-doping is that it would allow greater tuning of the optoelectronic properties of the transparent conducting oxides to suit specific applications. All films synthesised in this investigation were characterised using a wide range of techniques including X-ray diffraction, energy and/or wavelength dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, UV-visible-near infrared spectroscopy and Hall effect measurements.
APA, Harvard, Vancouver, ISO, and other styles
4

Ren, Huilin. "Current Voltage Characteristics of a Semiconductor Metal Oxide Sensor." Fogler Library, University of Maine, 2001. http://www.library.umaine.edu/theses/pdf/RenH2001.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Han, Sanggil. "Cu2O thin films for p-type metal oxide thin film transistors." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/285099.

Full text
Abstract:
The rapid progress of n-type metal oxide thin film transistors (TFTs) has motivated research on p-type metal oxide TFTs in order to realise metal oxide-based CMOS circuits which enable low power consumption large-area electronics. Cuprous oxide (Cu2O) has previously been proposed as a suitable active layer for p-type metal oxide TFTs. The two most significant challenges for achieving good quality Cu2O TFTs are to overcome the low field-effect mobility and an unacceptably high off-state current that are a feature of devices that have been reported to date. This dissertation focuses on improving the carrier mobility, and identifying the main origins of the low field-effect mobility and high off-state current in Cu2O TFTs. This work has three major findings. The first major outcome is a demonstration that vacuum annealing can be used to improve the carrier mobility in Cu2O without phase conversion, such as oxidation (CuO) or oxide reduction (Cu). In order to allow an in-depth discussion on the main origins of the very low carrier mobility in as-deposited films and the mobility enhancement by annealing, a quantitative analysis of the relative dominance of the main conduction mechanisms (i.e. trap-limited and grain-boundary-limited conduction) is performed. This shows that the low carrier mobility of as-deposited Cu2O is due to significant grain-boundary-limited conduction. In contrast, after annealing, grain-boundary-limited conduction becomes insignificant due to a considerable reduction in the energy barrier height at grain boundaries, and therefore trap-limited conduction dominates. A further mobility improvement by an increase in annealing temperature is explained by a reduction in the effect of trap-limited conduction resulting from a decrease in tail state density. The second major outcome of this work is the observation that grain orientation ([111] or [100] direction) of sputter-deposited Cu2O can be varied by control of the incident ion-to-Cu flux ratio. Using this technique, a systematic investigation on the effect of grain orientation on carrier mobility in Cu2O thin films is presented, which shows that the [100] Cu2O grain orientation is more favourable for realising a high carrier mobility. In the third and final outcome of this thesis, the temperature dependence of the drain current as a function of gate voltage along with the C-V characteristics reveals that minority carriers (electrons) cause the high off-state current in Cu2O TFTs. In addition, it is observed that an abrupt lowering of the activation energy and pinning of the Fermi energy occur in the off-state, which is attributed to subgap states at 0.38 eV below the conduction band minimum. These findings provide readers with the understanding of the main origins of the low carrier mobility and high off-state current in Cu2O TFTs, and the future research direction for resolving these problems.
APA, Harvard, Vancouver, ISO, and other styles
6

Yagoubi, Benabdella. "A study of some thin transition metal oxide films." Thesis, Brunel University, 1989. http://bura.brunel.ac.uk/handle/2438/5348.

Full text
Abstract:
This thesis analyses the effect of varying the compositions of co-evaporated V205/TeO2, W03/CeO2, SiO/TeO2 and W03/TeO2 amorphous thin films on their electrical and optical properties. Some information about the electronic properties of these oxides may be obtained by comparison of the results. In the oxide systems containing transition metal ions the expression for hopping energy at low temperatures contains a term due to the hopping energy of polarons in addition to that due to the disorder. In the dielectric SiO/TeO2 thin films the distortion of 'the molecule is thought to be quite weak and thus the carriers do not form polarons. They would move by hopping at the band edge at low temperatures and by excitation to a mobility edge at high temperatures. The electrical conductivity of V205/TeO2 amorphous thin films is discussed in the light of the Mott(1968) theory. The optical absorption edge was found to obey the direct forbidden transitions equation cc ico=B(fiw-EOP)3'2. The frequency-squared dependence of the conductivity of W03/CeO2 thin films (high content of CeO2) in the frequency region where the capacitance is constant is associated with the lead resistance according to Street et al (1971). The optical energy gap of the films varies with the composition in same way as in doped crystalline semiconductors. The value of the, optical W03/Ce02 was calculated using the Davis and Mott (1970) formula for non-direct optical transitions. The capacitance of SiO/TeO2 thin films is found to be almost independent of frequency as well as of temperature. This is due to a strong ionic bonding which characterises a good insulator. The optical absorption edge of SiO/TeO2 is found to be sharper than that of W03/ CeO2 and very similar to that found in most crystalline solids. The value of the optical energy gap is calculated using the same formula as in W03/CeO2. The systematic change of the optical gap with composition is observed only in a limited range of compositions. The a. c electrical properties of W03/Te02 amorphous thin films are described using the Springett(1974) and Elliott(1977) models. The optical absorption edge of WO3/TeO2 is found to lead to new arguments about the origin of the Urbach edges.The a. c electrical conductivity shows a frequency dependence of the form as ca wS in all samples studied in the present work. The mechanism of conduction at low temperatures with the index varying from 0.5 to I is thought to be due to hopping of electrons between localized states in the gap. At high fields the d. c current shows a non-linear dependence on the applied electric field. This is thought to be due to either space charge or Schottky effects in the oxides containing transition metal ions. In SiO/TeO2 dielectric films, the non-linear dependence of current on the electric field is thought to be due to either the Poole-Frenkel effect or at slightly lower fields it could be due to impurities.
APA, Harvard, Vancouver, ISO, and other styles
7

Besharat, Zahra. "Adsorption of molecular thin films on metal and metal oxide surfaces." Doctoral thesis, KTH, Materialfysik, MF, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-195613.

Full text
Abstract:
Metal and metal oxides are widely used in industry, and to optimize their performance their surfaces are commonly functionalized by the formation of thin films. Self-assembled monolayers (SAMs) are deposited on metals or metal oxides either from solution or by gas deposition. Thiols with polar terminal groups are utilized for creating the responsive surfaces which can interact electrostatically with other adsorbates. Surface charge effects wetting and adhesion, and many other surface properties. Polar terminal groups in thiols could be used to modify these factors. Mixed SAMs can provide more flexible surfaces, and could change the resulting surface properties under the influence of factors such as pH, temperature, and photo-illumination. Therefore, in order to control these phenomena by mixed polar-terminated thiols, it is necessary to understand the composition and conformation of the mixed SAMs and their response to these factors. In this work, mixtures of thiols with carboxylic and amino terminal groups were studied. Carboxylic and amino terminal groups of thiol interact with each other via hydrogen bonding in solution and form a complex. Complexes adsorb to the surface in non-conventional orientations. Unmixed SAMs from each type, either carboxylic terminated thiols or amino terminated thiols are in standing up orientation while SAMs from complexes are in an axially in-plane orientation. Selenol is an alternative to replace thiols for particular applications such as contact with biological matter which has a better compatibility with selenol than sulfur. However, the    Se-C bond is weaker than the S-C bond which limits the application of selenol. Understanding the selenol adsorption mechanism on gold surfaces could shed some light on Se-C cleavage and so is investigated in this work. Se-C cleavage happens in the low coverage areas on the step since atoms at steps have lower coordination making them more reactive than atoms on the terraces.  Another area where the self-assembly of molecules is of importance is for dye sensitized solar cells, which are based on the adsorption of the dye onto metal oxides surfaces such as TiO2.The interface between the SAM of dye and the substrate is an important factor to consider when designing dyes and surfaces in dye sensitized solar cells (DSSCs). The quality of the self-assembled monolayers of the dye on the TiO2 surface has a critical influence on the efficiency of the DSSCs.  Creation of just a monolayer of dye on the surface could lead to an efficient current of photo-excited electrons to the TiO2 and degeneration of the dye by redox. This work, T-PAC dye showed island growth with some ad-layer that is not in contact with the surface, whereas the MP13 dye adsorption is laminar growth.  Cuprite (Cu2O) is the initial and most common corrosion product for copper under atmospheric conditions. Copper could be a good replacement for noble metal as catalysts for methanol dehydrogenation. Knowledge about the structure of Cu2O(100) and Cu2O(111) surfaces could be used to obtain a deeper understanding of methanol dehydrogenation mechanisms with respect to adsorption sites on the surfaces. In this work, a detailed study was done of Cu2O(100) surface which revealed the possible surface structures as the result of different preparation conditions. Studies of the structure of Cu2O(100) and Cu2O(111) surfaces show that Cu2O(100) has a comparatively stable surface and reduces surface reactivity. As a consequence, dehydrogenation of methanol is more efficient on the Cu2O(111) surface. The hydrogen produced from methanol dehydrogenation is stored in oxygen adatom sites on both surfaces.<br><p>QC 20161107</p>
APA, Harvard, Vancouver, ISO, and other styles
8

Beach, Geoffrey S. D. "The COxFe₁₀₀₋x metal/native oxide multilayer /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC IP addresses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3090452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rooth, Mårten. "Metal Oxide Thin Films and Nanostructures Made by ALD." Doctoral thesis, Uppsala University, Department of Materials Chemistry, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8898.

Full text
Abstract:
<p>Thin films of cobalt oxide, iron oxide and niobium oxide, and nanostructured thin films of iron oxide, titanium oxide and multilayered iron oxide/titanium oxide have been deposited by Atomic Layer Deposition (ALD). The metal oxides were grown using the precursor combinations CoI2/O2, Fe(Cp)2/O2, NbI5/O2 and TiI4/H2O. The samples were analysed primarily with respect to phase content, morphology and growth characteristics.</p><p>Thin films deposited on Si (100) were found to be amorphous or polycrystalline, depending on deposition temperature and the oxide deposited; cobalt oxide was also deposited on MgO (100), where it was found to grow epitaxially with orientation (001)[100]Co3O4||(001)[100]MgO. As expected, the polycrystalline films were rougher than the amorphous or the epitaxial films. The deposition processes showed properties characteristic of self-limiting ALD growth; all processes were found to have a deposition temperature independent growth region. The deposited films contained zero or only small amounts of precursor residues.</p><p>The nanostructured films were grown using anodic aluminium oxide (AAO) or carbon nanosheets as templates. Nanotubes could be manufactured by depositing a thin film which covers the pore walls of the AAO template uniformly; free-standing nanotubes retaining the structure of the template could be fabricated by removing the template. Multilayered nanotubes could be obtained by depositing multiple layers of titanium dioxide and iron oxide in the pores of the AAO template. Carbon nanosheets were used to make titanium dioxide nanosheets with a conducting graphite backbone. The nucleation of the deposited titanium dioxide could be controlled by acid treatment of the carbon nanosheets.</p>
APA, Harvard, Vancouver, ISO, and other styles
10

Söderlind, Fredrik. "Colloidal synthesis of metal oxide nanocrystals and thin films." Doctoral thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11831.

Full text
Abstract:
A main driving force behind the recent years’ immense interest in nanoscience and nanotechnology is the possibility of achieving new material properties and functionalities within, e.g., material physics, biomedicine, sensor technology, chemical catalysis, energy storing systems, and so on. New (theoretical) possibilities represent, in turn, a challenging task for chemists and physicists. An important feature of the present nanoscience surge is its strongly interdisciplinary character, which is reflected in the present work. In this thesis, nanocrystals and thin films of magnetic and ferroelectric metal oxides, e.g. RE2O3 (RE = Y, Gd, Dy), GdFeO3, Gd3Fe5O12, Na0.5K0.5NbO3, have been prepared by colloidal and sol-gel methods. The sizes of the nanocrystals were in the range 3-15 nm and different carboxylic acids, e.g. oleic or citric acid, were chemisorbed onto the surface of the nanoparticles. From FT-IR measurements it is concluded that the bonding to the surface takes place via the carboxylate group in a bidentate or bridging fashion, with some preference for the latter coordination mode. The magnetic properties of nanocrystalline Gd2O3 and GdFeO3 were measured, both with respect to magnetic resonance relaxivity and magnetic susceptibility. Both types of materials exhibit promising relaxivity properties, and may have the potential for use as positive contrast enhancing agents in magnetic resonance imaging (MRI). The nanocrystalline samples were also characterised by transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and quantum chemical calculations. Thin films of Na0.5K0.5NbO3, GdFeO3 and Gd3Fe5O12 were prepared by sol-gel methods and characterized by x-ray powder diffraction (XRPD) and scanning electron microscopy (SEM). Under appropriate synthesis conditions, rather pure phase materials could be obtained with grain sizes ranging from 50 to 300 nm. Magnetic measurements in the temperature range 2-350 K indicated that the magnetization of the perovskite phase GdFeO3 can be described as the sum of two contributing terms. One term (mainly) due to the spontaneous magnetic ordering of the iron containing sublattice, and the other a susceptibility term, attributable to the paramagnetic gadolinium sublattice. The two terms yield the relationship M(T)=M0(T)+χ(T)*H for the magnetization. The garnet phase Gd3Fe5O12 is ferrimagnetic and showed a compensation temperature Tcomp ≈ 295 K.
APA, Harvard, Vancouver, ISO, and other styles
11

Bhachu, D. "The synthesis and characterisation of metal oxide thin films." Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1392591/.

Full text
Abstract:
This thesis details the use of chemical vapour deposition to deposit transparent conducting oxide (TCO) thin films for potential use in a wide range of applications ranging from electrodes in photovoltaic devices to low-ε-coatings in architectural glazing. TCO materials exhibit optical transparency along with electrical conductivity. The nature of electrical conductivity arises from either excess electrons in the conduction band or holes in the valence band. FTO thin films were deposited by use of an aerosol delivery system from methanolic solutions of monobutyltin trichloride. The deposition temperature was varied from 350-550 °C. The as-synthesised films displayed enhanced functional properties compared to commercial standards in terms of film microstructure i.e. pyramidal particle microstructure ideal for enhanced light scattering required for amorphous based silicon solar cells and also sheet resistances comparable to commercial standards. The natural progression from tin dioxide films was to explore zinc oxide thin films with respect to their opto-electronic properties. Highly conductive and transparent ZnO films were synthesized by the reaction of diethyl zinc (in toluene) with methanol by dual source aerosol assisted chemical vapour deposition. The scope of this thesis then moves away from TCO materials and concentrates on microporous oxide films produced by combining chemical vapour deposition (CVD) and hydrothermal methods. Dense, adhesive zeolitic films were synthesised from this method by using a CVD process to deposit a dense amorphous silica or titanium doped silica which was then converted to a crystalline nanoporous zeolite by a hydrothermal process using an organic structure directing agent. To demonstrate the capability of the method, silicalite (S-1) and titanium silicalite (TS-1) zeolites were prepared. In order to assess the generality of this method metal organic framework films were also synthesised by reacting zinc oxide films, deposited by chemical vapour deposition (CVD), with the appropriate linker in a conventional solvothermal process.
APA, Harvard, Vancouver, ISO, and other styles
12

Vemuri, Venkata Rama Sesha Ravi Kumar. "Fabrication and characterization of zirconium oxide thin films." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2009. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Sankar, Jayasree. "Chemical vapor deposition (CVD) of transition metal and metal oxide thin films." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0018/NQ58161.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Nyman, May. "Synthesis and characterization of precursors for chemical vapor deposition of metal oxide thin films." Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-07112009-040219/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

De, Los Santos Valladares Luis. "Study of thin metal films and oxide materials for nanoelectronics applications." Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/244598.

Full text
Abstract:
Different types of thin metal films and oxide materials are studied for their potential application in nanoelectronics: gold and copper films, nickel nanoelectrodes, oxide nanograin superconductors, carboxyl ferromagnetic microspheres and graphene oxide flakes. The crystallization and surface morphology of gold and copper films on SiO2/Si substrates is investigated as a function of annealing temperature. Annealing arranges the Au crystallites in the [111] direction and changes the morphology of the surface. Relaxation of the Au layer at high temperatures is responsible for the initial stages of cluster formation. These may form at disordered points on the surface and become islands when the temperature is increased. In the case of Cu/SiO2/Si films, oxides are formed after thermal oxidation at different temperatures up to 1000 °C. The phase evolution Cu -> Cu + Cu2O -> Cu2O -> Cu2O + CuO -> CuO is detected. Pure Cu2O films are obtained at 200 °C, whereas uniform CuO films without structural surface defects are obtained in the temperature range 300 - 550 °C. A resistivity phase diagram, which is obtained from the current-voltage response of the copper oxides, is presented. In the case of thin nickel films, the necessary reagents, conditions and processes required to obtain nano and atomic gaps between soft and clean nickel electrodes are described by using a conventional electrochemical cell. Current-voltage characteristics are also presented to evaluate possible applications of the nanogap electrodes in electronic nanodevices. In addition to the metal surfaces, oxides materials such as the superconductor LaCaBaCu3O7 (La1113), carboxyl ferromagnetic microparticles and graphene oxide flakes are studied. La1113 is a high critical temperature superconductor with TC(onset) = 80 K and its structure is similar to the tetragonal YBCO. This thesis explores the attachment of La1113 nanograins on Au(111) surfaces through selfassembled monolayers of HS-C8H16-HS [octane (di)thiol] for their potential application in nanotransistors. It is found that La1113 particles (100 nm mean diameter) can be functionalized by octane (di)thiol without affecting their superconducting critical temperature (TC = 80 K). A design for a superconducting transistor fabricated by immobilized La1113 nanograins in between two gold electrodes which could be controlled by an external magnetic field gate is suggested. Furthermore, the mechanical reorientation of thiolated ferromagnetic microspheres bridging a pair of gold electrodes under an external magnetic field is studied. Finally, a flexible film made of graphene oxide flakes is prepared and characterized by X ray diffraction. It is achieved by the chemical oxidation of commercial graphite and the subsequent reaction with NaOH. It is found that the interlayer distance between graphene increases upon oxidation due to the formation of chemical groups and results in the delamination and flexibility of the flakes.
APA, Harvard, Vancouver, ISO, and other styles
16

Efremenko, Alina Yurievna. "Theoretical and Experimental Spectroscopic studies of Conducting Metal Oxide Thin Films." NCSU, 2009. http://www.lib.ncsu.edu/theses/available/etd-04212009-144306/.

Full text
Abstract:
In order to expand on the growing field on Surface Plasmon Resonance Spectroscopy (SPRS) the application of SPRS to Conducting Metal Oxides (CMO) was studied. Through experimental and theoretical studies it was concluded that CMOâs are capable of sustaining Surface Plasmon Polaritons (SPP) like those in noble metals. Specifically, we have used indium tin oxide (ITO) as a test case to demonstrate the interplay of experiment and theory. Theoretical studies provided an excellent basis for comparison to experimental data. Furthermore, Near Edge X-Ray Absorption Fine Structure Spectroscopy (NEXAFS) was applied in order to examine the ITO as a substrate for self assembled monolayers (SAMs). It was found that hexadecanethiol and phosphonic acid form ordered monolayers on ITO.
APA, Harvard, Vancouver, ISO, and other styles
17

Jonsson, AnnaKarin. "Charge Transport in Transition Metal Oxide Thin Films and Electrochromic Devices." Doctoral thesis, Uppsala universitet, Materialvetenskap, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3030.

Full text
Abstract:
Thin film devices for windows, mirrors, space applications and other purposes, have become an essential part of modern technology. A great advantage with a thin film device is the small amount of material used and the compact volume of the device. Dynamic control of thin film device properties is usually obtained by the application of a potential with a resulting charge transport. To understand this charge transport, thus become of great importance to improve, develop, and invent new thin film devices. Charge transport in transition metal oxide thin films and electrochromic devices have been studied in this thesis using dielectric and electrochemical methods. The dielectric methods used are impedance spectroscopy, the isothermal transient ionic current technique and current-voltage measurements. The electrochemical methods include the galvanostatic intermittent titration technique and electrochemical impedance spectroscopy. Ion intercalation parameters have been obtained for sputtered and ALD ZrO2 and sputtered TiO2, and the ion conduction processes have been analysed. The dielectric permittivity of as-deposited as well as intercalated thin films of ZrO2 and TiO2 have been studied and electron conduction mechanisms in as-deposited films deduced. From the impedance spectroscopy it is found that the dielectric response changes drastically upon ion intercalation. The complex dielectric response suggests different relaxation processes being important at different levels of intercalation and an explanation built on defect induced dipoles is proposed. Moreover, ion transport in electrochromic devices has been studied. The transient ionic current has been analysed to extract transport parameters both in single layers and whole devices and a deeper understanding of the ionic motion has been achieved.
APA, Harvard, Vancouver, ISO, and other styles
18

Wilson, Rachel Lyndsey. "Deposition of ultra-thin metal oxide films for gas sensing applications." Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/10040158/.

Full text
Abstract:
The aim of this research project was to investigate the use of Atomic Layer Deposition (ALD) and Chemical Vapour Deposition (CVD) to deposit n- and p-type metal oxide thin films for use in gas sensing applications, with the long term goal to identify the materials which provide maximum sensitivity and selectivity. Two ALD reactors have been designed and constructed specifically for this project. N-type TiO2 thin films have been deposited by ALD of titanium(IV) isopropoxide and water, where film growth was shown to proceed via a self-limiting mechanism. Films were characterised using AFM, XRD, XPS and Raman, which confirmed anatase phase on the film surfaces. TiO2 films of various thickness were deposited onto gas sensor substrates and exposed to a range of test gases in order to evaluate their gas sensitivity at operating temperatures of 350 °C and 480 °C at several different relative humidity’s. Electrical resistance changes were observed for a 50 nm TiO2-coated sensor in response to NH3, where the sensor response was found to decrease with increasing relative humidity. However for a 10 nm film, whose thickness was most consistent with reported literature values of the Debye length for TiO2 was the not the most sensitive. Attempts to deposit p-type NiO films via ALD were less successful. However two novel nickel complexes were synthesised: [Ni(dmamp)2] and [Ni{(NiPr2)2CNEt2}2], whose volatility was greater than some of the other commonly used nickel precursors for ALD and CVD applications. These precursors, along with [Ni(thd)2] and [Ni(Cp)2], have been screened for their use in the deposition of NiO thin films via ALD with water. However, XPS analysis confirmed nickel metal and/or Ni(OH)2 on the film surfaces, which has been attributed to both a lack of reactivity between the nickel precursors and water and issues with the reactor design. Separate CVD experiments performed with [Ni(dmamp)2] and [Ni{(NiPr2)2CNEt2}2] resulted in the deposition of NiO films, as confirmed by XRD and XPS. Under the CVD conditions used, film growth could be controlled relatively easily, as compared to other conventional CVD methods.
APA, Harvard, Vancouver, ISO, and other styles
19

Cross, A. J. "The synthesis, characterisation and functional testing of metal oxide thin films." Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1450011/.

Full text
Abstract:
This thesis is concerned with the deposition of titanium dioxide thin films using chemical vapour deposition (CVD). The work emphasises the influence of deposition parameters on the properties of the resultant film. The materials have been designed with a wide range of potential applications in mind, from air and water purification to energy production and medical implant devices. Where possible, tests have been conducted to assess the efficacy of the material for these applications. The first chapter highlights a number of technologically important applications of titanium dioxide in order to demonstrate the motivation for research in this area. Some theoretical concepts are presented which are fundamental to understanding the behaviour of titanium dioxide. The principles behind chemical vapour deposition and the photocatalytic tests used in this work are discussed. The second chapter focusses on the use of three different metal substrates in TiO2 CVD. Firstly, the phase of TiO2 deposited on steel substrates was investigated. It was shown that the grade of steel had little influence with predominantly anatase films being formed in the vast majority of areas analysed. Since each grade of steel has different mechanical properties and is used in different applications, this work demonstrates that the photocatalytic properties of anatase films can be endowed to a large range of products. Secondly, TiO2 was shown to be adherent to a flexible substrate, namely aluminium foil. It was demonstrated from XPS analysis that aluminium ions did not diffuse into the TiO2, which remained photocatalytically active. A photocatalyst on a lightweight, flexible substrate offers several advantages over glass which has been the most frequently employed substrate to date. Thirdly, titanium dioxide was coated onto an alloy of cobalt, chromium and molybdenum, CoCrMo. The alloy is of interest for biomedical implants but suffers from poor biocompatability. By coating its surface with TiO2, it was shown to enhance osteogenic differentiation. Chapter three investigates nitrogen doped titanium dioxide for its potential as a visible light photocatalyst. A novel synthetic strategy was employed in which the amount of oxygen precursor was varied to determine if this would affect the position of the nitrogen in the titanium dioxide crystal structure. Differences were observed in the nitrogen XPS signal, the absorption profile, surface morphology and photocatalytic activity under both UV and visible irradiation. Visible light activity was observed for a sample made with lower amounts of oxygen precursor under UV and visible light. Finally, brookite, a rare, metastable form of titanium dioxide, was formed by atmospheric pressure chemical vapour deposition, APCVD. A brief literature review discusses the potential applications and some of the previously employed synthetic routes to brookite formation. Three sets of conditions are reported for the first known synthesis of brookite by atmospheric pressure chemical vapour deposition. A possible mechanism for brookite formation is hypothesised. This work concludes with a summary of the key findings from the experimental work and possible avenues for further research.
APA, Harvard, Vancouver, ISO, and other styles
20

Trapatseli, Maria. "Doping controlled resistive switching dynamics in transition metal oxide thin films." Thesis, University of Southampton, 2018. https://eprints.soton.ac.uk/423702/.

Full text
Abstract:
Transition metal oxide thin films have attracted increasing attention due to their potential in non-volatile resistive random access memory (RRAM) devices, where such thin films are used as active layers in metal-insulator-metal (MIM) configurations. Titanium dioxide is one of the most celebrated oxides among the ones that exhibit resistive switching behaviour due to its wide band gap, high thermal stability, and high dielectric constant. RRAM devices with various materials as active layers, have demonstrated very fast switching performance but also huge potential for miniaturisation, which is the bottleneck of FLASH memory. Nevertheless, these devices very often suffer poor endurance, physical degradation, large variability of switching parameters and low yields. In most cases, the physical degradation stems from high electroforming and switching voltages. Doping of the active layer has been often employed to enhance the performance of RRAM devices, like endurance, OFF/ON ratio, forming voltages, etc. In this work, doping in TiO2-x RRAM devices was used to engineer the electroforming and switching thresholds so that device degradation and failure can be delayed or prevented. Al and Nb were selected with basic criteria the ionic radius and the oxidation state. The doped RRAM devices, showed improved switching performance compared to their undoped counterparts. Alternative approaches to doping were also investigated, like multilayer stacks comprising Al<sub>2</sub>O<sub>3-y</sub> and TiO<sub>2-x</sub> thin films. Furthermore, Al:TiO<sub>2-x</sub>/Nb:TiO<sub>2-x</sub> bilayer RRAM devices were fabricated, to prove whether a diode behaviour of the p-n interface inside the RRAM was feasible. The latest would be a particularly interesting finding towards active electronics.
APA, Harvard, Vancouver, ISO, and other styles
21

Le, Thi Ly. "Preparation of transition metal oxide thin films used as solar absorbers." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30120/document.

Full text
Abstract:
Ce travail de thèse a porté sur l'élaboration de nanoparticules et de couches minces d'oxydes spinelles mixtes de MxCo2-xMnO4 (M = Ni, Cu, Zn ; x = 0, 0,15, 0,30, 0,60) semi-conducteurs, absorbants de lumière avec d'intéressantes applications potentielles pour la photo-catalyse et le photovoltaïque. Le premier chapitre présente tout d'abord une vue globale du contexte énergétique à l'échelle mondiale et des ressources d'énergie renouvelables, alternatives aux énergies fossiles les plus répandues. Une revue détaillée est ensuite faite des différents matériaux et systèmes employés dans la fabrication de cellules solaires, en portant une attention plus particulière à un nouveau type de cellules photovoltaïques en couches minces, dites " Tout-oxyde ", basées notamment sur l'utilisation d'oxydes de type spinelle utilisés comme absorbeurs solaires. Le deuxième chapitre présente les techniques expérimentales de synthèse et de caractérisation utilisées lors de ce travail de thèse. Le procédé de polycondensation inorganique, optimisé au laboratoire, utilisé pour synthétiser les poudres d'oxydes à basse température (T &lt; 120 °C) sans agent organique complexe est décrit. Ensuite, les méthodes de préparation de dispersions colloïdales à l'ambiante dans l'éthanol et de films minces homogènes d'oxydes par trempage-retrait sont explicitées. Le troisième chapitre présente les résultats détaillés des structures atomiques et électroniques des matériaux de base à l'étude, issus de calculs par la méthode Density Functional Theory (DFT), réalisés en collaboration avec le laboratoire CEMES de Toulouse. Les résultats des calculs de densités électroniques et détermination de structures de bandes, réalisés pour la première fois à notre connaissance, sur l'ensemble de la solution solide MnxCo3-xO4 (0 = x = 3), sont comparés à nos données expérimentales, obtenues notamment sur les largeurs de bande interdite (gap) à partir de mesures optiques faites sur couches minces. Un gap de 0,8 eV est calculé, qui serait dû à des transitions inter-métalliques en sites B. Deux gaps à 1,5 et 2,2 eV, obtenus expérimentalement dans l'UV-VIS, qui augmentent avec la quantité de manganèse, correspondraient à des transitions respectives B-A et O-B, respectivement. Les propriétés magnétiques de ces matériaux sont également discutées. Le quatrième chapitre présente l'élaboration et la caractérisation (micro-)structurale des poudres et des couches minces d'oxydes de type spinelle. Toutes les compositions (Co2MnO4 dopé au Ni, Cu ou Zn) cristallisent dans une phase cubique. Les nanoparticules sont sphériques avec la taille variant entre 20 et 50 nm. Les couches minces homogènes ont été déposées sur quartz, alumine, nitrure de titane et platine afin de mesurer leurs propriétés électriques et optiques. Une température de frittage environ de 1000 °C sous air a été déterminée par dilatométrie et les couches sont stables jusqu'à 900 °C quel que soit le substrat. En revanche, seules les couches déposées sur platine permettent d'atteindre la température de frittage sous air (et d'accroitre la compacité donc la conductivité des couches) sans réaction avec le substrat. Le chapitre cinq présente les variations des propriétés optiques et électriques des couches minces avec le frittage. Les propriétés d'absorbance de lumière des couches minces ainsi préparées, mesurées sur une gamme de longueurs d'ondes du domaine spectral UV-visible, montrent deux bandes d'absorbance, correspondantes à deux valeurs de gap pour chaque composition. La propriété d'absorbance des couches minces augmente dans la gamme du visible après frittage et les gaps diminuent. Les couches minces sont plus compactées. La résistivité des couches minces diminue de 105 à 102 Omega.cm avec l'augmentation de la température de 20 à 300 ºC. Une étude parallèle, basée sur la préparation de films minces absorbants de lumière de Co2MnO4 et Cu2O par la technique de Pulsed Laser Deposition (PLD) est également présentée<br>The present thesis deals with the synthesis and structural characterization of transition metals doped cobalt and manganese based spinel oxides MxCo2-xMnO4 (with M = Ni, Cu, Zn and x = 0, 0.15, 0.30, 0.60), in relationships with their conduction and optical properties. These materials are good p-type semiconductors and light absorbers in the UV and visible regions, therefore interesting for photo-catalysis and photovoltaics. The first chapter is a brief overview of the energy context and nature of global warming, renewable energy resources and a literature review of materials used for solar cells including the newly studied system type based on all-oxide photovoltaics. Chapter two presents all the experimental methods and characterization techniques used for this research work. The inorganic polycondensation method optimized in our laboratory and used for synthesizing spinel oxide powders at low temperature (T &lt; 120 °C) without complex organic agents is described. Then, the preparation of colloidal dispersions stabilized at room temperature using an azeotrope solution based on absolute ethanol and water only is described, in order to obtain homogenous oxide thin films by the dip-coating technique. The third chapter presents detailed results on the atomic and electronic structures of the materials under study performed by using a full density functional theory investigation thanks to a collaboration with the CEMES. First principles electronic structure calculations were performed for the first time to our knowledge over the whole spinel oxide solid solution range MnxCo3-xO4 (0 = x = 3), and compared with our experimental data. A small band gap of ~ 0.8 eV is calculated, due to metal-metal transitions in B sites. The experimental band gaps observed at 1.5 and 2.2 eV, which increase with the amount of manganese, would correspond to B-A and O-B transitions, respectively. The magnetic properties of these materials are also discussed. Chapter four shows the experimental details of the preparation and characterization of the spinel oxide powders, colloidal dispersions and thin films. All samples (Ni, Cu or Zn-doped Co2MnO4) are well crystallized with a single cubic spinel oxide phase. Nanoparticles are spherical and their diameters vary from 20 to 50 nm, doping with Zn, Ni to Cu, mainly due to steric effects. Homogenous oxide thin films were deposited on quartz, alumina, titanium nitride and platinum in order to measure their optical and electrical properties, and to increase the film compactness (thus electrical conductivity and light absorbance) after thermal treatment. Thin films are well preserved up to 900 °C in air and can handle higher temperatures (up to 1000 ºC) on platinum without reaction with the substrate. Chapter five deals with the optical and electrical properties of thin films before and after sintering. The optical properties were measured over a wide range of wavelengths (UV-VIS). The optical properties of spinel oxide thin films show two strong absorption band gaps for each composition at the UV front and close to 700 nm in wavelength. These band gaps are direct and mostly lower than 2 eV for the first band. Both band gaps increase with further doping and decrease after annealing. Thin film resistivity is about 105 .cm at room temperature and decreases with increasing temperature (a few tens of 20cm at 300 ºC). In parallel to the soft chemistry method and dip-coating technique used to prepare our spinel oxide thin layers, Pulsed Laser Deposition technique was used to prepare pure Co2MnO4 and Cu2O dense thin films. Their structural and optical main features are discussed
APA, Harvard, Vancouver, ISO, and other styles
22

Lipowsky, Peter. "Deposition of metal oxide thin films from solutions containing organic additives." [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-33262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Miller, Paul. "Zinc Oxide: A spectroscopic investigation of bulk crystals and thin films." Thesis, University of Canterbury. Physics and Astronomy, 2008. http://hdl.handle.net/10092/3618.

Full text
Abstract:
The optical properties of zinc oxide crystals and thin films prepared by different methods are investigated. Single crystal zinc oxide samples prepared by melt and hydrothermal growth techniques were obtained. The influence of polarity and growth method on the optical properties were studied and correlated with their electronic properties. Thin films prepared by molecular beam epitaxy (MBE) and sputtering were studied and the influence of growth conditions and post growth treatment on the optical properties of the films was investigated. The photo-luminescence (PL) of bulk zinc oxide was examined at high resolution. Line widths of less than 0.1 meV were observed. More than a dozen different transitions in the near band edge region (NBE 360-380 nm) were noted, several of which displayed a separation of <0.5 meV which goes some way to illustrating the complexity of the system. Attempts were made, with some success, to reconcile the two main competing identification systems of the NBE transitions and explanations for some of the discrepancies are provided. The controversial deep level transitions in the visible part of the spectrum are fit with 3 Gaussians and their identities discussed with relation to the available literature. The presence of copper impurities was detected in annealed films and a model to explain their behaviour under annealing conditions is hypothesised. Films grown by MBE here at the University of Canterbury are shown to have PL line widths of as little as 2.2 meV, the ratio of active oxygen species in the growth chamber during deposition is shown to effect the optical quality of the films. It is shown that annealing can improve the optical quality of the films and various other methods of influencing the films properties are discussed. Reactive, magnetron, direct current sputtering is shown to be the optimal method of growth for maximising both optical and piezo-electric properties. Optimum annealing temperatures were found at 900 and 1100 ℃ with a local minimum at 1000 ℃. X-ray diffraction, atomic force and scanning electron microscopy measurements in addition to optical PL measurements show the influence of annealing on the polycrystalline sputtered ZnO films. Films grown on glass, silicon, sapphire and quartz were shown to display similar behaviour under annealing conditions. It was found that zinc oxide based devices were liable to be chemically unstable at temperatures above 1100 ℃. The piezo electric properties of the films were examined and attempts were made to prepare a zinc oxide film optimised for both optical quality and piezoelectric properties for possible future applications of a hybrid opto-mechanical coupled devices.
APA, Harvard, Vancouver, ISO, and other styles
24

Chun, Yoonsoo. "Domain coupling and resistance in perpendicularly magnetized metal-oxide bilayers /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/10570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Gao, Xiang. "Carboxylate Precursor Effects on MOD Derived Metal Oxide (Ni/NiO) Thin Films." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1331300391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Garza, Michelle. "Reactivity of Oxide Surfaces and Metal-Oxide Interfaces: Effects of Water Vapor Pressure on Ultrathin Aluminum Oxide Films, and Studies of Platinum Growth Modes on Ultrathin Oxide Films and Their Effects on Adhesion." Thesis, University of North Texas, 2004. https://digital.library.unt.edu/ark:/67531/metadc4517/.

Full text
Abstract:
The reactivity of oxide surfaces and metal-oxide interfaces play an important role in many technological applications such as corrosion, heterogeneous catalysis, and microelectronics. The focus of this research was (1) understanding the effects of water vapor exposure of ultrathin aluminum oxide films under non-ultrahigh vacuum conditions (>10-9 Torr) and (2) characterization of Pt growth modes on ultrathin Ta silicate and silicon dioxide films and the effects of growth modes on adhesion of a Cu overlayer. These studies were conducted with X-ray photoelectron spectroscopy (XPS). Ni3Al(110) was oxidized (10-6 Torr O2, 800K) followed by annealing (1100K). The data indicate that the annealed oxide film is composed of NiO, Al2O3 and an intermediate phase denoted here as "AlOx". Upon exposure of the oxide film at ambient temperature to increasing water vapor pressure (10-6 - 5 Torr), a shift in both the O(1s) and Al(2p)oxide peak maxima to lower binding energies is observed. In contrast, exposure of Al2O3/Al(polycrystalline) to water vapor under the same conditions results in a high binding energy shoulder in the O(1s) spectra which indicates hydroxylation. Spectral decomposition provides further insight into the difference in reactivity between the two oxide films. The corresponding trends of the O(1s)/Ni0(2p3/2) and Al(2p)/Ni0(2p3/2) spectral intensity ratios suggest conformal changes of the oxide film on Ni3Al(110). The growth behavior of sputter deposited Pt at ~300K on Ta silicate and SiO2 ultrathin films formed on Si(100) was investigated. The XPS data show that Pt deposition results in uniform growth or "wetting" on Ta silicate and 2-D cluster growth on SiO2. Electroless Cu deposition on ~11 monolayers (ML) Pt/Ta silicate film results in an adherent Cu film which passed the Scotch tape test. In contrast, electroless Cu deposition on ~11ML Pt/SiO2 results in a non-adherent Cu film due to weak Pt/SiO2 interaction.
APA, Harvard, Vancouver, ISO, and other styles
27

Mpofu, Pamburayi. "Homebuilt reactor design and atomic layer deposition of metal oxide thin films." Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176609.

Full text
Abstract:
This research thesis covers work done on building an atomic layer deposition (ALD) reactor followed by the development and optimization of an ALD process for indium oxide thin films on crystalline silicon substrates from new precursors using this new homebuilt cost-effective tool. This work describes the design, building and testing of the ALD system using an indium triazenide precursor and water in a novel precursor combination. The reactor was built to be capable of depositing films with comparable results to commercially built systems.Indium oxide thin films were deposited as the deposition temperature was varied from 154 to 517 0C to study the effects of deposition temperature on the obtained film thicknesses and ascertain the ALD temperature window between 269-384 0C. The presence of indium oxide films was confirmed with X-ray diffraction analysis, which was also used to study their crystallinity. The films were found to have a polycrystalline structure with a cubic phase. Measurement of film thickness was performed using X-ray reflectivity which determined a growth rate of approximately 1 Å/cycle. Elemental composition was determined by X-ray photoelectron spectroscopy which confirmed contamination-free indium rich films. Scanning electron microscope imaging was used to examine the surface morphology of the films as well as thick cross-sectional thicknesses.Since indium oxide films are potentially useful in various electronic, optical, and catalytic applications, emphasis is also placed on the accurate characterization of the chemical and physical properties of the obtained thin films. Optical and electrical properties of the produced transparent conducting oxide films were measured for transparency (and optical band gap) and electrical characterization by resistivity measurements, from UV-Vis spectrophotometry and 4-point probe data respectively. A high optical transmission &gt;70 %, a wide band gap 3.99-4.24 eV, and low resistivity values ∼0.2 mΩcm, showed that In2O3 films have interesting properties for various applications confirming indium oxide a key material in transparent electronics.
APA, Harvard, Vancouver, ISO, and other styles
28

Huggins, Chris. "Growth & surface characterisation of metal oxide thin films under UHV conditions." Thesis, Queen Mary, University of London, 2005. http://qmro.qmul.ac.uk/xmlui/handle/123456789/1755.

Full text
Abstract:
Thin films of a variety of technologically important oxide systems (chromium oxide, barium oxide, titanium oxide and iron oxide) have been grown under ultra-high vacuum conditions by vapour deposition techniques. The surface structure and chemistry of these oxide films have been characterised by x-ray photoelectron spectroscopy( XPS), low energy electron diffraction (LEED), reflection absorption infrareds pectroscopy(R AIRS) and temperaturep rogrammedd esorptions pectroscopy (T'PD). These studies have included investigation of both the clean oxide surface and their interaction with small molecules. Well-defined chromium oxide films were produced and the surface structure of these films was found to be consistent with the (0001) surface Of C17203T- he studies of barium oxide have revealed a complicated oxygen chemistry with transformation between different forms being brought about by different preparation conditions and post-treatments including heating and exposure to 02, C02 and CO. Well-defined iron oxide films have been generated and in addition to their characterisation such films have been used as a support for the deposition of silver metal nanoparticles. The surface chemistry of this mixed metal/oxide Ag/FeO., system has been probed in particular by the adsorption of propene at sub-ambient temperatures. The ultimate aim of this researchw as to studyt hesem etal oxide thin films as a means to elucidatinga deeperf undamentalu nderstandingo f the surfacec hemistryo f these systemsw, hich is of both academica nd industriali nterest.
APA, Harvard, Vancouver, ISO, and other styles
29

Kim, Se Jin. "Pulsed laser deposited metal oxide thin films mediated controlled adsorption of proteins." [Gainesville, Fla.] : University of Florida, 2008. http://purl.fcla.edu/fcla/etd/UFE0022878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Patel, Shyam Bharatkumar. "Structural and Mechanical Study of CeO2/TiO2 Mixed Metal Oxide Thin Films." Thesis, Patel, Shyam Bharatkumar (2018) Structural and Mechanical Study of CeO2/TiO2 Mixed Metal Oxide Thin Films. Honours thesis, Murdoch University, 2018. https://researchrepository.murdoch.edu.au/id/eprint/41543/.

Full text
Abstract:
Thin films are well researched in the field of materials science and engineering. Modern thin films have proven to be versatile as they have been developed and modified to attain films with special properties such as high hardness values, improved photovoltaic and photocatalytic properties to name a few. Thin films that exhibit a wide range of exceptional properties are sought after as they could be the solution to a wide range of global challenges. CeO2/TiO2 mixed metal oxide (MMO) films are capable of showing a wide range of excellent properties and relevant applications such as photovoltaic and photocatalytic capabilities. However, the mechanical properties of these films are not well researched. This study intends to link the Ce-Ti percentage to the mechanical and structural properties of MMO films by studying them at the fundamental atomic level. The Magnetron sputtered CeO2/TiO2 MMO films were studied using advanced characterization techniques. High temperature in-situ X-ray diffraction (XRD) was conducted to identify and investigate the stability of the oxides present in the films whilst X-ray photoelectron spectroscopy (XPS) was used to find the bonding states within the film. The surface morphology was investigated using a field emission scanning electron microscope (FESEM). The mechanical properties such as hardness and Young’s modulus were determined using nanoindentation tests, whilst the stresses within the film were visualized with the aid of finite element modeling (FEM). The material characterization indicates the presence of a primary α-Ce2O3 phase in samples containing cerium, whilst a rutile form of TiO2 was found for samples containing TiO2. The mechanical test results of the pure CeOx film show a hardness value as high as 20.1 GPa. The FEM results indicate the stress distribution and is implemented to obtain models of several thin film and substrate combinations.
APA, Harvard, Vancouver, ISO, and other styles
31

Sohi, A. M. "Metal oxide films on glass and steel substrates." Thesis, Teesside University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sporar, Daniel. "Sputter Deposition of Iron Oxide and Tin Oxide Based Films and the Fabrication of Metal Alloy Based Electrodes for Solar Hydrogen Production." Connect to Online Resource-OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=toledo1183481021.

Full text
Abstract:
Thesis (M.S.Ch.E.)--University of Toledo, 2007.<br>Typescript. "Submitted as partial fulfillment of the requirements for The Master of Science degree in Chemical Engineering." Bibliography: leaves 72-77.
APA, Harvard, Vancouver, ISO, and other styles
33

Wang, Chao-Hsiung. "The growth of thin film epitaxial oxide-metal heterostructures." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Hill, Matthew Roland Chemistry Faculty of Science UNSW. "The single source chemical vapour deposition of alkaline earth metal oxide thin films." Awarded by:University of New South Wales. School of Chemistry, 2006. http://handle.unsw.edu.au/1959.4/32903.

Full text
Abstract:
Metal oxide thin films are dynamic materials that have revolutionised the nature of semiconductor and electronic thin film devices. Recently, progress has stagnated in some aspects due to the increasingly complex deposition apparatus required, and the dearth of suitable precursor complexes of certain ???difficult??? metals. This thesis seeks to address both of these issues. The application of a precursor complex, Mg6(O2CNEt2)12 to the SSCVD of MgO thin films delivered the highest quality films ever reported with this technique. The resultant films were found to be of purely (111) orientation. Due to the nature of the precursor, the chemical reactions occurring at the surface during SSCVD growth result in a high growth rate, low flux environment and films of (111) orientation have been achieved without the amorphous underlayer. This finding has important implications for buffer layers in perovskite thin film devices. The unprecedented precursor chemistry has been used as a basis for the extremely high quality material produced, along with the unusual, yet beneficial structural morphology it possesses. A new range of barium complexes with single encapsulating ligands have been prepared for use in chemical vapour deposition (CVD) of BaTiO3 thin films. A novel pathway to an unprecedented class of barium carbamates is reported, and also new dianionic bis ??-ketoesterates and their barium, strontium, and calcium analogues were synthesised. High resolution mass spectrometry showed the barium bis ??-ketoesterate derivatives to be monomeric, and preliminary testing indicated some volatility in these species. Insights were gained into the likely successful pathways to building a volatile heterobimetallic precursor complex containing an alkaline earth metal. The knowledge of intimate mixing in heterobimetallic precursor complexes was extended by some novel chemistry to develop the first mixed Zn/Mg carbamato cluster complexes. These complexes were found to be excellent SSCVD precursors for ZnxMg1-xO thin films. Thin films were deposited with these precursors and exhibited a single preferred orientation, with a constant amount of magnesium throughout the bulk of the films. Investigation of the light emission properties of the films revealed significant improvements in the structural order commensurate with the incorporation of magnesium, and the formation of the ZnxMg1-xO alloy.
APA, Harvard, Vancouver, ISO, and other styles
35

Wen, Rui-Tao. "Electrochromism in Metal Oxide Thin Films : Towards long-term durability and materials rejuvenation." Doctoral thesis, Uppsala universitet, Fasta tillståndets fysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-267111.

Full text
Abstract:
Electrochromic thin films can effectively regulate the visible and infrared light passing through a window, demonstrating great potential to save energy and offer a comfortable indoor environment in buildings. However, long-term durability is a big issue and the physics behind this is far from clear. This dissertation work concerns two important parts of an electrochromic window: the anodic and cathodic layers. In particular, work focusing on the anodic side develop a new Ni oxide based layers and uncover degradation dynamics in Ni oxide thin films; and work focusing on the cathodic side addresses materials rejuvenation with the aim to eliminate degradation. In the first part of this dissertation work, iridium oxide is found to be compatible with acids, bases and Li+-containing electrolytes, and an anodic layer with very superior long-term durability was developed by incorporating of small amount (7.6 at. %) of Ir into Ni oxide. This film demonstrated sustained cycle-dependent growth of charge density and electrochromic modulation even after 10,000 CV cycles. The (111) and (100) crystal facets in Ni oxide are found to possess different abilities to absorb cation and/or anion, which yields different degrees of coloration and this is very significant for the electrochromic properties. The degradation of charge capacity in Ni oxide has an inevitable rapid decay in the first hundreds of cycles, subsequently combined with a more gradual decay, which is independent of applied potential and film composition. The consistent phenomenon can be very well modeled by power-law or stretched exponential decay; however the two models are indistinguishable in the current stage. Interestingly, in both models, the power-law exponent is 0.2 ≤ p ≤ 0.8, with most of the values around 0.5, in line with normal or anomalous diffusion models. The second part of dissertation work deals with cathodic WO3 and TiO2. WO3 suffers from ion trapping induced degradation of charge capacity and optical modulation upon electrochemical cycling. This speculation is strongly supported by direct evidence from Time-of-Flight Elastic Recoil Detection Analysis (ToF-ERDA). Most importantly, this ion trapping induced degradation can be eliminated by a galvanostatic de-trapping process. Significant ion-trapping takes place when x exceeds ~0.65 in LixWO3. The trapped ions are stable in the host structure, meaning that the ions cannot de-trap without external stimuli. The similar work done on TiO2 significantly complements and extends the work on the recuperation of WO3; the difference is that the trapped ions in host TiO2 seem to be less stable compared with the trapped ions in WO3.     Overall, this dissertation presents a refined conceptual framework for developing superior electrochromic windows in energy efficient buildings.
APA, Harvard, Vancouver, ISO, and other styles
36

Bowers, Norman Mark. "Metal oxide nanocrystalline thin films as buffer layers in organic/ hybrid solar cells." University of Western Cape, 2019. http://hdl.handle.net/11394/7698.

Full text
Abstract:
>Magister Scientiae - MSc<br>Without reverting to encapsulation, organic bulk - heterojunction solar cells can be protected from the oxidation of the highly reactive low work function cathode metal electrode, by the deposition of metal oxide buffer layers onto an indium-tin oxide (ITO) substrate. The zinc-oxide (ZnO) or titanium dioxide (TiO2) layer can serve as an electron collecting contact. In such a case the ordering of layer deposition is inverted from the traditional layer sequencing, using an additional effect of the metal oxide layer acting as a hole blocking contact
APA, Harvard, Vancouver, ISO, and other styles
37

Liu, Zhihong. "A study of thermally nitrided silicon dioxide thin films for metal-oxide-silicon VLSI techology /." [Hong Kong : University of Hong Kong], 1990. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12718488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Matoba, Tomohiko. "Fabrication of transition-metal oxide thin films with atomically smooth surface for spintronics application." 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/174948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Phillips, Monifa Louise. "Spectroscopic investigation of resistive switching mechanisms in pulsed laser deposited metal-oxide thin films." Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/38989/.

Full text
Abstract:
Today, CMOS-compatible Flash memory technology dominates the non-volatile memory storage market due to high density and low fabrication costs. However, with CMOS approaching fundamental scaling limits, research into novel emerging non-volatile memory storage technologies that exploit materials properties including resistance, spin and polarisation, has significantly progressed. The ideal non-volatile memory technology would compete with Flash, offering high-density memory storage at low costs, however it would outperform Flash due to its faster operating speeds, lower energy requirements, greater endurance and greater potential for scaling. Of all the emerging technologies, resistive RAM (RRAM) elements, in which reproducible (switchable) and distinct high and low resistance states are the basis of memory storage, are considered most advantageous due to their superior potential for scaling, fastest exhibited operating speeds and extremely low energy requirements. Despite progress in the field of RRAM research, the underlying mechanisms that allow a device to switch between high and low resistance states remains unclear in many materials systems and is the key motivation behind this work. Here, Pulsed Laser Deposited (PLD) RRAM devices that incorporate resistive switching transition metal oxide thin films were studied using Electron Energy Loss Spectroscopy (EELS). Basic metal/oxide/metal RRAM heterostructures that incorporated strongly oxidising titanium electrodes and polycrystalline ZnO and manganese-doped ZnO were investigated in Chapter 3. These devices were designed for direct comparison to a device in presented the literature which displayed the simultaneous co-switching of resistance and magnetisation states. In the devices fabricated here, EELS analysis revealed Mn-phase segregation both at grain boundaries both above and below the top and bottom electrodes, which supported the proposed co-switching mechanism. In Chapter 4, epitaxial single crystal perovskite oxide Pr0.48Ca0.52MnO3 was incorporated into a novel metal/oxide/tunnel-oxide/metal RRAM structure, where the thickness of the interfacial Yttria-stabilised Zirconia tunnel oxide varied the output current density. In both the ZnO and Pr0.48Ca0.52MnO3 devices, EELS analysis revealed that the observed resistive switching was mediated by the field-induced exchange of oxygen vacancies between the bulk oxide and an interfacial oxide. Despite this similarity, the overall device resistance was governed by different effects: for the polycrystalline ZnO-based devices, this was the oxygen-vacancy induced formation and dissolution of a highly resistive TiO2 interfacial layer; in contrast, for the epitaxial Pr0.48Ca0.52MnO3 device, this was the oxygen-vacancy induced charge accumulation and dissipation in the tunnel oxide, which modulated the tunnel barrier height.
APA, Harvard, Vancouver, ISO, and other styles
40

Plassmeyer, Paul. "Metal-Oxide Thin Films Deposited from Aqueous Solutions: The Role of Cation/Water Interactions." Thesis, University of Oregon, 2017. http://hdl.handle.net/1794/22295.

Full text
Abstract:
Metal-oxide thin films are used in a wide variety of electronic devices. Although many techniques have been developed to deposit thin films of metal oxides, there is still a need for alternative cost- and energy-effective deposition methods. Deposition of metal oxide thin films from aqueous solutions of all-inorganic metal salts is a viable method that meets these needs. Although many aqueous-deposited metal-oxide thin films have been successfully incorporated into functioning devices, many of the mechanisms that occur as precursors transition to metal oxides are not well understood. The work presented in this dissertation is primarily concerned with examining the processes that occur as metal oxide thin films form from spin-deposited aqueous precursor solutions with a particular focus on the role of H2O in these processes. Chapter I summarizes methods for thin film deposition, and describes the use of aqueous metal salt solutions as viable precursors for the deposition of metal oxide thin films. Chapter II investigates the precursor chemistry, film-formation processes and properties of LaAlO3 thin films deposited from aqueous precursors. This chapter also serves as general guide to the processes that occur as metal-oxide thin films form from spin-deposited aqueous precursors. Chapters III and IV focus on the effects of H2O(g) during spin-deposition of precursor thin films and during the annealing process in which precursors are converted to metal oxides, respectively. The presence of H2O(g) during spin-deposition has a striking effect on the thickness of the resulting thin films and also affects the elemental gradient and density profiles. During annealing, H2O(g) reduces the temperatures at which counterions are expelled and influences the metal-hydroxide framework formation and its condensation to a metal oxide. The data also indicate that H2O(g) enhances diffusion of gaseous byproducts from within the films. Chapter V focuses on precursor concentration and its impact on the thermal evolution of thin films. The processes involved in the conversion of precursors to metal oxide thin films occur at lower temperatures as precursor concentration decreases. Although this is likely in part due to thickness effects, concentration-dependent precursor speciation may also be involved in lowering the temperatures at which films densify.<br>2019-02-17
APA, Harvard, Vancouver, ISO, and other styles
41

Lima, Francisco Anderson de Sousa. "Application of transition-metal-oxide-based nanostructured thin films on third generation solar cells." reponame:Repositório Institucional da UFC, 2015. http://www.repositorio.ufc.br/handle/riufc/14584.

Full text
Abstract:
LIMA, F. A. S. Application of transition-metal-oxide-based nanostructured thin films on third generation solar cells. 2015. 225 f. Tese (Doutorado em Ciência de Materiais) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2015.<br>Submitted by Marlene Sousa (mmarlene@ufc.br) on 2015-12-17T12:45:41Z No. of bitstreams: 1 2015_tese_faslima.pdf: 24015209 bytes, checksum: a66470eb7a55b6b3c2a5e8544c6d4d32 (MD5)<br>Approved for entry into archive by Marlene Sousa(mmarlene@ufc.br) on 2015-12-18T12:18:53Z (GMT) No. of bitstreams: 1 2015_tese_faslima.pdf: 24015209 bytes, checksum: a66470eb7a55b6b3c2a5e8544c6d4d32 (MD5)<br>Made available in DSpace on 2015-12-18T12:18:53Z (GMT). No. of bitstreams: 1 2015_tese_faslima.pdf: 24015209 bytes, checksum: a66470eb7a55b6b3c2a5e8544c6d4d32 (MD5) Previous issue date: 2015-10-30<br>One of the greatest challenges of our time is to devise means to provide energy in a sustainable way to attend an exponentially growing demand. The energy demand is expected to grow 56% by 2040. In this context, the use of clean and sustainable sources of energy is imperative. Among these sources, solar energy is the only one which can meet the total world energy requirement even considering such large growth in demand. The solar power incident on the Earth's surface every second is equivalent to 4 trillion 100-watt light bulbs. Photovoltaic solar cells are one of several ways to harness solar energy. These cells convert solar energy directly into electricity. Commercial photovoltaic devices are already a reality, but their share of the world energy matrix is still quite small, mainly due to the high costs. Next generation photovoltaics open a number of new possibilities for photovoltaic energy applications that can potentially decrease the overall cost of energy production. Transition metal semiconductor oxides are promising materials that can be produced by low cost methods and o er interesting new features. The use of these materials in next generation photovoltaics is therefore a very promising and interesting application. In this thesis work zinc, titanium and vanadium oxides were used in next generation solar cells. Thin lms of zinc oxide were synthesized by the low cost and environmentally friendly techniques of electrodeposition and hydrothermal synthesis and applied as working electrodes in highly e cient dye sensitized solar cells (DSSCs). The lms were characterized by structural and optical techniques while the cells were tested by current vs: voltage and quantum e ciency measurements. The e ciencies of these cells were as high as 2.27% using ZnO thin lms without any post deposition treatment. Moreover, natural dyes extracted from plants of northeastern Brazil were applied as sensitizers in DSSCs assembled with commercial available TiO 2 as working electrode. The natural dyes were extracted employing very simple methods and were characterized by XPS and UPS techniques. Their band alignments were shown to be compatible with the TiO 2 as well as with the mediator electrolyte. The e ciency of DSSCs sensitized with natural dyes were as high as 1.33%. Finally, water based V 2 O 5 was used as hole transport medium (HTM) in conventional organic solar cells (OSCs) and ITO-free, plastic OSCs. The results obtained with V 2 O 5 were compared with the results obtained from cells assembled with PEDOT:PSS, which is the most used HTM. This comparison showed that the use of V 2 O 5 as HTM can lead to more e cient OSCs. The stability of these devices were evaluated by tests applying the ISOS standards ISOS-D-1, ISOS-L-1 and ISOS-O-1. A UV- lter and a protective graphene oxide (GO) layer were employed seeking to improve the stability of OSCs. The combination of both UV- lter and GO protective layer was shown to be the most e ective way to improve the stability of these devices<br>Um dos maiores desa os do nosso tempo e desenvolver formas para fornecer energia de forma sustent avel para atender uma demanda que cresce exponencialmente e que dever a crescer 56% at e 2040. Neste contexto, o uso de fontes limpas e sustent aveis de energia e um imperativo. Entre essas fontes, a energia solar e a unico que pode satisfazer a ne- cessidade total de energia do mundo, mesmo considerando o crescimento na demanda. A pot^encia solar incidente na superf cie da Terra a cada segundo e equivalente a 4 trilh~oes de l^ampadas de 100 watts. C elulas solares fotovoltaicas s~ao uma das v arias maneiras de aproveitar a energia solar, convertendo-a diretamente em eletricidade. Dispositivos com- erciais fotovoltaicos j a s~ao uma realidade, mas a sua participa c~ao na matriz energ etica mundial ainda e muito pequena, principalmente devido aos seus custos elevados. C elulas fotovoltaicas de nova gera c~ao abrem uma s erie de novas possibilidades para aplica c~oes de energia fotovoltaica que pode diminuir o custo total de produ c~ao de energia. Oxidos semicondutores de metais de transi c~ao s~ao materiais promissores que podem ser produzi- dos atrav es de m etodos de baixo custo e que possuem caracter sticas interessantes. Por conseguinte, o uso destes materiais em energia fotovoltaica de pr oxima gera c~ao se apre- senta com uma aplica c~ao promissora. Nesta tese de doutorado oxidos de zinco, tit^anio e van adio foram utilizados em c elulas solares de pr oxima gera c~ao. Filmes nos de oxido de zinco foram sintetizados por eletrodeposi c~ao e s ntese hidrot ermica. Os lmes foram apli- cados como eletrodos de trabalho em c elulas solares sensibilizadas por corante (DSSCS) altamente e cientes. Os lmes foram caracterizados por t ecnicas estruturais e oticas en- quanto que as c elulas foram testadas por medidas de corrente vs: voltagem e de e ci^encia qu^antica. A e ci^encia dessas c elulas atingiu 2,27% utilizando lmes nos de ZnO sem qualquer tratamento p os-deposi c~ao. Al em disso, corantes naturais extra dos de plan- tas do nordeste do Brasil foram aplicados como sensibilizadores em DSSCs montadas com TiO 2 comercial utilizado como eletrodo de trabalho. Os corantes naturais foram extra das empregando m etodos simples e foram caracterizados por espectroscopia de fotoel etrons excitados por raios X e por radia c~ao ultravioleta, XPS e UPS respectivamente. Seus alin- hamentos de banda se mostraram compat veis com o TiO 2 e com o eletrodo de regenera c~ao. A e ci^encia das DSSCs sensibilizadas com corantes naturais chegou a 1,33%. Finalmente, V 2 O 5 a base de agua foi usado como material transportador de buracos (HTM) em c elulas solares org^anicas (OSCs) convencionais e OSCs de pl astico constru das sem ITO. Os re- sultados obtidos com V 2 O 5 foram comparados com os resultados de c elulas constru das com PEDOT:PSS, que e o HTM mais utilizado. Esta compara c~ao revelou que o uso de V 2 O 5 como HTM pode levar a OSCs mais e cientes. A estabilidade destes dispositivos foi avaliada por testes aplicando os padr~oes ISOS-D-1, ISOS-L-1 e ISOS-O-1. O uso de ltros ultravioleta e de uma camada protetora de oxido de grafeno reduzido foi testado com o intuito de melhorar a estabilidade desses dispositivos. O uso de uma combina c~ao de ambos se mostrou a forma mais efetiva de melhorar a estabilidade das OSCs
APA, Harvard, Vancouver, ISO, and other styles
42

Ukirde, Vaishali El Bouanani Mohamed. "Trapping of hydrogen in Hf-based high [kappa] dielectric thin films for advanced CMOS applications." [Denton, Tex.] : University of North Texas, 2007. http://digital.library.unt.edu/permalink/meta-dc-5114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Trotochaud, Lena. "Structure-Composition-Activity Relationships in Transition-Metal Oxide and Oxyhydroxide Oxygen-Evolution Electrocatalysts." Thesis, University of Oregon, 2014. http://hdl.handle.net/1794/18312.

Full text
Abstract:
Solar water-splitting is a potentially transformative renewable energy technology. Slow kinetics of the oxygen evolution reaction (OER) limit the efficiency of solar-water-splitting devices, thus constituting a hurdle to widespread implementation of this technology. Catalysts must be stable under highly oxidizing conditions in aqueous electrolyte and minimally absorb light. A grand goal of OER catalysis research is the design of new materials with higher efficiencies enabled by comprehensive understanding of the fundamental chemistry behind catalyst activity. However, little progress has been made towards this goal to date. This dissertation details work addressing major challenges in the field of OER catalysis. Chapter I introduces the current state-of-the-art and challenges in the field. Chapter II highlights work using ultra-thin films as a platform for fundamental study and comparison of catalyst activity. Key results of this work are (1) the identification of a Ni0.9Fe0.1OOH catalyst displaying the highest OER activity in base to date and (2) that in base, many transition-metal oxides transform to layered oxyhydroxide materials which are the active catalysts. The latter result is critical in the context of understanding structure-activity relationships in OER catalysts. Chapter III explores the optical properties of these catalysts, using in situ spectroelectrochemistry to quantify their optical absorption. A new figure-of-merit for catalyst performance is developed which considers both optical and kinetic losses due to the catalyst and describes how these factors together affect the efficiency of composite semiconductor/catalyst photoanodes. In Chapter IV, the fundamental structure-composition-activity relationships in Ni1-xFexOOH catalysts are systematically investigated. This work shows that nearly all previous studies of Ni-based catalysts were likely affected by the presence of Fe impurities, a realization which holds significant weight for future study of Ni-based catalyst materials. Chapter V discusses the synthesis of tin-titanium oxide nanoparticles with tunable lattice constants. These materials could be used to make high-surface-area supports for thin layers of OER catalysts, which is important for maximizing catalyst surface area, minimizing the use of precious-metal catalysts, and optimizing 3D structure for enhanced mass/bubble transport. Finally, Chapter VI summarizes this work and outlines directions for future research. This work contains previously published and unpublished co-authored material.<br>2015-03-29
APA, Harvard, Vancouver, ISO, and other styles
44

Choujaa, Hamid. "Synthesis of novel single-source precursors for CVD of mixed-metal tungsten oxide." Thesis, University of Bath, 2008. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.478944.

Full text
Abstract:
There is a considerable interest in the use of tungsten oxide in the research and development of new materials and devices, such as gas sensors and as photocatalysts. In order to improve the photocatalytic properties of WO3, its combination with metals which allows the preparation of WMxOy materials are believed to be promising photocatalysts under visible light. The present work deals with the synthesis of homo- and hetero-metallic tungsten alkoxide and amide compounds using the single source precursor approach for potential chemical vapour deposition precursors of mixed-metal oxide films.
APA, Harvard, Vancouver, ISO, and other styles
45

劉志宏 and Zhihong Liu. "A study of thermally nitrided silicon dioxide thin films for metal-oxide-silicon VLSI techology." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1990. http://hub.hku.hk/bib/B31231895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Landrock, Ruth Christine [Verfasser]. "Spatially resolved analysis of resistive switching in transition metal oxide thin films / Ruth Christine Landrock." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2011. http://d-nb.info/1018206884/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Lipowsky, Peter [Verfasser]. "Deposition of metal oxide thin films from solutions containing organic additives / vorgelegt von Peter Lipowsky." Stuttgart : Max-Planck-Inst. für Metallforschung, 2007. http://d-nb.info/995388105/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Martin, Ryan Michael. "Reaction mechanisms in patterning hafnium-based metal oxide thin films in halogen-based plasma chemistries." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1666413051&sid=3&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Aijaz, Asim. "Synthesis of Carbon-based and Metal-Oxide Thin Films using High Power Impulse Magnetron Sputtering." Doctoral thesis, Linköpings universitet, Plasma och beläggningsfysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-104265.

Full text
Abstract:
The work presented in this thesis deals with synthesis of carbon-based as well as metal-oxide thin films using highly ionized plasmas. The principal deposition method employed was high power impulse magnetron sputtering (HiPIMS). The investigations on plasma chemistry, plasma energetics, plasma-film interactions and its correlation to film growth and resulting film properties were made. The thesis is divided into two parts: (i) HiPIMS-based deposition of carbon-based thin films and (ii) HiPIMS-based deposition of metal-oxide thin films. In the first part of the thesis, HiPIMS based strategies are presented that were developed to address the fundamental issues of low degree of carbon ionization and low deposition rates of carbon film growth in magnetron sputtering. In the first study, a new strategy was introduced for increasing the degree of ionization of sputtered carbon via increasing the electron temperature in the discharge by using a higher ionization potential buffer gas (Ne) in place of commonly used Ar. A direct consequence of enhanced electron temperatures was observed in the form of measured large fluxes of ionized carbon at the substrate position. Consequently, high mass densities of the resulting amorphous carbon (a-C) thin films reaching 2.8 g/cm3 were obtained. In another study, feasibility of HiPIMS-based high density discharges for high-rate synthesis of dense and hard a-C thin films was explored. A strategy was compiled and implemented that entailed coupling a hydrocarbon precursor gas (C2H2) with high density discharges generated by the superposition of HiPIMS and direct current magnetron sputtering (DCMS). Appropriate control of discharge density (by tuning HiPIMS/DCMS power ratio), gas phase composition and energy of the ionized depositing species lead to a route capable of providing ten-fold increase in the deposition rate of a-C film growth compared to that obtained using HiPIMS Ar discharge in the first study. The increased deposition rate was achieved without significant incorporation of H (&lt;10 %) and with relatively high hardness (&gt;25 GPa) and mass density (~2.32 g/cm3). The knowledge gained in this work was utilized in a subsequent work where the feasibility of adding high ionization potential buffer gas (Ne) to increase the electron temperature in an Ar/C2H2 HiPIMS discharge was explored. It was found that the increased electron temperature lead to enhanced dissociation of hydrocarbon precursor and an increased H incorporation into the growing film. The resulting a-C thin films exhibited high hardness (~ 25 GPa), mass densities in the order of 2.2 g/cm3 and H content as low as about 11%. The striking feature of the resulting films was low stress levels where the films exhibited compressive stresses in the order of 100 MPa. In the second part of the thesis, investigations on reactive HiPIMS discharge characteristics were made for technologically relevant metal-oxide systems. In the first study, the discharge characteristics of Ti-O and Al-O were investigated by studying the discharge current characteristics and measuring the ion flux composition. Both, Ti-O and Al-O discharges were dominated by large fluxes of ionized metallic as well as sputtering and reactive gases species. The generation of large ionized fluxes influenced the discharge characteristics consequently surpassing the changes in the secondary electron emission yields which, in the case of DCMS discharges entail contrasting behavior of the discharge voltage for the two material systems. The study also suggested that the source of oxygen ions in the case of reactive HiPIMS is both, the target surface (via sputtering) as well as gas phase. In a subsequent study, the knowledge gained from the studies on metal-oxide HiPIMS discharges was utilized for investigating the behavior of reactive HiPIMS discharges related to ternary compound thin film growth. In this work Al-Si-O system, which is a promising candidate for anti-reflective and solar thermal applications, was employed to carry out the investigations under varied target compositions (Al, Al0.5Si0.5, and Al0.1Si0.9). It was found that the discharge current behavior of metal and oxide modes of Al-Si-O HiPIMS discharges were similar to those of Al-O and were independent of the target composition. The influence of energy and composition of the ionized depositing fluxes on the film growth was also investigated. It was shown that stoichiometric Al-Si-O thin films exhibiting a refractive index below 1.6 (which is desired for anti-reflective applications) can be grown. Furthermore, the refractive index and chemical composition of the resulting films were found to be unchanged with respect to the energy of the depositing species. The effect of ionized deposition fluxes that are generated in metal-oxide HiPIMS discharges was also investigated for the phase composition and optical properties of TiO2 thin films. It was found that energetic and ionized sputtered flux in reactive HiPIMS can be used to tailor the phase formation of the TiO2 films with high peak powers facilitating the rutile phase while the anatase phase can be obtained using low peak powers. It was also demonstrated that using HiPIMS, these phases can be obtained at room temperature without external substrate heating or  post-deposition annealing. The results on plasma and film properties were also compared with DCMS.
APA, Harvard, Vancouver, ISO, and other styles
50

Ghosh, Aheli. "Heteroepitaxial Germanium-on-Silicon Thin-Films for Electronic and Photovoltaic Applications." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78037.

Full text
Abstract:
Developing high efficiency solar cells for lower manufacturing costs has been a key objective for photovoltaic researchers to drive down the levelized cost of energy for solar power. In this pursuit, III-V compound semiconductor based solar cells have steadily shown performance improvement at approximately 1% (absolute) increase per year, with a recent record efficiency of 46% under concentrator and 32% under AM0. However, the expensive cost has made it challenging for III-V solar cells to compete with the mainstream Silicon (Si) technology. Novel approaches to lower down the cost per watt for III-V solar cells will position them to be among the key contenders in the renewable energy sector. Integration of such high-efficiency III-V multijunction solar cells on significantly cheaper and large area Si substrate has the potential to address the future LCOE roadmaps by unifying the high-efficiency merits of III-V materials with low-cost and abundance of Si. However, the 4% lattice mismatch, thermal mismatch, polar on non-polar epitaxy makes the direct growth of GaAs on Si challenging, rendering the metamorphic cell sensitive to dislocations. The focus of this dissertation is to investigate heterogeneously integrated 1J GaAs solar cells on Si substrate using germanium (Ge) as an intermediate buffer layer that will address mitigation of defects and dislocations between GaAs active cell structure and Ge “virtual” substrate on Si. The all-epitaxial molecular beam epitaxy (MBE)-grown thin (<1 μm) hybrid GaAs/Ge “virtual” buffer approach provided 1J GaAs cell efficiency of ~10% on Si, as compared with cell structures with thick 3 μm GaAs buffers. Solar cell results were further corroborated with material analysis to provide a clear path for the reduction of performance limiting dislocations. The thin “Ge-on-Si” virtual buffer was then investigated comprehensively to understand the impact of the heterostructure on device performance. The growth, structural, morphological, and electrical transport properties of epitaxial thin-film Ge, grown by solid source MBE on Si using a two-step growth process, were investigated. High-resolution x-ray diffraction analysis demonstrated ~0.10% tensile strained Ge epilayer, owing to the thermal expansion coefficient mismatch between Ge and Si, and negligible epilayer lattice tilt due to misfit dislocations at the Ge/Si heterointerface. Micro-Raman spectroscopic analysis further corroborated the strain-state of the Ge thin-film on Si. Cross-sectional transmission electron microscopy revealed the formation of a 90° Lomer dislocation network at the Ge/Si heterointerface, suggesting the rapid and complete relaxation of the Ge epilayer during growth. Atomic force micrographs exhibited smooth surface morphologies with surface roughness < 2 nm. Hall mobility measurements, performed within a temperature range of 77 K to 315 K, and the modelling thereof indicated that ionized impurity scattering limited carrier mobility in the thin Ge epilayer. Additionally, capacitance- and conductance-voltage measurements were performed after fabricating the metal-oxide-semiconductor capacitors (MOS-Cs) in order to determine the effect of epilayer dislocation density on interfacial defect states (Dit), bulk trap density, and the energy distribution of Dit as a function of temperature for electronic device applications. Deep level transient spectroscopy was used to identify the location (within the Ge bandgap) of electrically active trap levels; however, no significant trap levels were detected. Finally, the extracted Dit values were benchmarked against previously reported Dit data for Ge MOS devices, as a function of threading dislocation density within the Ge layer. The results obtained in this work were found to be comparable with other Ge MOS devices integrated on Si via alternative buffer schemes. The understanding gained from this comprehensive study of Ge-on-Si will help optimize the 1J GaAs on Si via thin Ge buffer approach, to enable a future of high efficiency low cost solar cells for terrestrial applications.<br>Master of Science<br>The global energy landscape is projected to change remarkably in the coming decades with dwindling carbon based resource reserves and escalating energy demands, necessitating large-scale adoption of cleaner alternatives, such as solar energy. However, for widespread commercial and domestic adoption of photovoltaics, the cost of solar generated electricity must become competitive with non-renewable resources such as oil or coal. Thus, achieving high efficiency solar cells and driving down cell costs are key research objectives of the photovoltaic (PV) community in order to become more self-sufficient in the energy sector. In this pursuit, III-V compound semiconductor-based solar cells have steadily outperformed all other PV technologies, but cost-prohibitive for terrestrial deployment. Si is the undisputed standard in the PV industry; thus, to make a significant step forward in the pursuit of high efficiency solar cells, a promising approach will be to integrate the superior properties of compound semiconductors with the mature technology of Si. This research systematically investigates the integration of high efficiency III-V cells with low cost, abundant Si substrates via a germanium (Ge) layer to unify the performance merits of III-V cells with the cost benefits and superior mechanical and thermal properties of Si. Concurrently, Ge has also emerged as a strong candidate to boost transistor performance at low operating voltages, primarily owing to its superior carrier mobility and ease of integration into mainstream Si process flow. This research further delves into the structural and electrical properties of the Ge on Si structure. Overall, this research demonstrates the feasibility of the use of Ge directly integrated on Si for high efficiency solar cells and low-power electronic devices.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography