Journal articles on the topic 'Metal oxide varistor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Metal oxide varistor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mielcarek, Witold, Slavko Bernik, and Krystyna Prociów. "Relations between the Morphology of ZnO Powders and the Electrical Performance of ZnO Varistors." Key Engineering Materials 336-338 (April 2007): 672–75. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.672.
Full textFrigura-Iliasa, Flaviu Mihai, Sorin Musuroi, Ciprian Sorandaru, and Doru Vatau. "New Technical Parameters and Operational Improvements of the Metal Oxide Varistors Manufacturing Process." Processes 7, no. 1 (2019): 18. http://dx.doi.org/10.3390/pr7010018.
Full textTonkoshkur, A. S., I. V. Gomilko, and A. Yu Lyashkov. "Percolation effects in the capacitive properties of metal-oxide varistors in the range of high voltage." Journal of Advanced Dielectrics 04, no. 02 (2014): 1450013. http://dx.doi.org/10.1142/s2010135x14500131.
Full textSung, Gun Yong, Stuart McKernan, and C. Barry Carter. "Grain boundaries in zinc oxide-based varistor ceramics." Proceedings, annual meeting, Electron Microscopy Society of America 47 (August 6, 1989): 598–99. http://dx.doi.org/10.1017/s0424820100154962.
Full textSimo, Attila, Flaviu Mihai Frigura-Iliasa, Mihaela Frigura-Iliasa, and Petru Andea. "Improvements in the Electronic Performance of ZnO-Based Varistors by Modifying the Manufacturing Process Parameters." Electronics 12, no. 24 (2023): 4922. http://dx.doi.org/10.3390/electronics12244922.
Full textFrigura-Iliasa, Flaviu, Sorin Musuroi, Ciprian Sorandaru, and Doru Vatau. "Case Study about the Energy Absorption Capacity of Metal Oxide Varistors with Thermal Coupling." Energies 12, no. 3 (2019): 536. http://dx.doi.org/10.3390/en12030536.
Full textTonkoshkur, Alexander Sergeevich, and Alexander Vladimirovich Ivanchenko. "The effect of negative capacitance in varistor structure on the basis of its models with voltage drop on the intergranular interlayer." Multidiscipline Modeling in Materials and Structures 11, no. 4 (2015): 598–615. http://dx.doi.org/10.1108/mmms-04-2015-0021.
Full textIvanchenko, A. V., and A. S. Tonkoshkur. "Influence of ambient temperature on electrical properties of varistor-positor structure." Технология и конструирование в электронной аппаратуре, no. 1-3 (2022): 3–7. http://dx.doi.org/10.15222/tkea2022.1-3.03.
Full textTsukamoto, Naoyuki, and Masaru Ishii. "Change of Varistor Voltage of Metal-oxide Varistor Influenced by Impulse Currents." IEEJ Transactions on Power and Energy 135, no. 6 (2015): 400–407. http://dx.doi.org/10.1541/ieejpes.135.400.
Full textGutknecht, Toni, Anna Gustafsson, Christer Forsgren, Christian Ekberg, and Britt-Marie Steenari. "Investigations into Recycling Zinc from Used Metal Oxide Varistors via pH Selective Leaching: Characterization, Leaching, and Residue Analysis." Scientific World Journal 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/653219.
Full textWu, Liwei, Caihong Guo, Jinping Wu, and Zhenzhen Xie. "Defect Analysis and Process Improvement of Metal-Oxide Arrester." Journal of Physics: Conference Series 2296, no. 1 (2022): 012021. http://dx.doi.org/10.1088/1742-6596/2296/1/012021.
Full textWang, Guoming, Woo-Hyun Kim, Jong-Hyuk Lee, and Gyung-Suk Kil. "Condition monitoring and deterioration analysis of metal oxide varistor." Journal of Electrical Engineering 69, no. 5 (2018): 352–58. http://dx.doi.org/10.2478/jee-2018-0051.
Full textChiou, Bi-Shiou, Tzuu-Chian Chen, and Jenq-Gong Duh. "A ZnO varistor derived from metal oxide diffusion." Journal of Physics D: Applied Physics 22, no. 6 (1989): 844–47. http://dx.doi.org/10.1088/0022-3727/22/6/023.
Full textS. Tonkoshkur, Alexander, and Alexander V. Ivanchenko. "Modeling of current-voltage characteristic of the intergranular barrier in metal oxide varistor ceramics." Multidiscipline Modeling in Materials and Structures 10, no. 3 (2014): 362–78. http://dx.doi.org/10.1108/mmms-11-2013-0066.
Full textXu, Bo, Lei Wang, Mengfan Yang, Yu Xiang, and Lingyun Liu. "Effect of Co-Doping of Al3+, In3+, and Y3+ on the Electrical Properties of Zinc Oxide Varistors under Pre-Synthesizing BiSbO4." Materials 17, no. 6 (2024): 1401. http://dx.doi.org/10.3390/ma17061401.
Full textLungu, Magdalena Valentina. "Effects of Dopants and Processing Parameters on the Properties of ZnO-V2O5-Based Varistors Prepared by Powder Metallurgy: A Review." Materials 16, no. 10 (2023): 3725. http://dx.doi.org/10.3390/ma16103725.
Full textEdirisinghe, Mahesh, Raul Montaño, Vernon Cooray, and F. Roman. "Performance Comparison of Varistor Models under High Current Derivative Impulses." International Letters of Chemistry, Physics and Astronomy 11 (September 2013): 40–53. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.11.40.
Full textEdirisinghe, Mahesh, Raul Montaño, Vernon Cooray, and F. Roman. "Performance Comparison of Varistor Models under High Current Derivative Impulses." International Letters of Chemistry, Physics and Astronomy 11 (April 2, 2013): 40–53. http://dx.doi.org/10.56431/p-w4ws97.
Full textLončar, B., M. Vujisić, K. Stanković, and P. Osmokrović. "Stability of Metal-Oxide Varistor Characteristics in Exploitation Conditions." Acta Physica Polonica A 116, no. 6 (2009): 1081–84. http://dx.doi.org/10.12693/aphyspola.116.1081.
Full textZola, J. G. "Simple Model of Metal Oxide Varistor for Pspice Simulation." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 23, no. 10 (2004): 1491–94. http://dx.doi.org/10.1109/tcad.2004.835134.
Full textMakovec, D., D. Kolar, and M. Trontelj. "Sintering and microstructural development of metal oxide varistor ceramics." Materials Research Bulletin 28, no. 8 (1993): 803–11. http://dx.doi.org/10.1016/0025-5408(93)90021-5.
Full textLUNGU, MAGDALENA-VALENTINA, ALINA CARAMITU, MIHAI MARIN, et al. "PERFORMANCE OF ZINC OXIDE-VANADIUM PENTOXIDE VARISTORS IN MEDIUM VOLTAGE SURGE ARRESTERS." REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE 69, no. 2 (2024): 183–88. http://dx.doi.org/10.59277/rrst-ee.2024.2.11.
Full textRocha, Simone Aparecida, Rodrigo Tomas Nogueira Cardoso, Eduardo Gonzaga Da Silveira, and Alex-Sander Amavel Luiz. "Application of Nonlinear Optimization for Fault Location in Transmission Lines with Series Compensation Protected by Varistors." Energies 16, no. 15 (2023): 5595. http://dx.doi.org/10.3390/en16155595.
Full textSung, Gun Yong, Stuart McKernan, and C. Barry Carter. "Flat interfaces in zinc oxide-based varistor ceramics." Journal of Materials Research 7, no. 2 (1992): 474–81. http://dx.doi.org/10.1557/jmr.1992.0474.
Full textBhatt, Srishti, and Dr. Shirish C. Bali. "Failure Analysis of Metal Oxide Varistor used in Wireless Charger of Automotive Vehicle." ARAI Journal of Mobility Technology 5, no. 1 (2025): 1433–45. https://doi.org/10.37285/ajmt.5.1.4.
Full textKim, Tae-Ki, Hee-Kyung Shin, and Bok-Hee Lee. "Coordination of Cascaded Metal Oxide Varistor-Based Surge Protective Devices." Journal of the Korean Institute of Illuminating and Electrical Installation Engineers 29, no. 6 (2015): 70–77. http://dx.doi.org/10.5207/jieie.2015.29.6.070.
Full textElayyan, H. S. B., and S. N. Al-Refaie. "Dielectric relaxation assessment of a heat treated metal oxide varistor." IEE Proceedings - Science, Measurement and Technology 150, no. 4 (2003): 141–47. http://dx.doi.org/10.1049/ip-smt:20030453.
Full textZhang, Sa, Zhong Hou Xu, Shi Chen, You Sheng Xu, and Gen Hua Wu. "The Design Principle and Application of Thermally Protected Metal Oxide Varistor TMOV." Advanced Materials Research 472-475 (February 2012): 1851–55. http://dx.doi.org/10.4028/www.scientific.net/amr.472-475.1851.
Full textPetrenci, Razvan, Mihaela Frigura-Iliasa, Flaviu M. Frigura-Iliasa, Marius Mirica, Lia Dolga, and Hannelore E. Filipescu. "CAD based design of a high energy absorption metal oxide varistor." Journal of Physics: Conference Series 1195 (April 2019): 012024. http://dx.doi.org/10.1088/1742-6596/1195/1/012024.
Full textTonkoshkur, Yu A., A. Yu Lyashkov, and A. S. Tonkoshkur. "Isothermal depolarization current in metal-oxide varistor ceramics under various polarizing fields." Journal of Advanced Dielectrics 03, no. 02 (2013): 1350016. http://dx.doi.org/10.1142/s2010135x13500161.
Full textSíťař, Vladislav, and Jan Veleba. "Modelling of Metal Oxide Surge Arresters in Simulation Software DYNAST." TRANSACTIONS ON ELECTRICAL ENGINEERING 6, no. 1 (2020): 21–27. http://dx.doi.org/10.14311/tee.2017.1.021.
Full textChristodoulou, Christos, Vasiliki Vita, Valeri Mladenov, and Lambros Ekonomou. "On the Computation of the Voltage Distribution along the Non-Linear Resistor of Gapless Metal Oxide Surge Arresters." Energies 11, no. 11 (2018): 3046. http://dx.doi.org/10.3390/en11113046.
Full textSimo, Attila, Flaviu Mihai Frigura-Iliasa, Mihaela Frigura-Iliasa, Petru Andea, and Sorin Musuroi. "Service Limits for Metal Oxide Varistors Having Cylindrical Symmetry as Function of the Ambient Temperature." Symmetry 14, no. 7 (2022): 1351. http://dx.doi.org/10.3390/sym14071351.
Full textShimizu, Yasuhiro, Eiichi Kanazawa, Yuji Takao, and Makoto Egashira. "H2 Sensing Properties of Metal Oxide Semiconductors as Varistor-Type Gas Sensors." IEEJ Transactions on Sensors and Micromachines 117, no. 11 (1997): 560–64. http://dx.doi.org/10.1541/ieejsmas.117.560.
Full textScheffzük, Christian, Petra Kluge-Weiss, and Felix Greuter. "Varistor Ceramic: Residual Strain and Texture Analysis by Neutron Time-of-Flight Diffraction." Materials Science Forum 524-525 (September 2006): 781–86. http://dx.doi.org/10.4028/www.scientific.net/msf.524-525.781.
Full textZuo, Jie, Guoqing Zhang, Yuxin Zhang, Caiyun Mo, and Ziliang Li. "Research on online monitoring system for MOA based on ZnO varistor characteristics." Journal of Physics: Conference Series 3000, no. 1 (2025): 012050. https://doi.org/10.1088/1742-6596/3000/1/012050.
Full textTonkoshkur, Alexander, and Alexander Ivanchenko. "ALGORITHM FOR SOFTWARE IMPLEMENTATION OF DESIGNING OVERVOLTAGE PROTECTION IN PHOTOVOLTAIC MODULES OF SOLAR ARRAYS USING A VARISTOR-POSISTOR STRUCTURE." System technologies 1, no. 126 (2020): 124–43. http://dx.doi.org/10.34185/1562-9945-1-126-2020-14.
Full textIvanchenko, A. V., A. S. Tonkoshkur, and S. V. Mazurik. "Application of varistor-posistor structure for protection from overvoltages of photovoltaic cells of solar arrays." Journal of Physics and Electronics 27, no. 1 (2019): 79–88. http://dx.doi.org/10.15421/331913.
Full textHussien Hassan Musa, Mohammed, Ling Fu, Zhengyou He, and Yumin Lei. "Faulty Phase Identification for Transmission Line with Metal Oxide Varistor-protected Series Compensator." Journal of Modern Power Systems and Clean Energy 9, no. 1 (2021): 85–93. http://dx.doi.org/10.35833/mpce.2019.000320.
Full textCui, Yan-cheng, Qi-lin Wu, Han-wu Yang, Jing-ming Gao, Song Li, and Cheng-yu Shi. "Experiments of a 100 kV-level pulse generator based on metal-oxide varistor." Review of Scientific Instruments 89, no. 3 (2018): 034705. http://dx.doi.org/10.1063/1.5012555.
Full textRi, Chol-Nam, Chol-Jun Kim, Song-Gol Kim, and Myong-Hak Kim. "Synthesis of the Composite Additive Fine Powders for ZnO Varistor by Low-Temperature Combustion." Nano 14, no. 05 (2019): 1950053. http://dx.doi.org/10.1142/s179329201950053x.
Full textKim, Sung-Yeon, Jeong-Su Park, and Wang-Sang Lee. "Development and Verification of Indirect Lightning-Induced Transient Protection Circuit for Avionics System." Applied Computational Electromagnetics Society 36, no. 6 (2021): 670–75. http://dx.doi.org/10.47037/2020.aces.j.360608.
Full textHe, JinLiang, Jun Hu, BoWen Meng, et al. "Requirement of ultra-high voltage GIS arrester to voltage gradient of metal-oxide varistor." Science in China Series E: Technological Sciences 52, no. 2 (2008): 450–55. http://dx.doi.org/10.1007/s11431-008-0268-5.
Full textNyati, S., S. R. Atmuri, D. L. Gordon, and V. Koschik. "Metal oxide varistor to limit dynamic overvoltages at the terminals of an HVDC converter." IEEE Transactions on Power Delivery 3, no. 2 (1988): 819–27. http://dx.doi.org/10.1109/61.4322.
Full textLu, Hao, Motao Zhang, Hanwu Yang, Huibo Zhang, Zicheng Zhang, and Jingming Gao. "The design of a high-voltage, long-pulse width, flat-top compensation pulse generator based on metal oxide varistors." Review of Scientific Instruments 93, no. 5 (2022): 054704. http://dx.doi.org/10.1063/5.0071272.
Full textWang, Kaiyuan, and Chen Jia. "A high-reliability voltage balancing circuit using MOV for series-connected HV-IGBT." Journal of Physics: Conference Series 2936, no. 1 (2025): 012008. https://doi.org/10.1088/1742-6596/2936/1/012008.
Full textTanaka, Tokuya, Yoshihiro Baba, Yoshimasa Tsujimoto, and Naoyuki Tsukamoto. "Simplified Thermal Computation of a Metal Oxide Varistor Element under a Lightning Impulse Current Injection." IEEJ Transactions on Electrical and Electronic Engineering 16, no. 6 (2021): 879–81. http://dx.doi.org/10.1002/tee.23375.
Full textKim, Young Sun. "Failure Prediction of Metal Oxide Varistor Using Nonlinear Surge Look-up Table Based on Experimental Data." Transactions on Electrical and Electronic Materials 16, no. 6 (2015): 317–22. http://dx.doi.org/10.4313/teem.2015.16.6.317.
Full textKorzhov, A. V., V. I. Safonov, I. E. Korostelev, and R. M. o. Babayev. "SIMPLIFIED MODELING OF THE THERMAL REGIME OF A METAL OXIDE VARISTOR IN THE LEAKAGE CURRENT REGION." Bulletin of the South Ural State University series "Power Engineering" 24, no. 3 (2024): 5–11. http://dx.doi.org/10.14529/power240301.
Full textTanaka, Tokuya, Ryosuke Tsuge, Yoshihiro Baba, Yoshimasa Tsujimoto, and Naoyuki Tsukamoto. "An Approximate Mathematical Expression for Nonlinear Resistive Properties of Metal Oxide Varistor Elements for FDTD Simulations." IEEE Transactions on Electromagnetic Compatibility 62, no. 6 (2020): 2638–42. http://dx.doi.org/10.1109/temc.2020.2983200.
Full text