Academic literature on the topic 'Metallic glass, bulk metallic glass composites, mechanical properties'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Metallic glass, bulk metallic glass composites, mechanical properties.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Metallic glass, bulk metallic glass composites, mechanical properties"

1

Eckert, J., J. Das, S. Pauly, and C. Duhamel. "Mechanical properties of bulk metallic glasses and composites." Journal of Materials Research 22, no. 2 (February 2007): 285–301. http://dx.doi.org/10.1557/jmr.2007.0050.

Full text
Abstract:
The development of bulk metallic glasses and composites for improving the mechanical properties has occurred with the discovery of many ductile metallic glasses and glass matrix composites with second phase dispersions with different length scales. This article reviews the processing, microstructure development, and resulting mechanical properties of Zr-, Ti-, Cu-, Mg-, Fe-, and Ni-based glassy alloys and also considers the superiority of composite materials containing different phases for enhancing the strength, ductility, and toughness, even leading to a “work-hardening-like” behavior. The morphology, shape, and length scale of the second phase dispersions are crucial for the delocalization of shear bands. The article concludes with some comments regarding future directions of the investigations of spatially inhomogeneous metallic glasses.
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Yi Ming, Li Jing Zheng, and Shu Jie Pang. "Formation and Mechanical Properties of Mg-Cu-Al-Gd Bulk Metallic Glass Composites." Materials Science Forum 650 (May 2010): 290–94. http://dx.doi.org/10.4028/www.scientific.net/msf.650.290.

Full text
Abstract:
The effect of Al addition to Mg65Cu25Gd10 glassy alloy on the microstructure, thermal properties and mechanical properties were investigated. The Mg65Cu25-xAlxGd10 (x=1-7at. %) bulk metallic glass composites were formed by copper mold casting, and the fraction and size of the crystalline phases in the glassy matrix changed with the Al content. The Mg65Cu24Al1Gd10 glass composite consisted of a small amount of crystalline phases in the glassy matrix possesses high compressive strength up to about 850 MPa.
APA, Harvard, Vancouver, ISO, and other styles
3

Shin, Da Woon, Hong Min, and Jin Kyu Lee. "Microstructure and Mechanical Properties of Cu-Ni-Zr-Ti Bulk Metallic Glass Composites by Spark Plasma Sintering." Korean Journal of Metals and Materials 59, no. 5 (May 5, 2021): 281–88. http://dx.doi.org/10.3365/kjmm.2021.59.5.281.

Full text
Abstract:
In the present study, Cu54Ni6Zr22Ti18 bulk metallic glass composites were developed by spark plasma sintering(SPS) using gas atomized Cu54Ni6Zr22Ti18 metallic glass powders and Ta powders. Metallic glass composites with Ta phase were fabricated by SPS. The successful consolidation of Cu54Ni6Zr22Ti18 metallic glass matrix composites with the Ta phase was achieved through the strong bonding due to the plastic deformation of the Ta powder and the super-plastic behavior of the metallic glass powder in the supercooled liquid state during SPS. The deformed Ta phases were well distributed in the Cu54Ni6Zr22Ti18 metallic glass matrix. The compressive fracture strength and total strain were 1770 Mpa and 10.2%, respectively, for the Cu54Ni6Zr22Ti18 bulk metallic glass composite with 40 wt% Ta phases. The uniformly dispersed deformed Ta phase in the Cu54Ni6Zr22Ti18 metallic glass matrix effectively impedes the propagation of the first shear band and generates a second shear band, causing a crossing of the shear bands, resulting in an improvement in plastic strain. This increase in plastic deformation is related to the fact that the deformed Ta phase, uniformly distributed in the Cu54Ni6Zr22Ti18 metallic glass matrix, acts as a source of shear bands and at the same time effectively suppresses the movement of the shear bands, dispersing the stress and causing wide plastic deformation.
APA, Harvard, Vancouver, ISO, and other styles
4

Wei, Ran, Juan Tao, Shi Lei Liu, Guo Wen Sun, Shuai Guo, and Fu Shan Li. "Effect of B2 Phase Transformation on the Mechanical Behavior of CuZr-Based Bulk Metallic Glass Composites." Materials Science Forum 898 (June 2017): 672–78. http://dx.doi.org/10.4028/www.scientific.net/msf.898.672.

Full text
Abstract:
The mechanical behavior of CuZr-based bulk metallic glass composites with different B2-CuZr phase transformation ability was investigated. The B2 phase transformation is conducive to enhance the mechanical properties of CuZr-based bulk metallic glass composites. The mechanical properties of the austenitic B2 phase specimens were also studied to understand the mechanism of phase transformation effect. It was found that the B2 phase with martensitic transformation exhibits lower yield strength and stronger work-hardening capability than the B2 phase without martensitic transformation. Thus, the phase transformation effect of B2-CuZr phase, accompanying with its lower yield strength and stronger work-hardening capability, is the main reason for the CuZr-based bulk metallic glass composites possess outstanding mechanical properties.
APA, Harvard, Vancouver, ISO, and other styles
5

Lin, Hong Ming, Giin Shan Chen, and Pee Yew Lee. "Microstructure and Properties of Vacuum Hot-Pressing SiC/ Ti-Cu-Ni-Sn Bulk Metallic Glass Composites." Key Engineering Materials 351 (October 2007): 26–30. http://dx.doi.org/10.4028/www.scientific.net/kem.351.26.

Full text
Abstract:
In the present study, Ti50Cu28Ni15Sn7 metallic glass and its composite powders reinforced with 4~12 vol% of SiC additions were successfully prepared by mechanical alloying. The as-milled Ti50Cu28Ni15Sn7 and composite powders were then consolidated by vacuum hot pressing into disc compacts with a 10 mm diameter and thickness of 2 mm. The structure of the as-milled powders and consolidated compacts was characterized by X-ray diffraction. While the thermal stability was examined by differential scanning calorimeter. In addition, the mechanical property of the consolidated bulk metallic glass and its composite was evaluated by Vickers microhardness tests. In the ball-milled composites, initial SiC particles were homogeneously dispersed in the Ti-based alloy glassy matrix. The presence of SiC particles did not dramatically change the thermal stability of Ti50Cu28Ni15Sn7 glassy powders. BMG composite with submicron SiC particles homogeneously embedded in a highly dense nanocrystalline/amorphous matrix was successfully prepared. A significant hardness increase with SiC additions was noticed for consolidated composite compacts.
APA, Harvard, Vancouver, ISO, and other styles
6

Sun, B. A., K. P. Cheung, J. T. Fan, J. Lu, and W. H. Wang. "Fiber metallic glass laminates." Journal of Materials Research 25, no. 12 (December 2010): 2287–91. http://dx.doi.org/10.1557/jmr.2010.0291.

Full text
Abstract:
The fabrication and properties of fiber metallic glass laminates (FMGL) composite composed of Al-based metallic glasses ribbons and fiber/epoxy layers were reported. The metallic glass composite possesses structural features of low density and high specific strength compared to Al-based metallic glass and crystalline Al alloys. The material shows pronounced tensile ductility compared to monolithic bulk metallic glasses.
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Gang, Xiao Wei Chen, and Xiao Xia Pan. "Investigation on Dynamic Mechanical Properties of Tungsten Fiber Reinforced Metallic Glass Composite." Advanced Materials Research 338 (September 2011): 38–41. http://dx.doi.org/10.4028/www.scientific.net/amr.338.38.

Full text
Abstract:
Recently developed bulk metallic glass (BMG) alloys have attractive mechanical properties for structural applications, and tungsten fiber reinforced bulk metallic glass matrix composite(BMGC) would further improve the properties compared to un-reinforced BMG. With INSTRON1196 test machine system and SHPB experimental system, quasi-static and dynamic compression experiments on tungsten fiber reinforced bulk metallic glass matrix composite were carried out. The material flow stress is about 2200MPa in quasi-static, and the dynamic flow stress of the material is around 2800MPa with strain rate of 740 s-1. The specimen fails with the form of axial cracks
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Q., J. M. Pelletier, J. J. Blandin, and M. Suéry. "Mechanical properties over the glass transition of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass." Journal of Non-Crystalline Solids 351, no. 27-29 (August 2005): 2224–31. http://dx.doi.org/10.1016/j.jnoncrysol.2005.06.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fu, X. L., Y. Li, and C. A. Schuh. "Homogeneous flow of bulk metallic glass composites with a high volume fraction of reinforcement." Journal of Materials Research 22, no. 6 (June 2007): 1564–73. http://dx.doi.org/10.1557/jmr.2007.0191.

Full text
Abstract:
We present a systematic study of homogeneous deformation in a La-based bulk metallic glass and two in situ composites based on the same glass. In contrast to prior investigations, which focused on relatively dilute composites, in this work the reinforcement volume percentages were more concentrated at 37% and 52%—near or above the percolation threshold (35–40%). Hot uniaxial compressive testing was conducted over a wide strain rate range from 10−2to 10−5s−1at a temperature near the glass transition. For such concentrated composites, the homogeneous deformation behavior appeared to be dominated by the properties of the reinforcement phase; in the present case the La reinforcements deformed by glide-controlled creep. Post-deformation analysis suggested that bulk metallic glass matrix composites were susceptible to microstructural evolution, which appeared to be enhanced by deformation, in contrast with a stress-free anneal. Consequently, unreinforced bulk metallic glass appeared to be more structurally stable than its composites during deformation near the glass transition.
APA, Harvard, Vancouver, ISO, and other styles
10

Luo, Yu, Leilei Xing, Yidong Jiang, Ruiwen Li, Chao Lu, Rongguang Zeng, Jinru Luo, Pengcheng Zhang, and Wei Liu. "Additive Manufactured Large Zr-Based Bulk Metallic Glass Composites with Desired Deformation Ability and Corrosion Resistance." Materials 13, no. 3 (January 28, 2020): 597. http://dx.doi.org/10.3390/ma13030597.

Full text
Abstract:
Zr-based bulk metallic glasses have been attracting tremendous interest of researchers because of their unique combination of mechanical and chemical properties. However, their application is limited as large-scale production is difficult due to the limitation of cooling rate. Recently, additive manufacturing technology has been proposed as a new solution for fabricating bulk metallic glasses without size limitation. In this study, selective laser melting technology was used to prepare Zr60Fe10Cu20Al10 bulk metallic glass. The laser parameters for fabricating full dense amorphous specimens were investigated. The mechanical and corrosion resistance properties of the prepared samples were measured by micro-compression and electrochemical corrosion testing, respectively. Lastly, Zr60Fe10Cu20Al10 bulk metallic glass (BMG) with dispersed nano-crystals was made, and good deformation ability was revealed during micro-compression test. The corrosion resistance decreased a bit due to the crystalline phases. The results provide a promising route for manufacturing large and complex bulk metallic glasses with better mechanical property and acceptable corrosion resistance.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Metallic glass, bulk metallic glass composites, mechanical properties"

1

Booth, Jessica A. "Mechanical and Microstructural Properties of Bulk Metallic Glass and Bulk Metallic Glass Composite as a Function of Temperature and Loading Conditions." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1396535770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Song, Kaikai. "Synthesis, microstructure, and deformation mechanisms of CuZr-based bulk metallic glass composites." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-129362.

Full text
Abstract:
In the past, it has been found that CuZr-based BMG composites containing B2 CuZr crystals in the glassy matrix display significant plasticity with obvious work hardening. In this work, it was tried to provide a strategy for pinpointing the formation of CuZr-based BMG composites, to modify the microstructures of these composites, and to clarify their yielding and deformation mechanisms. In order to pinpoint the formation of CuZr-based BMG composites, the phase formation and structural evolution of 11 kinds of CuZr-based alloy systems, altogether 36 different compositions, during heating and quenching processes were investigated. An endothermic event between the crystallization and melting peaks was found to be associated with a eutectoid transformation of the B2 CuZr phase. With the addition of elements to the CuZr-based alloys, this endothermic peak(s) shifts to lower or higher temperatures, implying that minor element additions can change the thermal stability of the B2 CuZr phase. By considering the thermal stability of the supercooled liquid, i.e. its resistance against crystallization, and the thermal stability of the B2 CuZr phase, a new strategy to select compositions, which form metastable CuZr-based composites consisting of an amorphous phase and B2 CuZr crystals, is proposed. It is characterized by a parameter, K = Tf /TL, where Tf and TL are the final temperature of the eutectoid transformation during heating and the liquidus temperature of the alloy, respectively. Based on this criterion, the present CuZr-based alloys are classified into three types. For Type I alloys with lower K values, it is difficult to obtain bulk metallic glass (BMG) composites. For Type III alloys with higher K values, BMG composites with larger dimensions are prone to be fabricated, whereas only moderate-sized BMG composites can be obtained for Type II possessing intermediate K values. Accordingly, CuZr-based BMG composites containing B2 CuZr phase in the glassy matrix for different alloy systems were successfully fabricated into different dimensions. For the sake of controlling the formation of the B2 CuZr phase in the glassy matrix and then changing the deformability of CuZr-based BMG composites, different methods were also used to fabricate these composites by: (1) introducing insoluable/high-melting particles; (2) appropriate re-melting treatments of master alloys; and (3) a new flash heating and quenching method. It was demonstrated that the volume fraction, size and distribution of the B2 phase in the glassy matrix can be controlled as well using the methods above. In order to clarify the excellent mechanical properties of CuZr-based BMG composites, the yielding and plastic deformation mechanisms of CuZr-based BMG composites were investigated based on SEM, XRD, and TEM observations. With the volume fraction of amorphous phase (famor) decreasing from 100 vol.% to 0 vol.%, a single-to-“double”-to-“triple”-double yielding transition was found. For the monolithic CuZr-based BMGs and their composites with the famor ³ 97.5 ± 0.5 vol.%, only one yielding at a strain of ~2% occurs, which is due to the formation of multiple shear bands in the glassy matrix, and the associative actions of the shear banding and the martensitic transformation (MT), respectively. When the famor is less than 97.5 ± 0.5 vol.%, a “yielding” occurs at a low strain of ~1%, which results from the yielding of B2 CuZr phase and the onset of the MT within B2 CuZr phase. When the famor is larger than 55 ± 3 vol.%, a “yielding” observed at strains >8% is ascribed from the operation of dislocations with a high density as well as partial de-twinning. It was also found that with the famor decreasing, the deformation mechanism gradually changes from a shear-banding dominated process, to a process being governed by the MT in the crystalline phase, resulting in different plastic strains. Owing to the importance of the MT and the shear banding to the deformation of CuZr-based BMG composites, the details of the MT and the shear banding process were investigated. On one hand, it was found that the MT temperatures of CuZr-based martensitic alloys have a clear relationship with the respective electronic structure and the lattice parameter of the equiatomic CuZr intermetallics. The MT temperatures of the studied alloys can be evaluated by the average concentration of valence electrons. Additional elements with larger atomic radius can affect the stacking fault energy and the electronic charge density redistribution, resulting in the difference of the electronic structures. On the other hand, the formation and multiplication of shear bands for CuZr-based BMG composites is associated with the storage and dissipation of the partial elastic energy during the plastic deformation. When microstructural inhomogeneities at different length scales are introduced into the glassy matrix, the elastic energy stored in the sample-machine system during the plastic deformation is redistributed, resulting in a transition of shear banding process from a chaotic behavior to a self-organized critical state. All in all, our studies and observations provide an understanding of the formation, deformation, and microstrcutural optimization of CuZr-based BMG composites and give guidance on how to improve the ductility/toughness of BMGs
In letzter Zeit zeigte sich, dass massive Cu-Zr-basierte metallische Glaskomposite, welche B2 CuZr-Kristallite in der amorphen Matrix enthalten, eine ausgeprägte Plastizität mit klarer Kaltverfestigung aufweisen. Im Rahmen dieser Arbeit wurde versucht, eine Strategie zur zielgenauen Einstellung der Phasenbildung und des dazugehörigen Gefüges von massiven CuZr-basierten Glas-Matrix-Kompositen bereitzustellen, sowie deren Fließ- und Verformungsmechanismen aufzuklären. Es wurden elf verschiedene CuZr-basierte Legierungssysteme, insgesamt 36 verschiedene Zusammensetzungen, während Heiz- und Abschreckprozessen untersucht, um die Phasenbildung samt Gefüge von massiven CuZr-basierten Glas-Matrix-Kompositen zielgenau einzustellen. Bei CuZr-basierten metallischen Gläsern kann eine endotherme Reaktion zwischen Kristallisation und Schmelzvorgang der eutektoiden Umwandlung von B2 CuZr zugeordnet werden. Mit Zugabe verschiedener Elemente zur CuZr-Basislegierung kann diese Umwandlung zu höheren bzw. niedrigeren Temperaturen verschoben werden. Bereits geringe Beimischungen beeinflussen die thermische Stabilität der B2 CuZr-Phase. Unter Berücksichtigung der thermischen Stabilität, sowie des Widerstands gegen Kristallisation der unterkühlten Schmelze und der B2 CuZr-Phase wurde eine neue Strategie zur Auswahl des Zusammensetzungsgebiets metastabiler CuZr-Legierungen verschiedener Durchmesser vorgeschlagen. Dieser Widerstand kann durch den Parameter K=Tf/TL beschrieben werden, wobei Tf die Endtemperatur der eutektoiden Umwandlung und TL die Liquidustemperatur sind. Basierend auf diesem Parameter können die untersuchten CuZr-basierten Legierungen in drei Klassen unterteilt werden. Für Legierungen vom Typ I mit niedrigeren K-Werten, ist es schwer massive metallische Glas-Komposite (BMG-Komposite) zu erhalten. Im Gegensatz dazu lassen sich für Legierungen vom Typ III, mit höheren K-Werten, BMG-Komposite mit größeren Probendurchmessern herstellen und Legierungen vom Typ II mit einem mittleren K-Wert mit moderaten Probendurchmessern erzeugt werden. Folglich wurden CuZr-basierte Glas-Matrix-Komposite verschiedener Legierungssysteme mit B2-Phase in der amorphen Matrix erfolgreich in unterschiedlichen Geometrien hergestellt. Zur Kontrolle der Ausbildung der B2-Phase in der amorphen Matrix wurden unterschiedliche Methoden verwendet, um duktile CuZr-basierte BMG-Komposite herzustellen: (1) Einbringen von unlöslichen, hochschmelzenden Partikeln; (2) geeignete Wiederaufschmelzbehandlungen der Vorlegierungen; (3) eine neue Schnellerhitzungs- und -Abschreckmethode. Es konnte gezeigt werden, dass der Volumenanteil, sowie die Größe und Verteilung der B2-Phase in der amorphen Matrix durch die oben genannten Methoden kontrolliert werden können. Um die mechanischen Eigenschaften hinsichtlich des Fließens und der plastischen Deformationsmechanismen von CuZr-basierten BMG-Kompositen aufzuklären, wurden diese näher mittels Rasterelektronenmikroskopie, Röntgenbeugung und Durchstrahlungs-elektronenmikroskopie untersucht. Mit sinkendem Volumenanteil der amorphen Phase (famor) von 100 vol.% auf 0 vol.% kann ein Übergang von einer über zwei zu drei Fließgrenzen beobachtet werden. Für monolithische CuZr-basierte BMGs und ihre Komposite mit einem Anteil famor ≥ 97.5 ± 0.5vol.% erfolgt das Fließen ab einer Stauchung von ~2% durch Ausbildung von mehreren Scherbänden in der amorphen Matrix bzw. dem Zusammenwirken des dazugehörigen Scherens und der Martensitumwandlung. Bei einem Anteil famor unter 97.5 ± 0.5 vol.% findet ein Fließen bei niedrigerer Stauchung von ~1% statt. Dies geschieht aufgrund des Fließens und der beginnenden martensitischen Umwandlungen der B2 CuZr-Phase. Bei einem Anteil famor größer als 55 ± 3 vol.% kann ein Fließen oberhalb einer Stauchung von 8% durch die Interaktion von Versetzungen bei hoher Versetzungsdichte sowie partiellem „Entzwillingen“, beobachtet werden. Es wurde herausgefunden, dass mit sinkendem famor der Verformungsmechanismus schrittweise von einem Scherband dominierten zu einem von der martensitischen Umwandlung dominierten Mechanismus übergeht. Dieser Übergang führt zu Unterschieden in der plastischen Verformung. Da für das Verformungsverhalten von CuZr-basierten BMG-Kompositen die deformationsinduzierte martensitische Umwandlung und die Entstehung sowie Ausbreitung von Scherbändern von herausragender Bedeutung sind, wurden sie näher untersucht. Einerseits wurde herausgefunden, dass die Umwandlungstemperatur der martensitischen Umwandlung von CuZr-basierten martensitischen Legierungen in klarer Beziehung zur entsprechenden Elektronenstruktur und der Gitterkonstanten der äquiatomaren intermetallischen CuZr-Phasen stehen. Die martensitischen Umwandlungstemperaturen der untersuchten Legierungen können über die mittlere Valenzelektronenkonzentration ausgewertet werden. Zusätzliche Elemente mit größerem Atomradius können die Stapelfehlerenergie und die Ladungsdichteverteilung ändern, was in unterschiedliche Elektronenstrukturen mündet. Andererseits ist die Entstehung und Vervielfachung von Scherbändern in CuZr-basierten BMG-Kompositen verbunden mit der Speicherung und Dissipation der partiellen elastischen Energie während der plastischen Verformung. Durch das Einbringen von Gefügeinhomogenitäten unterschiedlicher Größe in die Glasmatrix, wird die elastische Energie, die im System Probe-Maschine gespeichert ist, während der plastischen Deformation umverteilt. Dies führt zu einem Übergang des Schervorgangs von chaotischem Verhalten zu einem selbstorganisierten kritischen Zustand. Insgesamt stellen unsere Untersuchungen und Beobachtungen ein Verständnis der Ausbildung, Verfomung und Gefügeoptimierung von CuZr-basierten BMG-Kompositen bereit und sollen als Leitfaden zur Verbesserung der Duktilität bzw. Zähigkeit von BMGs dienen
APA, Harvard, Vancouver, ISO, and other styles
3

Gargarella, Piter. "Phase formation, thermal stability and mechanical behaviour of TiCu-based alloys." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-133969.

Full text
Abstract:
The large elastic limit, the strength close to the theoretical limit, the excellent magnetic properties and good corrosion resistance of bulk metallic glasses (BMGs) make them promising for several applications such as micro-geared motor parts, pressure sensors, Coriolis flow meters, power inductors and coating materials. The main limitation of these materials is their reduced macroscopic ductility at room temperature, resulting from an inhomogeneous deformation concentrated in narrows shear bands. The poor ductility can be overcome by the incorporation of a ductile second phase in the glassy matrix to form composites, which exhibit a better balance between strength and ductility. Different types of BMG composites have been developed to date but considerable plastic strain during tensile or bending tests has been only obtained for composites with in-situ formation of the second phase during solidification. Among these in-situ formed composites, significant tensile ductility has been only observed for two types of alloys so far: TiZrBe-based and CuZr-based BMG composites. The former precipitate dendrites of the cubic β-(Ti,Zr) phase in the glass matrix, whereas the latter combine spherical precipitates of the cubic B2-CuZr shape memory phase within the glass. The CuZr-based BMG composites have certain advantages over the TiZrBe-based composites such as the absence of Be, which is a toxic element, and exhibit a strong work-hardening behaviour linked to the presence of the shape memory phase. This concept of “shape memory” BMG composites has been only applied to CuZr-based alloys so far. It is worth investigating if such a concept can be also used to enhance the plasticity of other BMGs. Additionally, the correlation between microstructure, phase formation and mechanical properties of these composites is still not fully understood, especially the role of the precipitates regarding shear band multiplication as well as the stress distribution in the glassy matrix, which should be significantly influenced by the precipitates. The aim of the present work is to develop a new family of shape memory bulk metallic glass composites in order to extend the concept initially developed for CuZr-based alloys. Their thermal and mechanical properties shall be correlated with the microstructure and phase formation in order to gain a deeper understanding of the fundamental deformation mechanisms and thermal behaviour. A candidate to form new shape memory BMG composites is the pseudo-binary TiCu-TiNi system because bulk glassy samples with a critical casting thickness of around 1 mm have been obtained in the compositional region where the cubic shape memory phase, B2-TiNi, precipitates. This phase undergoes a martensitic transformation to the orthorhombic B19-TiNi during cooling at around 325 K. The B2- and B19-TiNi exhibit an extensive deformation at room temperature up to 30% during tensile loading. Compositions in the Ti-Cu, Ti-Cu-Ni, Ti-Cu-Ni-Zr, Ti-Cu-Ni-Zr-(Si) and Ti-Cu-Ni-Co systems were selected based on literature data and on a recently proposed λ+Δh1/2 criterion, which considers the effect of atomic size mismatch between the elements and their electronic interaction. Samples were then produced by melt spinning (ribbons) and Cu-mould suction casting (rods and plates). The investigation started in the Ti-Cu system. A low glass-forming ability (GFA) was observed with formation of amorphous phase only in micrometer-thick ribbons and the results showed that the best glass former is located around Ti50Cu50. Considering that the GFA of the binary alloys can be further improved with additions of Ni, new Ti-Cu-Ni shape memory BMG composites were then developed in which the orthorhombic Ti(Ni,Cu) martensite precipitates in the glassy matrix. These alloys exhibit a high yield strength combined with large fracture strain and the precipitates show a reversible martensitic transformation from B19 to B2-type structure at a critical temperature around 320 K (during heating). The amorphous matrix stabilizes the high-temperature phase (B2 phase), which causes different transformation temperatures depending on whether the precipitates are partially or completely embedded in the glassy matrix. The deformation starts in the softer, crystalline phase, which generates a heterogeneous stress distribution in the glassy matrix and causes the formation of multiple shear bands. The precipitates also have the important function to block the fast movement of shear bands and hence retard fracture. However, the size of such composites is limited to 1 mm diameter rods because of their low GFA, which can be further improved by adding CuZr. New Ti-Cu-Ni-Zr composites with diameter ranging from 2 to 3 mm were developed, which consist mainly of spherical precipitates of the cubic B2-(Ti,Zr)(Cu,Ni) and the glassy phase. The interrelation between composite strength and volume fraction of B2 phase was analysed in detail, which follows the rule of mixture for values lower than 30 vol.% or the load-bearing model for higher values. The fracture strain is also affected by the volume fraction of the respective phases with a maximum observed around 30 vol.% of B2 phase, which agrees with the prediction given by the three-body element model. It was observed that the cubic B2 phase undergoes a martensitic transformation during deformation, resulting in a strong work hardening and a high fracture stress of these alloys. The GFA of the Ti-Cu -based alloys can be further increased by minor additions of Si. A maximum GFA is observed for additions of 1 and 0.5 at.% Si to binary Ti-Cu or quaternary Ti-Cu-Ni-Zr alloys, respectively. This optimum GFA results from the formation of a lower amount of highly stable Ti5Si3 precipitates, which act as nuclei for other crystalline phases, and the increased stability of the liquid and the supercooled liquid. The addition of Co has the opposite effect. It drastically decreases the GFA of Ti-Cu-Ni alloys and both the martensitic transformation temperature and their mechanical behaviour seem to correlate with the number and concentration of valence electrons of the B2 phase. The transformation temperature decreases by increasing the concentration of valence electrons. An excellent combination of high yield strength and large fracture strain occurs for Ti-Cu-Ni-Zr and Ti-Cu-Ni-Zr-Si alloys with a relatively low amount of CuZr, with a fracture strain in compression almost two times larger than the one usually observed for CuZr-based composites. For instance, the Ti45Cu39Ni11Zr5 alloy exhibit a yield strength of 1490±50 MPa combined with 23.7±0.5% of plastic strain. However, a reduced ductility was found for the CuZr-richer Ti-Cu-Ni-Zr compositions, which results from the precipitation of the brittle Cu2TiZr phase in the glassy matrix. The present study extends the concept of “shape memory BMG matrix composites” originally developed for CuZr-based alloys and delivers important insights into the correlation between phase formation and mechanical properties of this new family of high-strength TiCu-based alloys, which upon further optimization might be promising candidates for high-performance applications such as flow meters, sensors and micro- and mm-sized gears
Auf Grund der hohen Elastizitätsgrenze, Festigkeiten, die nahe an der theoretischen Grenze liegen, sehr guten magnetischen Eigenschaften, sowie einer guten Korrosionsbeständigkeit erscheint der Einsatz massiver metallischer Gläser (BMG) vielversprechend in zahlreichen Gebieten, wie z.B. in Mikro-Getriebemotorteilen, Coriolis-Massendurchflussmessern, Drucksensoren, Speicherdrosseln und als Beschichtungsmaterialien. Der Einsatz dieser Materialien wird jedoch hauptsächlich durch ihre begrenzte makroskopische Duktilität bei Raumtemperatur eingeschränkt. Diese resultiert aus einer inhomogenen Verformung, die in schmalen Scherbändern konzentriert ist. Die unzureichende Duktilität kann durch das Einbringen einer zweiten, duktilen Phase in die Glas-Matrix verbessert werden, so dass Komposite gebildet werden. Diese Komposite weisen in der Regel immer noch hohe Festigkeiten auf, lassen sich aber gleichzeitig deutlich besser plastisch verformen. Es wurden bereits verschiedene Arten von massiven metallischen Glas-Matrix-Kompositen entwickelt. Jedoch konnte die plastische Verformbarkeit in Zug- oder Biegeversuchen nur in den Materialien erhöht werden, in denen sich die zweite Phase bei der Erstarrung ausscheidet. Unter diesen in-situ Kompositen konnte eine signifikante Duktilität lediglich für zwei Legierungstypen beobachtet werden: massive metallische Gläser auf TiZrBe- und auf CuZr-Basis. Die Ausscheidungen der kubischen β-(Ti,Zr) Phase wachsen dendritenartig in die Glas-Matrix, wohingegen sich in letzterem Legierungstypen sphärische Ausscheidungen der Formgedächtnislegierung, B2-CuZr, im Glas bilden. CuZr-Basislegierungen haben dabei den großen Vorteil, dass sie kein Be enthalten, welches toxisch ist. Außerdem weisen diese Komposite auch dank der Formgedächtnisphase eine starke Kaltverfestigung auf. Das Konzept, massive metallische Formgedächtnis-Glas-Matrix-Komposite herzustellen, um die mechanischen Eigenschaften zu optimieren, wurde bisher nur auf CuZr-Basislegierungen angewandt. Es soll mittels dieser Arbeit nun erforscht werden, ob dieses Konzept auf andere massive metallische Gläser übertragbar ist. Des Weiteren ist der Zusammenhang zwischen Gefüge, Phasenbildung und mechanischen Eigenschaften der Komposite noch nicht vollständig verstanden, insbesondere die Rolle der Ausscheidungen in Bezug auf die Scherbandbildung und die Spannungsverteilung in der Glas-Matrix. Das Ziel der vorliegenden Arbeit ist die Entwicklung einer neuen Klasse massiver, metallischer Formgedächtnis-Glas-Matrix Komposite um das Konzept, welches ursprünglich für CuZr-Basislegierungen entwickelt wurde, zu erweitern. Die thermischen und mechanischen Eigenschaften sollen mit dem Gefüge und der Phasenbildung in Beziehung gesetzt werden, um so die fundamentalen Verformungsmechanismen und ihre Ursachen besser zu verstehen. Der Ausgangspunkt bei der Herstellung neuer massiver metallischer Formgedächtnis-Glas-Matrix Komposite ist das pseudobinäre TiCu-TiNi-System. In diesem System konnten massive Glasproben mit einem kritischen Gießdurchmesser von circa 1 mm hergestellt werden und zwar in dem Zusammensezungsbereich, in dem die kubische Formgedächtnisphase, B2-TiNi, gebildet wird. Während der Abkühlung findet in diesen Kompositen bei etwa 325 K eine martensitische Umwandlung der B2-Phase zur orthorhombischen B19-TiNi Phase statt. B2- und B19-TiNi weisen eine gute Verformbarkeit von bis zu 30% bei Raumtemperatur unter Zugbelastung auf. Die hier erzeugten Ti-Cu, Ti-Cu-Ni, Ti-Cu-Ni-Zr, Ti-Cu-Ni-Zr-(Si) und Ti-Cu-Ni-Co-Legierungen basieren auf Literaturangaben und Vorhersagen bezüglich der Glasbildungsfähigkeit in diesen Systemen mittels λ+Δh1/2-Kriterium, welches die Auswirkungen der Atomgrößenunterschiede der Elemente und deren elektronische Wechselwirkung einbezieht. Die Proben wurden im Schmelzspinnverfahren (Bänder) und mittels Saugguss in einer Cu-Kokille (Stäbe und Bleche) hergestellt. Die Weiter- und Neuentwicklung von Legierungen, beginnt mit dem Ti-Cu-System. Die Glasbildungsfähigkeit in diesem binären System ist nur gering, so dass lediglich mikrometerdicke amorphe Bänder hergestellt werden können. Die Ergebnisse zeigen, dass der beste Glasbildner eine Zusammensetzung von etwa Ti50Cu50 hat. Die Glasbildungsfähigkeit von binären Legierungen kann durch die Zugabe von Ni weiter verbessert werden. Dies führte innerhalb dieser Arbeit zur Entwicklung neuer Ti-Cu-Ni Formgedächtnis-Glas-Matrix Komposite, in welchen die orthorhombische Martensitphase in der Glas-Matrix ausgeschieden wird. Diese ternären Legierungen zeigen eine hohe Zugfestigkeit in Kombination mit einer hohen Bruchdehnung. Beim Überschreiten einer Temperatur von etwa 320 K vollziehen die Ausscheidungen eine reversible martensitische Umwandlung vom B19- zum B2-Strukturtyp. Durch die amorphe Matrix wird die Hochtemperaturphase (B2 Phase) stabilisiert. Dies verursacht unterschiedliche Umwandlungstemperaturen im Kompositmaterial, die davon abhängig sind, ob die Ausscheidungen nur teilweise oder vollständig in der Matrix eingebettet sind. Die Verformung beginnt in der weichen kristallinen Phase, welche eine heterogene Spannungsverteilung in der Glas-Matrix erzeugt und eine hohe Dichte an Scherbändern in der Matrix verursacht. Die Ausscheidungen haben zudem die Funktion, die Ausbreitung der Scherbänder zu blockieren und das Versagen des Materials zu verzögern. Die Größe der Komposite ist jedoch auf Grund der geringen Glasbildungsfähigkeit auf einen Stabdurchmesser von ca. 1 mm begrenzt. Dies kann mit dem Zulegieren von CuZr verbessert werden. Es wurden hier auf diese Weise neue Ti-Cu-Ni-Zr Komposite entwickelt, deren Durchmesser zwischen 2 und 3 mm liegt. Diese bestehen hauptsächlich aus sphärischen Ausscheidungen der kubischen B2-(Ti,Zr)(Cu,Ni)- und der Glasphase. Die wechselseitige Beziehung zwischen der Streckgrenze und dem Volumenanteil der B2-Phase wurde im Detail untersucht. Für kristalline Volumenanteile kleiner als 30 Vol.-% folgt die Streckgrenze der Mischungsregel und für größere Volumenanteile dem „lasttragenden Modell“ (load bearing model). Die Bruchdehnung wird ebenfalls vom Volumenanteil der Phasen beeinflusst und zeigt ein Maximum bei etwa 30 Vol.-% an B2-Phase. Dies stimmt mit der Vorhersage des „Drei-Element-Modells“ überein. Es wurde festgestellt dass die kubische B2-Phase während der Verformung eine martensitische Umwandlung durchführt, was die starke Kaltverfestigung und die hohen Bruchspannungen dieser Legierungen zur Folge hat. Die Glasbildungsfähigkeit von TiCu-Basislegierungen kann im Gegenzug weiterhin durch geringe Si-Zusätze gesteigert werden. Hierbei tritt jeweils ein Maximum bei Zusätzen von 1 und 0,5 at-% Si zu binären Ti-Cu- oder zu quarternären Ti-Cu-Ni-Zr-Legierung auf. Das Optimum der Glasbildungsfähigkeit ist das Ergebnis sowohl eines geringeren Anteils hochschmelzender Ti5Si3-Ausscheidungen, die als Keimbildner für andere kristalline Phasen dienen, als auch der erhöhten Stabilität der Schmelze sowie der unterkühlten Schmelze. Der Zusatz von Co wiederum hat einen gegenteiligen Effekt. Er vermindert die Glasbildungsfähigkeit von Ti-Cu-Ni-Legierungen drastisch. Zudem scheinen sowohl die martensitische Umwandlungstemperatur als auch das mechanische Verhalten mit der Zahl und Konzentration der Valenzelektronen der B2-Phase zu korrelieren. Die Umwandlungstemperatur sinkt mit steigender Valenzelektronenkonzentration. Eine ausgezeichnete Kombination von hoher Streckgrenze und Bruchdehnung tritt für die Legierungen Ti-Cu-Ni-Zr und Ti-Cu-Ni-Zr-Si mit einem relativ geringen CuZr-Anteil auf. Die Bruchdehnung unter Druck ist fast zweimal höher als es für CuZr-Basis-Komposite gewöhnlich beobachtet worden ist. Die Legierung Ti45Cu39Ni11Zr5 zeigt beispielsweise eine Streckgrenze von 1490±50 MPa in Kombination mit einer plastischen Dehnung von 23,7±0,5%. Für die CuZr-reicheren Ti-Cu-Ni-Zr Zusammensetzungen wurde jedoch eine geringere Duktilität festgestellt, was das Resultat spröder Cu2TiZr-Ausscheidungen in der Glas-Matrix ist. Die vorliegende Arbeit erweitert folglich das Konzept der „Formgedächtnis-Glas-Matrix Komposite“, welches bisher auf CuZr-basierte Legierungen beschränkt war und liefert wichtige Einblicke in die Beziehung zwischen Phasenbildung und mechanischen Eigenschaften der neuen Klasse hochfester TiCu-Basislegierungen, welche nach weiterer Optimierung vielversprechend sein könnten für Hochleistungsanwendungen wie Durchflussmesser, Sensoren und mikrometer- und mm-große Antriebe
APA, Harvard, Vancouver, ISO, and other styles
4

Martin, Morgana. "Dynamic mechanical behavior and high pressure phase stability of a zirconium-based bulk metallic glass and its composite with tungsten." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22693.

Full text
Abstract:
Thesis (Ph. D.)--Materials Science and Engineering, Georgia Institute of Technology, 2008.
Committee Chair: Thadhani, Naresh; Committee Member: Doyoyo, Mulalo; Committee Member: Kecskes, Laszlo; Committee Member: Li, Mo; Committee Member: Sanders, Thomas; Committee Member: Zhou, Min.
APA, Harvard, Vancouver, ISO, and other styles
5

Denizer, Baris. "Artificial neural network analysis of the mechanical properties of tungsten fiber/bulk metallic glass matrix composites via neutron diffraction and finite element modeling." [Ames, Iowa : Iowa State University], 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1461844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liens, Aléthéa. "On the potential of Ti-based Bulk Metallic Glasses and Ce-TZP zirconia composites for the development of innovative dental implants." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI117.

Full text
Abstract:
Récemment, la réduction de taille des dispositifs implantés est devenue une tendance majeure de l’implantologie dentaire moderne. Cependant, elle nécessite le développement de matériaux présentant de fortes résistances mécaniques. Le titane et ses alliages, matériaux dentaires de référence, semblent avoir atteint un plateau en termes de propriétés mécaniques, ce qui peut limiter leur utilisation pour une telle stratégie. Les alliages métalliques amorphes à base de titane constituent une classe unique de matériaux présentant de fortes limites d’élasticité qui en font des candidats potentiels pour la réalisation de pièces implantables de petit diamètre. Nous assistons aussi à un intérêt croissant pour les implants en céramiques. La couleur blanche de la zircone yttriée (Y-TZP), combinée à sa capacité unique de résistance par transformation de phase en ont fait un matériau de choix pour la réalisation d’implant dentaires plus esthétiques. Cependant, la zircone yttriée peut être sensible à un mécanisme de dégradation à basse température en milieu aqueux, qui a pu susciter certaines inquiétudes. De plus, même si elle est plus résistante que la plupart des autres céramiques, elle reste un matériau élastique-fragile, sans plasticité, et donc sensible à la présence de défauts. Différentes céramiques dopées à l’oxyde de cérium (Ce-TZP) ont été développées au cours des dernières années et certains de ces matériaux ont montré une ténacité considérable et une plasticité de transformation significative comparées aux céramiques conventionnelles. Cette combinaison de propriétés en fait des candidats potentiels pour la réalisation d’implants dentaires esthétiques, comme alternatives crédibles à la 3Y-TZP. Durant ce travail de thèse, le potentiel de ces deux matériaux, pour deux applications différentes a été étudié. La première application concerne la réalisation d’implants dentaires mini-invasifs en remplacement du titane. La seconde application est centrée sur la réalisation de nouveaux implants esthétiques en céramique, plus tenaces et plus fiables, en remplacement de la 3Y-TZP. La première partie de ce travail sera axée sur le verre métallique Ti40Zr10Cu36Pd14. Le potentiel de ce verre métallique pour la fabrication de futurs implants mini-invasifs sera démontré et sa plus-value en termes de résistance à la fatigue comparé aux titanes biomédicaux conventionnels sera mise en évidence. Le rôle des éléments d’alliage tels que l’étain et le silicium sur les propriétés globales de l’alliage, telles que la cytocompatibilité et la résistance à la corrosion, sera également analysé. La deuxième partie de ce travail portera sur un nouveau composite à base de Ce-TZP. La résistance mécanique de ce matériau sera évaluée et comparée à la 3Y-TZP. De plus, sa plasticité de transformation unique et ses conséquences sur le comportement mécanique de ce matériau seront approfondies et décrites à l’aide d’expériences originales
Recently, dental implant downsizing has become one major trend in modern implantology but it requires the development of materials with improved mechanical resistance. Never- theless, titanium and its alloys, the gold standard dental materials, seem to have reached a plateau in terms of mechanical properties, which may limit their use for such strategy. Amorphous titanium-based metallic alloys are a unique class of materials showing high mechanical and fatigue properties, good corrosion resistance and a relatively low Young’s modulus, which thus make them potential candidates for the realization of such-small diameter implantable pieces in substitution to polycrystalline titanium. There is also a growing trend to use ceramic implants in dentistry. In particular, the white color of Yttria-Tetragonal Zirconia Polycrystal (Y-TZP) materials combined with their unique transformation toughening ability have made them materials of choice for the realization of metal-free, aesthetic dental implants. However, ageing of Y-TZP ceramics in aqueous environments may be a concern and even if strongest than many other ceramics, Y-TZPs still remain elastic-fragile with a sensitivity to the presence of defects. Various Ceria-doped based zirconia ceramics have been developed over the past years, in particular during two recent European projects led by MATEIS and Anthogyr. These materials may be highly resistant to flaws with a considerable toughness and an unusual transformation- induced ductility. This unique combination of properties makes them potential candidates for the realization of ceramic dental implants, as an alternative to 3Y-TZP. Within this PhD work, the potential of the two materials for (i) the realization of less invasive implants to replace titanium alloys on one hand, and (ii) aesthetic and more reliable ceramic implants as alternative to 3Y-TZP on the other hand, will be studied. The first part of this work will be focused on Ti40Zr10Cu36Pd14 metallic glass. The potential of this amorphous alloy for future implantable devices fabrication is assessed in terms of ion release in relevant media, corrosion resistance, biocompatibility and fatigue resistance, with a comparison to the benchmark conventional biomedical grade Ti alloys. The role of Sn and Si alloying elements on the overall properties of the alloy will be also analyzed. The second part of this work will deal with a new Ce-TZP based composite. Mechan- ical characterization and fatigue resistance will be evaluated and compared to 3Y-TZP material. Furthermore, the transformation-induced plasticity of this composite will be better understood, thanks to original experiments, in order to validate its reliability and its absence of potential damage under stress. All the results may open new perspectives in the future of dental applications
APA, Harvard, Vancouver, ISO, and other styles
7

Garrison, Seth Thomas. "Catalytic Properties and Mechanical Behavior of Metallic Glass Powders." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc984273/.

Full text
Abstract:
Lack of crystalline order and microstructural features such as grain/grain-boundary in metallic glasses results in a suite of remarkable attributes including very high strength, close to theoretical elasticity, high corrosion and wear resistance, and soft magnetic properties. By altering the morphology and tuning of composition, MGs may be transformed into high-performance catalytic materials. In this study, the catalytic properties of metallic glass powders were demonstrated in dissociating toxic organic chemicals such as AZO dye. BMG powders showed superior performance compared to state of the art crystalline iron because of their high catalytic activity, durability, and reusability. To enhance the catalytic properties, high energy mechanical milling was performed to increase the surface area and defect density. Iron-based bulk metallic glass (BMG) of composition Fe48Cr15Mo14Y2C15B6 was used because of its low cost and ability to make large surface area by high energy ball milling. AZO dye was degraded in less than 20 minutes for the 9 hours milled Fe-BMG. However, subsequent increase in ball milling time resulted in devitrification and loss of catalytic activity as measured using UV-Visible spectroscopy. Aluminum-based bulk metallic glass (Al-BMG) powder of composition Al82Fe3Ni8Y7 was synthesized by arc-melting the constituent elements followed by gas-atomization. The particle size and morphology were similar to Fe-BMG with a fully amorphous structure. A small percentage of transition metal constituents (Fe and Ni) in a mostly aluminum alloy showed high catalytic activity, with no toxic by-products and no change in surface characteristics. Al-alloy particles, being light-weight, were easily dispersed in aqueous medium and accelerated the redox reactions. The mechanism of dye dissociation was studied using Raman and Infrared (IR) spectroscopy. Breaking of -C-H- and - C-N- bonds of AZO dye was found to be the primary mechanism. Mechanical behavior of individual BMG particles was evaluated by in situ pico-indentation in a scanning electron microscope (SEM) to understand the fracture mechanisms. Catastrophic shear banding was found to be the primary fracture mode, which supported the observation of flake formation during high energy ball milling.
APA, Harvard, Vancouver, ISO, and other styles
8

Gao, Junheng. "Design of new metallic glass composites and nanostructured alloys with improved mechanical properties." Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/12404/.

Full text
Abstract:
In this thesis two series of alloys were developed to obtain a combination of high strength, high ductility and work hardening. A new composition design strategy was proposed to create bulk metallic glass composites (BMGC) with high strength, large ductility and excellent work hardening from the brittle MgZnCa bulk metallic glass system. The volume fraction, size of both the dendrites and amorphous matrix can be effectively tuned by varying of the composition, and the yield strength, fracture strength and ductility also varies accordingly. The increase in alloying elements results in an increase in the volume fraction of amorphous matrix and a decrease in the dendrite size, which leads to higher yielding strength but lower ductility. The mechanical properties of the current Mg alloy can be interpreted by considering the BMGCs as a combination of the nanometer scale metallic glass matrix with a ductile dendritic structure. The high strength, large ductility and excellent work hardening observed in the Mg_(91.5 ) Zn_(7.5 ) Ca_1 can be attributed to the homogeneous deformation of nanometre scale amorphous matrices, which delays the formation and rapid propagation of microcracks from the interface. In addition, a series of in-situ-cast nanostructured CuZrTi alloys were successfully designed by appropriate choice of alloying elements and compositions. XRD and TEM analysis shows that the alloys consist of softer Cu solid solution and harder nano-scale Cu_51 Zr_(14 )matrix embedded with retained Cu_5 Zr_ .The Cu_90.5 Zr_(7.5 ) Ti_2alloy exhibited a yield strength of 787MPa, a fracture strength of 1221MPa and room temperature uniform tensile elongation of 5.16%, exhibiting simultaneous ultrahigh strength and large uniform elongation. During tensile tests, the relatively softer (larger) primary Cu dendrites with numerous intragranular nanoprecipiates are believed to yield first, leading to substantial dislocation accumulation due to their relatively large grain size and the uniform distribution of numerous intragranular nanoprecipiates. With further increase in loading, the ultrafine Cu solid solution in the ultrafine clusters starts yielding and dislocation multiplication commences in this ultrafine Cu. Meanwhile, the formation of deformation bands are believed to start in the primary Cu dendrites due to the already existing high dislocation density, both of which further contribute to the work hardening and uniform plastic deformation. Finally, the hard Cu_51 Zr_(14 ) matrix commences plastic deformation and upon further loading, cracks start to form from the interface, leading to the final failure.
APA, Harvard, Vancouver, ISO, and other styles
9

Mridha, Sanghita. "Structure Evolution and Nano-Mechanical Behavior of Bulk Metallic Glasses and Multi-Principal Element Alloys." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc984260/.

Full text
Abstract:
Bulk metallic glasses and multi-principal element alloys represent relatively new classes of multi-component engineering materials designed for satisfying multiple functionalities simultaneously. Correlating the microstructure with mechanical behavior (at the microstructural length-scales) in these materials is key to understanding their performance. In this study, the structure evolution and nano-mechanical behavior of these two classes of materials was investigated with the objective of fundamental scientific understanding of their properties. The structure evolution, high temperature nano-mechanical behavior, and creep of two Zr-based alloys was studied: Zr41.2Ti13.8Cu12.5Ni10.0Be22 (Vitreloy1) and Zr52.5Ti5Cu17.9Ni14.6All0 (Vitreloy105). Devitrification was found to proceed via the formation of a metastable icosahedral phase with five-fold symmetry. The deformation mechanism changes from inhomogeneous or serrated flow to homogenous flow near 0.9Tg, where Tg is the glass transition temperature. The creep activation energy for Vitreloy1 and Vitreloy105 were 144 kJ/mol and 125 kJ/mol, respectively in the range of room temperature to 0.75Tg. The apparent activation energy increased drastically to 192 kJ/mol for Vitreloy1 and 215 kJ/mol for Vitreloy105 in the range of 0.9Tg to Tg, indicating a change in creep mechanism. Structure evolution in catalytic amorphous alloys, Pt57.5Cu14.7Ni5.3P22.5 and Pd43Cu27Ni10P20, was studied using 3D atom probe tomography and elemental segregation between different phases and the interface characteristics were identified. The structure evolution of three multi-principal element alloys were investigated namely CoCrNi, CoCrFeMnNi, and Al0.1CoCrFeNi. All three alloys formed a single-phase FCC structure in as-cast, cold worked and recrystallized state. No secondary phases precipitated after prolonged heat treatment or mechanical working. The multi-principal element alloys showed less strain gradient plasticity compared to pure metals like Ni during nano-indentation. This was attributed to the highly distorted lattice which resulted in lesser density of geometrically necessary dislocations (GNDs). Dislocation nucleation was studied by low load indentation along with the evaluation of activation volume and activation energy. This was done using a statistical approach of analyzing the "pop-in" load marking incipient plasticity. The strain rate sensitivity of nanocrystalline Al0.1CoCrFeNi alloy was determined by in situ compression of nano-pillars in a Pico-indenter. The nanocrystalline alloy demonstrated a yield strength of ~ 2.4 GPa, ten times greater than its coarse grained counterpart. The nanocrystalline alloy exhibited high strain rate sensitivity index of 0.043 and activation volume of 5b3 suggesting grain boundary dislocation nucleation.
APA, Harvard, Vancouver, ISO, and other styles
10

Pharkya, Pallavi. "Properties and Durability of the Passive Films on a Ni-Cr-Mo Alloy and an Fe-based Bulk Metallic Glass." Case Western Reserve University School of Graduate Studies / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1232857493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Metallic glass, bulk metallic glass composites, mechanical properties"

1

Wu, Jili, Ye Pan, Jinhong Pi, and Lin Wang. "Fabrication and Mechanical Properties of Cu-Based Bulk Metallic Glass and Composites." In Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing, 3207–12. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-48764-9_395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Jili, Ye Pan, Jinhong Pi, and Lin Wang. "Fabrication and Mechanical Properties of Cu-Based Bulk Metallic Glass and Composites." In PRICM, 3207–12. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118792148.ch395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Krämer, Lisa, Marlene Kapp, Verena Maier-Kiener, Karoline Kormout, Yannick Champion, and Reinhard Pippan. "Synthesis and Properties of Bulk Metallic Glass Composites." In Structural Integrity, 333–35. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91989-8_73.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gouripriya, S., and Parag Tandaiya. "Micro-mechanical Analyses of Particle Reinforced ex situ Bulk Metallic Glass Matrix Composites." In Advances in Mechanical Engineering, 43–50. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3639-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, C. C., Chung Kwei Lin, Y. L. Lin, J. S. Chen, R. R. Jen, and Pee Yew Lee. "Cu-Zr-Ti Bulk Metallic Glass Composites Produced by Mechanical Alloying and Vacuum Hot-Pressing." In Materials Science Forum, 3443–50. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.3443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kobata, J., Yorinobu Takigawa, Sung Wook Chung, H. Tsuda, Tokuteru Uesugi, Hisamichi Kimura, and Kenji Higashi. "Microstructure and Mechanical Properties in Friction Stir Processed Zr-Al-Ni-Cu Bulk Metallic Glass." In Materials Science Forum, 1345–48. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-462-6.1345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Chen, Guowen Sun, Hang Zhang, Xiaodong Jia, Ran Wei, and Fushan Li. "Influences of Impurity Alloying on Thermal Stability and Mechanical Properties of Zr50Ti4Y1Al10Cu25Ni7Co2Fe1 Bulk Metallic Glass." In Advanced Functional Materials, 301–8. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0110-0_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lin, Hong Ming, Giin Shan Chen, and Pee Yew Lee. "Microstructure and Properties of Vacuum Hot-Pressing SiC/ Ti-Cu-Ni-Sn Bulk Metallic Glass Composites." In Composite Materials V, 26–30. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-451-0.26.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Metallic glass, bulk metallic glass composites, mechanical properties"

1

An, Jihye, Hyunjeong Park, Haein Yim, Beverly Karplus Hartline, Renee K. Horton, and Catherine M. Kaicher. "Microstructures and Mechanical Properties of Tungsten Wire∕Particle-Reinforced Cu[sub 48]Hf[sub 43]Al[sub 9] Bulk Metallic Glass Composites (abstract)." In WOMEN IN PHYSICS: Third IUPAP International Conference on Women in Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3137778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yan, Wenyi, Goseph Tilvawala, and Qianhua Kan. "Numerical investigation of the mechanical behaviour of shape memory bulk metallic glass composites." In Third International Conference on Smart Materials and Nanotechnology in Engineering. SPIE, 2012. http://dx.doi.org/10.1117/12.920949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

TSAI, P. H., S. K. WANG, S. R. JIAN, I. S. LEE, Y. Z. CHANG, Y. Z. LIN, J. S. C. JANG, and C. LI. "EFFECT OF PARTIAL CRYSTALLIZATION ON THE MECHANICAL PROPERTIES OF (Cu42Zr42Al8Ag8)99.5Si0.5 BULK METALLIC GLASS." In Proceedings of the 6th International Conference on ICAMP. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814322799_0046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sakata, Shu, Akio Hayashi, Takeshi Terajima, and Yohichi Nakao. "Influence of Cutting Condition on Surface Roughness in Single Point Diamond Turning of Zr-Based Bulk Metallic Glass." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66289.

Full text
Abstract:
Bulk metallic glass (BMG) is an amorphous alloy. Thus, it does not have anisotropy and material defect due to its irregular atomic configuration. In addition, it has excellent mechanical properties. For these reasons, the BMG is expected to be substitute materials in various fields. Until now, a number of studies focusing on precise forming have been carried out. However, if the part geometries are complex, controls of the temperature and wettability are difficult. Therefore, single point diamond cutting of the BMG is needed to produce fine surfaces. However, only a few studies on the single point diamond cutting for the BMG have been reported. Thus, appropriate single point diamond cutting technique of the BMG is not established yet. Therefore, single point diamond turning of Zr-based bulk metallic glass was conducted. In the paper, the influences of the depth of cut, feed rate and cutting atmosphere on the chip generation and finished surfaces are investigated. Visualization of the cutting chip generation with different cutting conditions was made with a high-speed camera. The influences of the cutting conditions on the finished surface are considered based on the observation and the measurement of chip and machined surfaces.
APA, Harvard, Vancouver, ISO, and other styles
5

Khan, Mujibur R., Miletus Jones, Luz Bugarin, and Salvador Sandoval. "Experimental Study of Thermoelectric Properties of SWCNTs and SiC Nanoparticles and its Composites Doped With Sol-Gels." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65773.

Full text
Abstract:
Thermoelectric (TE) properties of Single wall carbon nanotubes (SWCNTs) and Silicon carbide (SiC) nanoparticles after treated with sol-gel dopants at elevated temperature. Different combinations of P and N type sol-gels were used. The combinations were Boron-Antimony, Aluminum-Antimony, Aluminum-Phosphorus and Boron–Phosphorus. The nanoparticles were randomly distributed on a nonconductive glass substrate and hot and cold junctions were created using silver epoxy and Alumel (Ni-Al) wire. The carbon nanotubes used were approximately 60% semiconducting and 40% metallic. Voltage (mV), current (μA) and resistance (Ω) were measured across the distributed nanoparticles within 160° C temperature difference. The Seebeck coefficient for pristine SWCNTs was 0.12 mV/oC. When doped with Boron-Antimony the Seebeck coefficient increased to 0.981 mV/°C. On the hand, SiC nanoparticles showed no TE effect at pristine form, but when infused with SWCNTs substantial TE effect was present. Even though the Seebeck coefficient was in a similar range with different SWCNT concentrations (wt%), current, resistance and Power factor (P.F.) changed with wt% of nanotubes. Resistance of the nanotube samples slightly decreased with the increase in temperature. Finally, the SiC+SWCNT composites were prepared using the sintering process at around 1500° C. Thermoelectric and Mechanical properties of the composites were tested. The structure-property relation was analyzed using SEM (scanning electron microscope) and XRD (X-ray diffraction). It was revealed that fiber like SWCNTs created randomly distributed network with Nano contact junctions inside the SiC matrix and enhance thermoelectric and mechanical properties in the combined SiC+SWCNTs material system. Put abstract text here.
APA, Harvard, Vancouver, ISO, and other styles
6

Costanzi, Marco, Gautam Sayal, and Golam Newaz. "Dynamic Behavior of Monolithic and Composite Materials by Split Hopkinson Pressure Bar Testing." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32944.

Full text
Abstract:
A Split Hopkinson Pressure Bar (SHPB), an experimental apparatus for testing of solid materials at high strain rates, was in-house designed and realized by the Mechanical Engineering Dept. of WSU: it can test different types of materials and provide their dynamic mechanical properties (e.g. Young’s modulus, hardening or plasticization coefficients, yield strength). This SHPB works at strain rate levels between 1000 and 3000 s-1 and impact speeds between 6 and 9 m/s. The specimen is simply a 6 mm dia. 3 mm long cylinder. The apparatus and its software were benchmarked by means of tests on Aluminum and Titanium, whose mechanical properties are well known, and later successfully applied to non-metallic materials like Nylon, Epoxy, Carbon fiber and glass fiber reinforced composites.
APA, Harvard, Vancouver, ISO, and other styles
7

Venkata, Pradeep Garudadri, Mustafa M. Aslan, M. Pinar Mengu¨c, and Gorden Videen. "The Surface Plasmon Scattering Patterns of Gold Nanoparticles and Agglomerates." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82927.

Full text
Abstract:
Metallic nanoparticles display considerably different optical properties than those of their bulk counterparts. They have long been of interest in several novel applications, from colored glass production of medieval times to molecular-level sensors of today. Recently, there has been significant interest in characterization of such small particles via surface plasmons, for example for monitoring of the actual self-assembly purposes. For such characterization, we need scattering patterns by different type of particles and agglomerates on or near the surface. Here we present a methodology to predict the required scattering patterns of single particles and agglomerates on or near a surface subjected to surface plasmon waves. We investigate the effect of size, shape and orientation of gold nano particles on their scattering patterns both in the visible spectrum and at resonance wavelengths. The results show that the normalized scattering matrix elements (Mij) at certain observation angles and incident wavelengths provide significant information to monitor self-assembly process of gold nanoparticles on a gold substrate.
APA, Harvard, Vancouver, ISO, and other styles
8

Kotikalapudi, Sai Tharun, and Raman P. Singh. "Mechanical Strength Degradation of Carbon Fiber Polymer Matrix Composites Exposed to Constant Low-Density Direct Current." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-12259.

Full text
Abstract:
Abstract Carbon fiber reinforced composites (CFRP) can experience two dissimilar magnitudes of direct current during a lightning strike on an aircraft, a concentrated catastrophic high current followed by low direct current spread across the surface. Low density direct current can also occur in multifunctional composite structures for resistive heating, energy harvesting and storage. These direct currents lead to material degradation. Since CFRP structures are more susceptible to a lightning strike due to weak electrical and thermal conductivity compared to metallic bodies, considerable amount of research has been done to study the effects of instantaneous high current on mechanical properties. With the ever-growing demand for tailorable multifunctional composites, the effect of low direct current on mechanical properties of CFRP should be investigated. An experiment is designed to study the long-term exposure of low-density electric field effects on CFRP which are often coupled with detrimental thermal effects. In this study, experiments have been performed using an in-house setup to study the electrical effects of low constant direct current (DC) on cross-ply CFRP laminates. A constant current study has been conducted to characterize the voltage across the laminate over a period. The strength of the polymer depends on the integrity and type of bonds, the observed resistance change is a perceptible way of demonstrating the change in mechanical properties. The combined effect of electrical and thermal fields has been studied by mapping the surface temperatures continuously on the entire length of the laminate. Preliminary research showed that the presence of non-conducting epoxy undergoes localized dielectric breakdown near the carbon epoxy interface. In order to quantify the degradation, combined loading compression (CLC) and dynamic mechanical analysis (DMA) tests have been performed for coupon size samples which have been electrically degraded for a definite period. Compression test results are compared with electrical characterization and glass transition temperatures from DMA results.
APA, Harvard, Vancouver, ISO, and other styles
9

Gou, J., S. Sumerlin, H. C. Gu, and G. Song. "Damping Enhancement of Hybrid Nanocomposites Embedded With Engineered Carbon Nanopaper." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15749.

Full text
Abstract:
This paper presents a novel process to manufacture multifunctional and cost-effective hybrid nanocomposites through integrating engineered carbon nanofiber paper into traditional fiber reinforced composites to improve structural damping properties. In this study, carbon nanofibers are vapor grown carbon fibers, which are grown catalytically from gaseous hydrocarbons using metallic catalyst particles. Vapor grown carbon nanofibers are much less costly than single-walled and multi-walled carbon nanotubes. Carbon nanofibers were preformed as a nanopaper which had a porous structure with highly entangled carbon nanofibers and short glass fibers. The vacuum-assisted resin transfer molding (VARTM) process was used to fabricate the nanocomposites by using engineered carbon nanofiber paper as inter-layer or surface layer of traditional composite laminates. To characterize the structural damping properties, the influence of frequency dependence was analyzed through the experiments conducted using the nanocomposite beams. It was found that there is up to 200-700% increase of the damping ratios at higher frequencies. In addition, experiments were also performed to study the interface characteristics between the carbon nanofiber paper and the laminate ply. The study showed a complete penetration of the resin through the carbon nanofiber paper. It was found that the connectivities between carbon nanofibers and short glass fibers within the carbon nanofiber paper were responsible for the significant energy dissipation in the hybrid nanocomposites during the structural vibration applications. The research results confirm the possible advantage of using engineered carbon nanofiber for damping augmentation.
APA, Harvard, Vancouver, ISO, and other styles
10

Talebi, Cihan, Bülent Acar, and Gökhan O. Özgen. "Manufacturing Error Detection in Plate and Cylindrical Composite Structures." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23602.

Full text
Abstract:
Abstract Due to their superior weight to strength ratio of composites to common metallic structures, composite technology is widely used in aerospace industry. Assessment of damage in composites has gained interest after a large number of accidents caused by unanticipated damages in the composite structures. Many different structural health monitoring applications were developed over the years due to the fact that composite materials may inherit damage from within, not always visible from surface. The most common types of errors encountered in the industry are due to misaligned fibers, a mix-up in ply order, and delaminations: all presenting changes in the vibro-acoustical performance of the composite structure. This paper discusses the change in the dynamic properties of a composite structure contains a manufacturing error such as a ply lay-up error, and a ply angle error. Both plate and cylindrical structure types were considered for the stated error types. Effect of symmetric errors, unsymmetrical and unbalanced errors, and mid-plane errors were considered in the case of ply orientations, and dynamic stiffness matrix was used to identify the error. Identification of the structure’s layup properties and manufacturing error identification is employed. From the measured modal properties of the structure, a back-tracking strategy was used to generate the ply lay-up of the composite structure. Prepreg plates of a single carbon fiber system and filament wound hybrid cylinders consisting of glass and carbon fibers were manufactured for testing. Modal tests on plates and cylindrical composite structures were performed and compared with the analysis. A good match between the finite element model and experiment was shown in natural frequencies and mode shapes.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography