Dissertations / Theses on the topic 'Metallic glass, bulk metallic glass composites, mechanical properties'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 42 dissertations / theses for your research on the topic 'Metallic glass, bulk metallic glass composites, mechanical properties.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Booth, Jessica A. "Mechanical and Microstructural Properties of Bulk Metallic Glass and Bulk Metallic Glass Composite as a Function of Temperature and Loading Conditions." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1396535770.
Full textSong, Kaikai. "Synthesis, microstructure, and deformation mechanisms of CuZr-based bulk metallic glass composites." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-129362.
Full textIn letzter Zeit zeigte sich, dass massive Cu-Zr-basierte metallische Glaskomposite, welche B2 CuZr-Kristallite in der amorphen Matrix enthalten, eine ausgeprägte Plastizität mit klarer Kaltverfestigung aufweisen. Im Rahmen dieser Arbeit wurde versucht, eine Strategie zur zielgenauen Einstellung der Phasenbildung und des dazugehörigen Gefüges von massiven CuZr-basierten Glas-Matrix-Kompositen bereitzustellen, sowie deren Fließ- und Verformungsmechanismen aufzuklären. Es wurden elf verschiedene CuZr-basierte Legierungssysteme, insgesamt 36 verschiedene Zusammensetzungen, während Heiz- und Abschreckprozessen untersucht, um die Phasenbildung samt Gefüge von massiven CuZr-basierten Glas-Matrix-Kompositen zielgenau einzustellen. Bei CuZr-basierten metallischen Gläsern kann eine endotherme Reaktion zwischen Kristallisation und Schmelzvorgang der eutektoiden Umwandlung von B2 CuZr zugeordnet werden. Mit Zugabe verschiedener Elemente zur CuZr-Basislegierung kann diese Umwandlung zu höheren bzw. niedrigeren Temperaturen verschoben werden. Bereits geringe Beimischungen beeinflussen die thermische Stabilität der B2 CuZr-Phase. Unter Berücksichtigung der thermischen Stabilität, sowie des Widerstands gegen Kristallisation der unterkühlten Schmelze und der B2 CuZr-Phase wurde eine neue Strategie zur Auswahl des Zusammensetzungsgebiets metastabiler CuZr-Legierungen verschiedener Durchmesser vorgeschlagen. Dieser Widerstand kann durch den Parameter K=Tf/TL beschrieben werden, wobei Tf die Endtemperatur der eutektoiden Umwandlung und TL die Liquidustemperatur sind. Basierend auf diesem Parameter können die untersuchten CuZr-basierten Legierungen in drei Klassen unterteilt werden. Für Legierungen vom Typ I mit niedrigeren K-Werten, ist es schwer massive metallische Glas-Komposite (BMG-Komposite) zu erhalten. Im Gegensatz dazu lassen sich für Legierungen vom Typ III, mit höheren K-Werten, BMG-Komposite mit größeren Probendurchmessern herstellen und Legierungen vom Typ II mit einem mittleren K-Wert mit moderaten Probendurchmessern erzeugt werden. Folglich wurden CuZr-basierte Glas-Matrix-Komposite verschiedener Legierungssysteme mit B2-Phase in der amorphen Matrix erfolgreich in unterschiedlichen Geometrien hergestellt. Zur Kontrolle der Ausbildung der B2-Phase in der amorphen Matrix wurden unterschiedliche Methoden verwendet, um duktile CuZr-basierte BMG-Komposite herzustellen: (1) Einbringen von unlöslichen, hochschmelzenden Partikeln; (2) geeignete Wiederaufschmelzbehandlungen der Vorlegierungen; (3) eine neue Schnellerhitzungs- und -Abschreckmethode. Es konnte gezeigt werden, dass der Volumenanteil, sowie die Größe und Verteilung der B2-Phase in der amorphen Matrix durch die oben genannten Methoden kontrolliert werden können. Um die mechanischen Eigenschaften hinsichtlich des Fließens und der plastischen Deformationsmechanismen von CuZr-basierten BMG-Kompositen aufzuklären, wurden diese näher mittels Rasterelektronenmikroskopie, Röntgenbeugung und Durchstrahlungs-elektronenmikroskopie untersucht. Mit sinkendem Volumenanteil der amorphen Phase (famor) von 100 vol.% auf 0 vol.% kann ein Übergang von einer über zwei zu drei Fließgrenzen beobachtet werden. Für monolithische CuZr-basierte BMGs und ihre Komposite mit einem Anteil famor ≥ 97.5 ± 0.5vol.% erfolgt das Fließen ab einer Stauchung von ~2% durch Ausbildung von mehreren Scherbänden in der amorphen Matrix bzw. dem Zusammenwirken des dazugehörigen Scherens und der Martensitumwandlung. Bei einem Anteil famor unter 97.5 ± 0.5 vol.% findet ein Fließen bei niedrigerer Stauchung von ~1% statt. Dies geschieht aufgrund des Fließens und der beginnenden martensitischen Umwandlungen der B2 CuZr-Phase. Bei einem Anteil famor größer als 55 ± 3 vol.% kann ein Fließen oberhalb einer Stauchung von 8% durch die Interaktion von Versetzungen bei hoher Versetzungsdichte sowie partiellem „Entzwillingen“, beobachtet werden. Es wurde herausgefunden, dass mit sinkendem famor der Verformungsmechanismus schrittweise von einem Scherband dominierten zu einem von der martensitischen Umwandlung dominierten Mechanismus übergeht. Dieser Übergang führt zu Unterschieden in der plastischen Verformung. Da für das Verformungsverhalten von CuZr-basierten BMG-Kompositen die deformationsinduzierte martensitische Umwandlung und die Entstehung sowie Ausbreitung von Scherbändern von herausragender Bedeutung sind, wurden sie näher untersucht. Einerseits wurde herausgefunden, dass die Umwandlungstemperatur der martensitischen Umwandlung von CuZr-basierten martensitischen Legierungen in klarer Beziehung zur entsprechenden Elektronenstruktur und der Gitterkonstanten der äquiatomaren intermetallischen CuZr-Phasen stehen. Die martensitischen Umwandlungstemperaturen der untersuchten Legierungen können über die mittlere Valenzelektronenkonzentration ausgewertet werden. Zusätzliche Elemente mit größerem Atomradius können die Stapelfehlerenergie und die Ladungsdichteverteilung ändern, was in unterschiedliche Elektronenstrukturen mündet. Andererseits ist die Entstehung und Vervielfachung von Scherbändern in CuZr-basierten BMG-Kompositen verbunden mit der Speicherung und Dissipation der partiellen elastischen Energie während der plastischen Verformung. Durch das Einbringen von Gefügeinhomogenitäten unterschiedlicher Größe in die Glasmatrix, wird die elastische Energie, die im System Probe-Maschine gespeichert ist, während der plastischen Deformation umverteilt. Dies führt zu einem Übergang des Schervorgangs von chaotischem Verhalten zu einem selbstorganisierten kritischen Zustand. Insgesamt stellen unsere Untersuchungen und Beobachtungen ein Verständnis der Ausbildung, Verfomung und Gefügeoptimierung von CuZr-basierten BMG-Kompositen bereit und sollen als Leitfaden zur Verbesserung der Duktilität bzw. Zähigkeit von BMGs dienen
Gargarella, Piter. "Phase formation, thermal stability and mechanical behaviour of TiCu-based alloys." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-133969.
Full textAuf Grund der hohen Elastizitätsgrenze, Festigkeiten, die nahe an der theoretischen Grenze liegen, sehr guten magnetischen Eigenschaften, sowie einer guten Korrosionsbeständigkeit erscheint der Einsatz massiver metallischer Gläser (BMG) vielversprechend in zahlreichen Gebieten, wie z.B. in Mikro-Getriebemotorteilen, Coriolis-Massendurchflussmessern, Drucksensoren, Speicherdrosseln und als Beschichtungsmaterialien. Der Einsatz dieser Materialien wird jedoch hauptsächlich durch ihre begrenzte makroskopische Duktilität bei Raumtemperatur eingeschränkt. Diese resultiert aus einer inhomogenen Verformung, die in schmalen Scherbändern konzentriert ist. Die unzureichende Duktilität kann durch das Einbringen einer zweiten, duktilen Phase in die Glas-Matrix verbessert werden, so dass Komposite gebildet werden. Diese Komposite weisen in der Regel immer noch hohe Festigkeiten auf, lassen sich aber gleichzeitig deutlich besser plastisch verformen. Es wurden bereits verschiedene Arten von massiven metallischen Glas-Matrix-Kompositen entwickelt. Jedoch konnte die plastische Verformbarkeit in Zug- oder Biegeversuchen nur in den Materialien erhöht werden, in denen sich die zweite Phase bei der Erstarrung ausscheidet. Unter diesen in-situ Kompositen konnte eine signifikante Duktilität lediglich für zwei Legierungstypen beobachtet werden: massive metallische Gläser auf TiZrBe- und auf CuZr-Basis. Die Ausscheidungen der kubischen β-(Ti,Zr) Phase wachsen dendritenartig in die Glas-Matrix, wohingegen sich in letzterem Legierungstypen sphärische Ausscheidungen der Formgedächtnislegierung, B2-CuZr, im Glas bilden. CuZr-Basislegierungen haben dabei den großen Vorteil, dass sie kein Be enthalten, welches toxisch ist. Außerdem weisen diese Komposite auch dank der Formgedächtnisphase eine starke Kaltverfestigung auf. Das Konzept, massive metallische Formgedächtnis-Glas-Matrix-Komposite herzustellen, um die mechanischen Eigenschaften zu optimieren, wurde bisher nur auf CuZr-Basislegierungen angewandt. Es soll mittels dieser Arbeit nun erforscht werden, ob dieses Konzept auf andere massive metallische Gläser übertragbar ist. Des Weiteren ist der Zusammenhang zwischen Gefüge, Phasenbildung und mechanischen Eigenschaften der Komposite noch nicht vollständig verstanden, insbesondere die Rolle der Ausscheidungen in Bezug auf die Scherbandbildung und die Spannungsverteilung in der Glas-Matrix. Das Ziel der vorliegenden Arbeit ist die Entwicklung einer neuen Klasse massiver, metallischer Formgedächtnis-Glas-Matrix Komposite um das Konzept, welches ursprünglich für CuZr-Basislegierungen entwickelt wurde, zu erweitern. Die thermischen und mechanischen Eigenschaften sollen mit dem Gefüge und der Phasenbildung in Beziehung gesetzt werden, um so die fundamentalen Verformungsmechanismen und ihre Ursachen besser zu verstehen. Der Ausgangspunkt bei der Herstellung neuer massiver metallischer Formgedächtnis-Glas-Matrix Komposite ist das pseudobinäre TiCu-TiNi-System. In diesem System konnten massive Glasproben mit einem kritischen Gießdurchmesser von circa 1 mm hergestellt werden und zwar in dem Zusammensezungsbereich, in dem die kubische Formgedächtnisphase, B2-TiNi, gebildet wird. Während der Abkühlung findet in diesen Kompositen bei etwa 325 K eine martensitische Umwandlung der B2-Phase zur orthorhombischen B19-TiNi Phase statt. B2- und B19-TiNi weisen eine gute Verformbarkeit von bis zu 30% bei Raumtemperatur unter Zugbelastung auf. Die hier erzeugten Ti-Cu, Ti-Cu-Ni, Ti-Cu-Ni-Zr, Ti-Cu-Ni-Zr-(Si) und Ti-Cu-Ni-Co-Legierungen basieren auf Literaturangaben und Vorhersagen bezüglich der Glasbildungsfähigkeit in diesen Systemen mittels λ+Δh1/2-Kriterium, welches die Auswirkungen der Atomgrößenunterschiede der Elemente und deren elektronische Wechselwirkung einbezieht. Die Proben wurden im Schmelzspinnverfahren (Bänder) und mittels Saugguss in einer Cu-Kokille (Stäbe und Bleche) hergestellt. Die Weiter- und Neuentwicklung von Legierungen, beginnt mit dem Ti-Cu-System. Die Glasbildungsfähigkeit in diesem binären System ist nur gering, so dass lediglich mikrometerdicke amorphe Bänder hergestellt werden können. Die Ergebnisse zeigen, dass der beste Glasbildner eine Zusammensetzung von etwa Ti50Cu50 hat. Die Glasbildungsfähigkeit von binären Legierungen kann durch die Zugabe von Ni weiter verbessert werden. Dies führte innerhalb dieser Arbeit zur Entwicklung neuer Ti-Cu-Ni Formgedächtnis-Glas-Matrix Komposite, in welchen die orthorhombische Martensitphase in der Glas-Matrix ausgeschieden wird. Diese ternären Legierungen zeigen eine hohe Zugfestigkeit in Kombination mit einer hohen Bruchdehnung. Beim Überschreiten einer Temperatur von etwa 320 K vollziehen die Ausscheidungen eine reversible martensitische Umwandlung vom B19- zum B2-Strukturtyp. Durch die amorphe Matrix wird die Hochtemperaturphase (B2 Phase) stabilisiert. Dies verursacht unterschiedliche Umwandlungstemperaturen im Kompositmaterial, die davon abhängig sind, ob die Ausscheidungen nur teilweise oder vollständig in der Matrix eingebettet sind. Die Verformung beginnt in der weichen kristallinen Phase, welche eine heterogene Spannungsverteilung in der Glas-Matrix erzeugt und eine hohe Dichte an Scherbändern in der Matrix verursacht. Die Ausscheidungen haben zudem die Funktion, die Ausbreitung der Scherbänder zu blockieren und das Versagen des Materials zu verzögern. Die Größe der Komposite ist jedoch auf Grund der geringen Glasbildungsfähigkeit auf einen Stabdurchmesser von ca. 1 mm begrenzt. Dies kann mit dem Zulegieren von CuZr verbessert werden. Es wurden hier auf diese Weise neue Ti-Cu-Ni-Zr Komposite entwickelt, deren Durchmesser zwischen 2 und 3 mm liegt. Diese bestehen hauptsächlich aus sphärischen Ausscheidungen der kubischen B2-(Ti,Zr)(Cu,Ni)- und der Glasphase. Die wechselseitige Beziehung zwischen der Streckgrenze und dem Volumenanteil der B2-Phase wurde im Detail untersucht. Für kristalline Volumenanteile kleiner als 30 Vol.-% folgt die Streckgrenze der Mischungsregel und für größere Volumenanteile dem „lasttragenden Modell“ (load bearing model). Die Bruchdehnung wird ebenfalls vom Volumenanteil der Phasen beeinflusst und zeigt ein Maximum bei etwa 30 Vol.-% an B2-Phase. Dies stimmt mit der Vorhersage des „Drei-Element-Modells“ überein. Es wurde festgestellt dass die kubische B2-Phase während der Verformung eine martensitische Umwandlung durchführt, was die starke Kaltverfestigung und die hohen Bruchspannungen dieser Legierungen zur Folge hat. Die Glasbildungsfähigkeit von TiCu-Basislegierungen kann im Gegenzug weiterhin durch geringe Si-Zusätze gesteigert werden. Hierbei tritt jeweils ein Maximum bei Zusätzen von 1 und 0,5 at-% Si zu binären Ti-Cu- oder zu quarternären Ti-Cu-Ni-Zr-Legierung auf. Das Optimum der Glasbildungsfähigkeit ist das Ergebnis sowohl eines geringeren Anteils hochschmelzender Ti5Si3-Ausscheidungen, die als Keimbildner für andere kristalline Phasen dienen, als auch der erhöhten Stabilität der Schmelze sowie der unterkühlten Schmelze. Der Zusatz von Co wiederum hat einen gegenteiligen Effekt. Er vermindert die Glasbildungsfähigkeit von Ti-Cu-Ni-Legierungen drastisch. Zudem scheinen sowohl die martensitische Umwandlungstemperatur als auch das mechanische Verhalten mit der Zahl und Konzentration der Valenzelektronen der B2-Phase zu korrelieren. Die Umwandlungstemperatur sinkt mit steigender Valenzelektronenkonzentration. Eine ausgezeichnete Kombination von hoher Streckgrenze und Bruchdehnung tritt für die Legierungen Ti-Cu-Ni-Zr und Ti-Cu-Ni-Zr-Si mit einem relativ geringen CuZr-Anteil auf. Die Bruchdehnung unter Druck ist fast zweimal höher als es für CuZr-Basis-Komposite gewöhnlich beobachtet worden ist. Die Legierung Ti45Cu39Ni11Zr5 zeigt beispielsweise eine Streckgrenze von 1490±50 MPa in Kombination mit einer plastischen Dehnung von 23,7±0,5%. Für die CuZr-reicheren Ti-Cu-Ni-Zr Zusammensetzungen wurde jedoch eine geringere Duktilität festgestellt, was das Resultat spröder Cu2TiZr-Ausscheidungen in der Glas-Matrix ist. Die vorliegende Arbeit erweitert folglich das Konzept der „Formgedächtnis-Glas-Matrix Komposite“, welches bisher auf CuZr-basierte Legierungen beschränkt war und liefert wichtige Einblicke in die Beziehung zwischen Phasenbildung und mechanischen Eigenschaften der neuen Klasse hochfester TiCu-Basislegierungen, welche nach weiterer Optimierung vielversprechend sein könnten für Hochleistungsanwendungen wie Durchflussmesser, Sensoren und mikrometer- und mm-große Antriebe
Martin, Morgana. "Dynamic mechanical behavior and high pressure phase stability of a zirconium-based bulk metallic glass and its composite with tungsten." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22693.
Full textCommittee Chair: Thadhani, Naresh; Committee Member: Doyoyo, Mulalo; Committee Member: Kecskes, Laszlo; Committee Member: Li, Mo; Committee Member: Sanders, Thomas; Committee Member: Zhou, Min.
Denizer, Baris. "Artificial neural network analysis of the mechanical properties of tungsten fiber/bulk metallic glass matrix composites via neutron diffraction and finite element modeling." [Ames, Iowa : Iowa State University], 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1461844.
Full textLiens, Aléthéa. "On the potential of Ti-based Bulk Metallic Glasses and Ce-TZP zirconia composites for the development of innovative dental implants." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI117.
Full textRecently, dental implant downsizing has become one major trend in modern implantology but it requires the development of materials with improved mechanical resistance. Never- theless, titanium and its alloys, the gold standard dental materials, seem to have reached a plateau in terms of mechanical properties, which may limit their use for such strategy. Amorphous titanium-based metallic alloys are a unique class of materials showing high mechanical and fatigue properties, good corrosion resistance and a relatively low Young’s modulus, which thus make them potential candidates for the realization of such-small diameter implantable pieces in substitution to polycrystalline titanium. There is also a growing trend to use ceramic implants in dentistry. In particular, the white color of Yttria-Tetragonal Zirconia Polycrystal (Y-TZP) materials combined with their unique transformation toughening ability have made them materials of choice for the realization of metal-free, aesthetic dental implants. However, ageing of Y-TZP ceramics in aqueous environments may be a concern and even if strongest than many other ceramics, Y-TZPs still remain elastic-fragile with a sensitivity to the presence of defects. Various Ceria-doped based zirconia ceramics have been developed over the past years, in particular during two recent European projects led by MATEIS and Anthogyr. These materials may be highly resistant to flaws with a considerable toughness and an unusual transformation- induced ductility. This unique combination of properties makes them potential candidates for the realization of ceramic dental implants, as an alternative to 3Y-TZP. Within this PhD work, the potential of the two materials for (i) the realization of less invasive implants to replace titanium alloys on one hand, and (ii) aesthetic and more reliable ceramic implants as alternative to 3Y-TZP on the other hand, will be studied. The first part of this work will be focused on Ti40Zr10Cu36Pd14 metallic glass. The potential of this amorphous alloy for future implantable devices fabrication is assessed in terms of ion release in relevant media, corrosion resistance, biocompatibility and fatigue resistance, with a comparison to the benchmark conventional biomedical grade Ti alloys. The role of Sn and Si alloying elements on the overall properties of the alloy will be also analyzed. The second part of this work will deal with a new Ce-TZP based composite. Mechan- ical characterization and fatigue resistance will be evaluated and compared to 3Y-TZP material. Furthermore, the transformation-induced plasticity of this composite will be better understood, thanks to original experiments, in order to validate its reliability and its absence of potential damage under stress. All the results may open new perspectives in the future of dental applications
Garrison, Seth Thomas. "Catalytic Properties and Mechanical Behavior of Metallic Glass Powders." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc984273/.
Full textGao, Junheng. "Design of new metallic glass composites and nanostructured alloys with improved mechanical properties." Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/12404/.
Full textMridha, Sanghita. "Structure Evolution and Nano-Mechanical Behavior of Bulk Metallic Glasses and Multi-Principal Element Alloys." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc984260/.
Full textPharkya, Pallavi. "Properties and Durability of the Passive Films on a Ni-Cr-Mo Alloy and an Fe-based Bulk Metallic Glass." Case Western Reserve University School of Graduate Studies / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1232857493.
Full textPauly, Simon. "Phase formation and mechanical properties of metastable Cu-Zr-based alloys." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-39545.
Full textConner, Robert Dale. "Mechanical properties of bulk metallic glass matrix composites." Thesis, 1998. https://thesis.library.caltech.edu/805/1/Conner_rd_1998.pdf.
Full textLee, M. L., Yi Li, Yi Zhong, and W. Craig Carter. "Mechanical Properties of Bulk Metallic Glasses and Composites." 2003. http://hdl.handle.net/1721.1/3833.
Full textSingapore-MIT Alliance (SMA)
Jao, Chieh, and 饒捷. "Mechanical Properties of Mg-Based Bulk Metallic Glass Composites with the Ti Particles." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/15530681483855264351.
Full text義守大學
材料科學與工程學系碩士班
98
The base alloy in this study is Mg58Cu29.5Y6Nd5Ag1.5 bulk metallic glass (BMG) rods were made by the injection casting method. The Ti particles (10、20 and 30vol.%) were selected to be the additive in the base material to form the bulk metallic glass composites (BMGCs). Ti powder was spherical with bimodal size in the range of 75~105μm and 45μm. The thermal stability and the microstructure characterizations of the resulting materials were performed by DSC、XRD and SEM. Vickers indentation and compression test were performed to estimate the mechanical properties of alloys. The results indicated that GFA and thermal stability of Mg-based BMGCs decreased with increasing the content of Ti particles, but the glassy state of the matrix was maintained even in the coexistence with Ti powders. The fracture toughness and the ultimate strength of Mg-based BMGCs increased to 31MPa m1/2 and 963MPa, respectively. Besides, an improvement of compressive strain to ~7% of the Mg-based BMGCs with the addition of 30vol.% Ti particles. Moreover, SEM observations of Mg58Cu29.5Y6Nd5Ag1.5 with 30vol.% Ti powders showed that the propagation of shear bands could be stopped or branched by the dispersion of Ti particles with large size of 75~105μm and large sized vein patterns were formed upon the fracture surface. Although the small size Ti particles (45μm) could not stopped the shear bands motion, small size of vein patterns were formed in the interspacing of small Ti particles. The resulting Mg-based BMGCs with adding Ti particles in this study exhibit high glass forming ability (GFA) and excellent compressive properties.
Wong, Pei-chun, and 翁培鈞. "Mechanical Properties of Magnesium Based Bulk Metallic Glass Composites with the Ti particles." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/84278635656859405918.
Full text國立中央大學
機械工程研究所
100
Due to technology advancements, the medical treatment is being improved. One of being concerned is the attempt to simplify the procedure of implantation surgery, which possibly relieves the pain during the recovering process. The biodegradable material provides an attractive solution which is decomposable in human body with widely attention for decades. MgZnCa bulk metallic glass alloy, which has good mechanical properties, biocompatibility and uniform biodegradability, is suitable for the application in orthopedic implants, for example, the bone screws and bone plates. Unfortunately, such material is quite brittle where further application is limited. In this study, we have successfully synthesized the Ti particles reinforced Mg60Zn35Ca5 bulk metallic glass composites (BMGCs) rod with diameter of 2 mm by injection casting method in an argon atmosphere. The glass forming ability (GFA) and the mechanical properties of these Mg-based BMGCs have been systematically investigated as a function of the volume fraction (Vf) of Ti particles. The results showed that the compressive ductility increased with Vf of Ti particles. The mechanical performance with up to 5.4% compressive failure strain and 1187 MPa fracture strength at room temperature can be obtained for the Mg-based BMGCs with 50 vol.% Ti particles, which suggests that these dispersed Ti particles can absorb the energy of crack and branches the primary crack into multiple secondary crack. Therefore, further propagation of crack is blocked and then enhances the plasticity.
Lu, Jian-zhong, and 呂建忠. "Mechanical Properties of Mg-base Bulk Metallic Glass Composites with the Fe Particles." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/94807565697244689336.
Full text義守大學
材料科學與工程學系碩士班
97
The base alloys of Mg58Cu31Y6Nd5 bulk metallic glass (BMG) rods (~4 mm in diameter) with high glass forming ability (GFA) and high thermal properties are made by injection casting. Vickers indentation and compression test are performed for the mechanical properties measuring. It exhibits that the fracture toughness of the base alloy is ~8MPa m1/2 and the fracture behavior is brittle. For the mechanical properties promotion, the Fe particles (10, 20, 30 vol%) are selected to be the additive in the base alloy. Then the microstructure characterizations of the resulting BMG compositions are performed by XRD and SEM analyses. No detrimental effect of the additive Fe particles is observed on the glass forming ability of the base alloys. Besides, the result of the compressive test of the Mg58Cu31Y6Nd5-Feamorphous composite alloys reveals that the plastic strain is improved with the addition of Fe particles (εp~23%) and the spread vein-patterns are formed on the fracture surface. The fracture toughness is also improved. KIC of the Mg58Cu31Y6Nd5 with 30 vol% Fe is ~27 MPa m1/2. SEM observation of BMG composites reveals that the shear bands and the cracks propagation are impeded by the Fe particles and the secondary shear bands are formed during the plastic deformation process. It indicated that the addition of Fe particles for plasticity improvement of the Mg58Cu31Y6Nd5 alloy is contributive.
Su, Hsiao-Chun, and 蘇筱君. "Mechanical Properties of Mg Based Bulk Metallic Glass Composites with the Porous Mo Particles." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/32976187023805204643.
Full text義守大學
材料科學與工程學系碩士班
96
Mg-based bulk metallic glasses have high glass-forming ability, specific strength, and strength, e.g., 2-3 times higher for Mg-based metallic glasses than that of corresponding crystalline Mg-based alloys. However, their application is limited up to now because of the inherent low stiffness/workability and ineffective plastic deformation. In this study, one added the ductile Mo particles into Mg-Cu-Y-Gd(Nd ) base BMGs for improving the ductility of alloys. Thermal and mechanical properties of BMGs are evaluated. It has been found that the glass forming ability, the viscosity and the porous ratio of BMGs decreased with increasing Mo content into Mg58Cu31Y5Gd6 base BMG. In addition, the interface between Mg58Cu31Y5Gd6 matrix and Mo particles is incoherent. In comparison with Mg58Cu31Y5Gd6 base BMG, the Mo particles and Mg58Cu31Y6Nd5 base BMGs are more compatible. The results of compressive testing of Mg58Cu31Y6Nd5 base BMGs showed that no Mo particles are peeled off and the particles effectively impede shear band propagation and promote the initiation and branching of secondary shear bands. TEM analysis revealed that there are some Cu5Y crystallite observed between the interface of matrix alloy and Mo particle. The interface boundary between Cu5Y crystallite and Mo particle induced the stress concentration effect and it makes some Mo particles are peeled off during compressive testing. The same results are observed by SEM. The dispersion of Mo particles into the galssy matrix caused the increasing of the compressive plastic deformation. However, the improvement effects of plastic deformation are restrained because of the formation of Cu5Y crystallite.
Li, Jia-Bin, and 李嘉彬. "Study on Processing and Mechanical Properties of Cu-Zr-Based Bulk Metallic Glass Composites." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/shcvv8.
Full text義守大學
材料科學與工程學系碩士班
98
Cu-based bulk metallic glass is considered a good material for glass-forming ability because of its excellent properties. And High strength, high hardness, more than 2% of the elastic strain and wear resistance, and to attract the attention of the general public. The monolithic bulk metallic glass under compression load, usually caused by the glass transition temperature before it is highly uneven plastic deformation and then destroyed. However, the precipitation is have limit of In-situ, so this paper by suction-casting method, and above in-situ and ex-situ approach successfully obtained 2 ~ 4mm diameter and different components of bulk metallic glass composite material of the round bar. By DSC, XRD, SEM, TEM, Vickers hardness instrument of systematic analysis of (Zr48Cu36Al8Ag8)Si0.75 Ta adding different volume percentage of metal particles and (Zr48Cu32Al8Ag8Ta4)Si0.75 Ta adding different volume percentage of metal particles, The composition of the thermal properties and mechanical properties. Ex-situ (Ta) the ways in which the hardness values of about 522 ~ 559Hv between the yield strength to maintain 1615 ~ 1756MPa. Plastic deformation increases with the Ta content significantly increasing trend(But When the Ta content of 10vol%, the diameter of 2mm round bar up to 18% more than the (real) plastic deformation).Then use (Zr48Cu36Al8Ag8)Si0.75 integrated in-situ and ex-situ (Ta) obtained by way of the hardness of the alloy composition at about 522 ~ 543Hv.Ta precipitates show the overall hardness value was not obvious. And In the compression tests, each alloy the yield strength values range between 1741 ~ 1852MPa the other hand, plastic deformation increased with Ta content significantly rising, and when the Ta content of 9vol%, the diameter of 2mm round bar up to 40% more than the plastic deformation.
GAO, XING-YU, and 高興宇. "Mechanical Properties of Mg-based Bulk Metallic Glass Composite with Ex-situ Adding Spherical Fe and TiZr Metallic Glass Particles." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/t92724.
Full text國立中央大學
機械工程學系
106
Suture anchors are often used to rivet the suture wires at the bones in orthopedic surgery. Therefore, suture anchor must be able to withstand the stress of biological movements and non-harmful to human body. This attracts the medical community to pay lots attention on the improvement of materials for suture anchor. We want that the material has the good mechanical properties of the material. The Mg-based bulk metallic glasses (BMG) produced by our laboratory has high strength and Young's modulus is similar to the value of human bones. Therefore, it is very suitable to apply the Mg-based metallic glass alloys on suture anchor. In this study, Mg66Zn29Ca5, has the best glass forming ability in the Mg-Zn-Ca metallic glass alloy system, was selected to be the base alloy. Then this base alloy was added with different vol% micro-sized spherical Fe and TiZr-based metallic glass particles to form Mg-based bulk metallic glass composite (BMGC), respectively for improving its fracture toughness. Due to the limitation of cooling rate, the BMGC rods with 4 mm in diameter only present partial metallic glass state, but still show much higher compressive strength of commercial magnesium alloy. Based on the results of this study, the Mg-based BMGCs added Fe particle could not obtain effective improvement on fracture toughness. On the other hand, the Mg-based BMGCs added with TiZr-based metallic glass particles present a clear improvement of fracture toughness. With increasing the addition of Ti-Zr metallic glass particles to 30 vol.%, the fracture toughness of Mg-based BMGC increases from 1.17 to 4.19 MPa‧m1/2 and remains the maximum compressive strength of 535 MPa.
Lee, Chung-I., and 李重毅. "Improvement of Mechanical Properties and Corrosion Resistance of Mg-based Bulk Metallic Glass Composite by coating Zr-based Metallic Glass Thin Film." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/78079317779130970305.
Full text國立中央大學
材料科學與工程研究所
104
In order to improve the mechanical properties as well as corrosion resistance of Mg-based metallic glass (BMG) and Mg-based metallic glass composite (BMGC). The Zr-based metallic glass thin film (MGTF) of 200 nm thickness was coated on the Mg-based BMGC with two different buffer layers, Al-Ti (25 nm/25 nm) and Cu(50 nm), for adhesion ability investigation. The BMGC plates (with dimension of 4 mm W x 3 mm T x 35 mm L) of Mg58Cu31Gd11 with 25 vol.% Mo particles (size of 25 m) [2] was selected as the substrate and coated with 200 nm Zr-based ((Zr53Cu30Ni9Al8)99.5Si0.5) MGTF by DC-sputtering. The results of 3-point bending test show that the flexural strength of the Mg-based BMGC (180 MPa) can be significantly enhanced to 254 MPa for the Mg-based BMGC with 200 nm Zr-based MGTF coating. The remarkable increase in flexural strength of the Mg-based BMGC coated with Zr-based MGTF is suggested that the Zr-based MGTF can smooth the surface (by covering the defects on the specimen surface) to prevent the stress concentration and also provide residual stress to suppress the crack initiation from the specimen surface during bending test. In addition, the results of polarization electrochemical test reveal that the Zr-based MGTF exhibits much better corrosion resistance in 0.9 wt. % sodium chloride solution. Accordingly, the coating of 200 nm Zr-based MGTF on the Mg-based BMGC by sputtering is believed a promising method to protect the Mg-based BMGC from the island environment.
Yang, Li-chih, and 楊立誌. "Micorstructure and Mechanical Properties of Mg-Based Bulk Metallic Glass Composites with the Ag element addition." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/03724945466276064765.
Full text義守大學
材料科學與工程學系碩士班
97
Mg-based bulk metallic glass exhibit excellent compressive properties, large supercooled liquid region and high glass forming ability(GFA). According to previous reasearch, the excellent thermal properties may attribute to the coaction of Mg-Cu-Y and Mg-Cu-Y-Gd alloy systems with silver addition. Therefore, in the present study, we systematically investigated the effect of partial substitution of Cu by Ag on the thermal properties of Mg-Cu-Y-Nd alloys in wide compositional range. In order to improve ductility of Mg-based bulk metallic glass simultaneously, we prepare a BMG matrix composite with micrometer-sized Molybdenum particles addition as a kind of reinforcement in Mg-Cu-Y-Nd-Ag alloy with best GFA. The results indicated that the GFA and thermal stability are best with adding Ag content in Mg-Cu-Y-Nd alloy, but it decreased with increasing of Molybdenum particles addition. It can also observed the nanocrystals(CuY) precipitate around interface between matrix and Molybdenum particles by transition electron microscopy(TEM). General speaking, brittle nanocrystals can speed-up the shear bands or cracks propagation even through they act as obstacles. But the interface between CuY nanocrystals and Molybdenum particles are coherent in Mg-Cu-Y-Nd alloy. Molybdenum particles can form multiple shear bands uniformly and stabilize crack growth which prevent catastrophic failure. The resulting Mo/Mg-Cu-Y-Nd-Ag BMGCs not only show high plastic strain (~29%)in uniaxial compression, but also enhance fracture toughness with 63 MPa•m1/2.
Gargarella, Piter. "Phase formation, thermal stability and mechanical behaviour of TiCu-based alloys." Doctoral thesis, 2013. https://tud.qucosa.de/id/qucosa%3A27553.
Full textAuf Grund der hohen Elastizitätsgrenze, Festigkeiten, die nahe an der theoretischen Grenze liegen, sehr guten magnetischen Eigenschaften, sowie einer guten Korrosionsbeständigkeit erscheint der Einsatz massiver metallischer Gläser (BMG) vielversprechend in zahlreichen Gebieten, wie z.B. in Mikro-Getriebemotorteilen, Coriolis-Massendurchflussmessern, Drucksensoren, Speicherdrosseln und als Beschichtungsmaterialien. Der Einsatz dieser Materialien wird jedoch hauptsächlich durch ihre begrenzte makroskopische Duktilität bei Raumtemperatur eingeschränkt. Diese resultiert aus einer inhomogenen Verformung, die in schmalen Scherbändern konzentriert ist. Die unzureichende Duktilität kann durch das Einbringen einer zweiten, duktilen Phase in die Glas-Matrix verbessert werden, so dass Komposite gebildet werden. Diese Komposite weisen in der Regel immer noch hohe Festigkeiten auf, lassen sich aber gleichzeitig deutlich besser plastisch verformen. Es wurden bereits verschiedene Arten von massiven metallischen Glas-Matrix-Kompositen entwickelt. Jedoch konnte die plastische Verformbarkeit in Zug- oder Biegeversuchen nur in den Materialien erhöht werden, in denen sich die zweite Phase bei der Erstarrung ausscheidet. Unter diesen in-situ Kompositen konnte eine signifikante Duktilität lediglich für zwei Legierungstypen beobachtet werden: massive metallische Gläser auf TiZrBe- und auf CuZr-Basis. Die Ausscheidungen der kubischen β-(Ti,Zr) Phase wachsen dendritenartig in die Glas-Matrix, wohingegen sich in letzterem Legierungstypen sphärische Ausscheidungen der Formgedächtnislegierung, B2-CuZr, im Glas bilden. CuZr-Basislegierungen haben dabei den großen Vorteil, dass sie kein Be enthalten, welches toxisch ist. Außerdem weisen diese Komposite auch dank der Formgedächtnisphase eine starke Kaltverfestigung auf. Das Konzept, massive metallische Formgedächtnis-Glas-Matrix-Komposite herzustellen, um die mechanischen Eigenschaften zu optimieren, wurde bisher nur auf CuZr-Basislegierungen angewandt. Es soll mittels dieser Arbeit nun erforscht werden, ob dieses Konzept auf andere massive metallische Gläser übertragbar ist. Des Weiteren ist der Zusammenhang zwischen Gefüge, Phasenbildung und mechanischen Eigenschaften der Komposite noch nicht vollständig verstanden, insbesondere die Rolle der Ausscheidungen in Bezug auf die Scherbandbildung und die Spannungsverteilung in der Glas-Matrix. Das Ziel der vorliegenden Arbeit ist die Entwicklung einer neuen Klasse massiver, metallischer Formgedächtnis-Glas-Matrix Komposite um das Konzept, welches ursprünglich für CuZr-Basislegierungen entwickelt wurde, zu erweitern. Die thermischen und mechanischen Eigenschaften sollen mit dem Gefüge und der Phasenbildung in Beziehung gesetzt werden, um so die fundamentalen Verformungsmechanismen und ihre Ursachen besser zu verstehen. Der Ausgangspunkt bei der Herstellung neuer massiver metallischer Formgedächtnis-Glas-Matrix Komposite ist das pseudobinäre TiCu-TiNi-System. In diesem System konnten massive Glasproben mit einem kritischen Gießdurchmesser von circa 1 mm hergestellt werden und zwar in dem Zusammensezungsbereich, in dem die kubische Formgedächtnisphase, B2-TiNi, gebildet wird. Während der Abkühlung findet in diesen Kompositen bei etwa 325 K eine martensitische Umwandlung der B2-Phase zur orthorhombischen B19-TiNi Phase statt. B2- und B19-TiNi weisen eine gute Verformbarkeit von bis zu 30% bei Raumtemperatur unter Zugbelastung auf. Die hier erzeugten Ti-Cu, Ti-Cu-Ni, Ti-Cu-Ni-Zr, Ti-Cu-Ni-Zr-(Si) und Ti-Cu-Ni-Co-Legierungen basieren auf Literaturangaben und Vorhersagen bezüglich der Glasbildungsfähigkeit in diesen Systemen mittels λ+Δh1/2-Kriterium, welches die Auswirkungen der Atomgrößenunterschiede der Elemente und deren elektronische Wechselwirkung einbezieht. Die Proben wurden im Schmelzspinnverfahren (Bänder) und mittels Saugguss in einer Cu-Kokille (Stäbe und Bleche) hergestellt. Die Weiter- und Neuentwicklung von Legierungen, beginnt mit dem Ti-Cu-System. Die Glasbildungsfähigkeit in diesem binären System ist nur gering, so dass lediglich mikrometerdicke amorphe Bänder hergestellt werden können. Die Ergebnisse zeigen, dass der beste Glasbildner eine Zusammensetzung von etwa Ti50Cu50 hat. Die Glasbildungsfähigkeit von binären Legierungen kann durch die Zugabe von Ni weiter verbessert werden. Dies führte innerhalb dieser Arbeit zur Entwicklung neuer Ti-Cu-Ni Formgedächtnis-Glas-Matrix Komposite, in welchen die orthorhombische Martensitphase in der Glas-Matrix ausgeschieden wird. Diese ternären Legierungen zeigen eine hohe Zugfestigkeit in Kombination mit einer hohen Bruchdehnung. Beim Überschreiten einer Temperatur von etwa 320 K vollziehen die Ausscheidungen eine reversible martensitische Umwandlung vom B19- zum B2-Strukturtyp. Durch die amorphe Matrix wird die Hochtemperaturphase (B2 Phase) stabilisiert. Dies verursacht unterschiedliche Umwandlungstemperaturen im Kompositmaterial, die davon abhängig sind, ob die Ausscheidungen nur teilweise oder vollständig in der Matrix eingebettet sind. Die Verformung beginnt in der weichen kristallinen Phase, welche eine heterogene Spannungsverteilung in der Glas-Matrix erzeugt und eine hohe Dichte an Scherbändern in der Matrix verursacht. Die Ausscheidungen haben zudem die Funktion, die Ausbreitung der Scherbänder zu blockieren und das Versagen des Materials zu verzögern. Die Größe der Komposite ist jedoch auf Grund der geringen Glasbildungsfähigkeit auf einen Stabdurchmesser von ca. 1 mm begrenzt. Dies kann mit dem Zulegieren von CuZr verbessert werden. Es wurden hier auf diese Weise neue Ti-Cu-Ni-Zr Komposite entwickelt, deren Durchmesser zwischen 2 und 3 mm liegt. Diese bestehen hauptsächlich aus sphärischen Ausscheidungen der kubischen B2-(Ti,Zr)(Cu,Ni)- und der Glasphase. Die wechselseitige Beziehung zwischen der Streckgrenze und dem Volumenanteil der B2-Phase wurde im Detail untersucht. Für kristalline Volumenanteile kleiner als 30 Vol.-% folgt die Streckgrenze der Mischungsregel und für größere Volumenanteile dem „lasttragenden Modell“ (load bearing model). Die Bruchdehnung wird ebenfalls vom Volumenanteil der Phasen beeinflusst und zeigt ein Maximum bei etwa 30 Vol.-% an B2-Phase. Dies stimmt mit der Vorhersage des „Drei-Element-Modells“ überein. Es wurde festgestellt dass die kubische B2-Phase während der Verformung eine martensitische Umwandlung durchführt, was die starke Kaltverfestigung und die hohen Bruchspannungen dieser Legierungen zur Folge hat. Die Glasbildungsfähigkeit von TiCu-Basislegierungen kann im Gegenzug weiterhin durch geringe Si-Zusätze gesteigert werden. Hierbei tritt jeweils ein Maximum bei Zusätzen von 1 und 0,5 at-% Si zu binären Ti-Cu- oder zu quarternären Ti-Cu-Ni-Zr-Legierung auf. Das Optimum der Glasbildungsfähigkeit ist das Ergebnis sowohl eines geringeren Anteils hochschmelzender Ti5Si3-Ausscheidungen, die als Keimbildner für andere kristalline Phasen dienen, als auch der erhöhten Stabilität der Schmelze sowie der unterkühlten Schmelze. Der Zusatz von Co wiederum hat einen gegenteiligen Effekt. Er vermindert die Glasbildungsfähigkeit von Ti-Cu-Ni-Legierungen drastisch. Zudem scheinen sowohl die martensitische Umwandlungstemperatur als auch das mechanische Verhalten mit der Zahl und Konzentration der Valenzelektronen der B2-Phase zu korrelieren. Die Umwandlungstemperatur sinkt mit steigender Valenzelektronenkonzentration. Eine ausgezeichnete Kombination von hoher Streckgrenze und Bruchdehnung tritt für die Legierungen Ti-Cu-Ni-Zr und Ti-Cu-Ni-Zr-Si mit einem relativ geringen CuZr-Anteil auf. Die Bruchdehnung unter Druck ist fast zweimal höher als es für CuZr-Basis-Komposite gewöhnlich beobachtet worden ist. Die Legierung Ti45Cu39Ni11Zr5 zeigt beispielsweise eine Streckgrenze von 1490±50 MPa in Kombination mit einer plastischen Dehnung von 23,7±0,5%. Für die CuZr-reicheren Ti-Cu-Ni-Zr Zusammensetzungen wurde jedoch eine geringere Duktilität festgestellt, was das Resultat spröder Cu2TiZr-Ausscheidungen in der Glas-Matrix ist. Die vorliegende Arbeit erweitert folglich das Konzept der „Formgedächtnis-Glas-Matrix Komposite“, welches bisher auf CuZr-basierte Legierungen beschränkt war und liefert wichtige Einblicke in die Beziehung zwischen Phasenbildung und mechanischen Eigenschaften der neuen Klasse hochfester TiCu-Basislegierungen, welche nach weiterer Optimierung vielversprechend sein könnten für Hochleistungsanwendungen wie Durchflussmesser, Sensoren und mikrometer- und mm-große Antriebe.
Hsiao, Zheng-Wen, and 蕭証文. "Mechanical Properties of Zr Based Bulk Metallic Glass Composites by the Combination Process of In-situ and Ex-situ." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/18396499309593091200.
Full text義守大學
材料科學與工程學系碩士班
98
Jang et al. has reported that micrometer-sized and nano-sized precipitates homogeneous dispersed in the glassy matrix, those precipitates act as discrete obstacles in the amorphous matrix, avoiding catastrophic shearing-off through the whole sample and so as to significantly improve their plasticity. There are combine two kinds of ex-situ dispersed particles, micro-sized (5-30um), and in-situ dispersed precipitates, nano-sized (20-100nm), were found homogeneously distributed in the Zr-Cu-Ni-Al-Ta amorphous matrix. The thermal and the mechanical properties of these Zr-based BMGCs were systematically investigated by the combination of DSC, XRD, SEM, TEM, and compression test. The result of compression test exhibits the yield strength of these BMGCs around 1750-1850 MPa. The compression plastic strain presents a dramatically increasing trend with the Ta content and a plastic strain more than 24% can be obtained for the Zr53Cu26Ni9Al8Ta4 BMGC rod with 2mm in diameter. The fracture surface of the Zr53Cu26Ni9Al8Ta4 BMGC compressive specimen reveals the mixed morphologies, consisting of vein-like pattern and highly rough regions, however these two morphologies more random with increasing the Ta content. Final nano-sized precipitates and micro-sized particles act as discrete obstacles homogeneous dispersed in the glassy matrix. Thus separate and restrict the highly energy shear-banding, avoiding catastrophic shearing-off through the whole sample and so as to significantly improve their plasticity.
Pan, Tai-ching, and 潘岱進. "Thermal and Mechanical Properties of the Zr-based Bulk Metallic Glass Composites with in-situ Dispersed Ta-Rich Particles." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/38761998199959587941.
Full text義守大學
材料科學與工程學系碩士班
97
Among the numbers of developed bulk metallic glasses (BMGs) recently, Zr-based BMG was considered to be one of the most promising materials and has attracted much attention due to its exceptional properties, such as a high strength, high hardness, high elastic strain up to 2%, good wear resistances. However, the resulting monolithic bulk metallic glasses (BMGs) usually demonstrate highly inhomogeneous deformation below the glass-transition temperature even under compressive loading with or without confinement.Thus, there are two main approaches to solve the problem of low plastic strain, one is to in-situ precipitate crystalline phases in the BMG matrix, the other is to ex-situ introduce foreign particles or micrometer-sized pores into the BMG matrix. The advantage of in-situ composites over the ex-situ one in the sample preparation is that they can obtain a finer crystalline precipitates by simply adjusting the alloy composition or cooling rate, thus has attracted more attention recently. The Zr53Cu30-xNi9Al8Tax (x =0,2, 4, 6, 8) bulk metallic glass composites (BMGCs) rods with a diameter of 2 ~ 3 mm have been successfully fabricated by suction casting method in this study. The thermal and the mechanical properties of these Zr-based BMGCs were systematically investigated by the combination of DSC, XRD, SEM, TEM, and compression test. Thermal properties analysis, the GFA index(γ and γm, γ=0.428 and γm=0.768) of the Zr53Cu22Ni9Al8Ta8 BMCGs exhibits optimum value.The activation energy of these Zr53Cu30-xNi9Al8Tax alloys decreases with Ta content at beginning and then increases back to 250 kJ/mole at the Zr53Cu22Ni9Al8Ta8 BMGC, which closes to the value of the base BMG (260 kJ/mole). This implies that the Zr53Cu22Ni9Al8Ta8 may have the better thermal stability than the others in the Zr53Cu30-xNi9Al8Tax amorphous alloy system. Microstructure analysis, The XRD patterns of the BMGC rods with 3 mm in diameter demonstrate the amorphous matrix phase with a broadened and diffused humps in the 2θ range of 30°- 50° for all of these Zr53Cu30-xNi9Al8Tax (x =0,2, 4, 6, 8) alloys. No apparent crystalline peak is detected except the high intensity crystalline peaks from the BCC-structured Ta-rich particles when the addition of Ta increases ton 4 at%. The metallographic examination by SEM also revealed that only small amount of Ta-rich particles with size of submicron meter occurs at the Zr53Cu28Ni9Al8Ta2 amorphous alloy. When increases the Ta content more than 2 at%, the volume fraction of these Ta-rich particles increases with Ta addition clearly. In parallel, many Ta-rich particles with size around 10-30 ?m can be observed in the amorphous matrix. the TEM observation also revealed that lots of nano-sized precipitates in the range of 20-80nm embedded in the amorphous matrix for the as-cast Zr53Cu22Ni9Al8Ta8 BMGC rod with diameter of 3mm, these nano-size precipitates were also confirmed to be a BCC structure Ta-rich phase with lattice constant about 0.3332 nm by the nano beam diffraction. Mechanical properties analysis, The result of hardness test for these Zr53Cu30-xNi9Al8Tax amorphous alloys reveals that the macro hardness of these BMGCs does not change much by the addition of Ta, they all have hardness around 570-590 in Hv. In addition, the result of compression test exhibits a similar trend of yield strength as the hardness test, the yield strength of theses BMGCs all keeps at the similar level, around 1720-1760 MPa. On the other hand, the compression plastic strain presents a dramatically increasing trend with the Ta content and a plastic strain more than 30% can be obtained for the Zr53Cu22Ni9Al8Ta8 BMGC rod with 2mm in diameter. The fracture surface of the Zr53Cu22Ni9Al8Ta8 BMGC compressive specimen reveals the mixed morphologies, consisting of vein-like pattern and highly rough regions.Finally,the homogeneous dispersed Ta-rich particles were believed to act as a network in the glassy matrix, thus separate and restrict the highly localized shear-banding to isolated regions, avoiding catastrophic shearing-off through the whole sample and so as to significantly improve their plasticity.
Chiang, Chih-Wei, and 蔣智偉. "Study of Thermal and Mechanical Properties of Mg-based Bulk Metallic Glass Composite with Ex-situ Adding Different Metal Particles." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/xz5x3n.
Full text國立中央大學
機械工程學系
107
Mg-Zn-Ca bulk metallic glass(BMG) is a well-known candidate for bio-implant application due to its biocompatibility and uniform biodegradability which is suitable for suture anchor. Suture anchors are utilized as fixation devices in orthopedic surgery for repair of soft tissue injuries in the knee, shoulder, hip and ankle joints. However, the intrinsic brittleness of Mg-Zn-Ca BMG has to be significantly improved for commercial application. Accordingly, the concept of ex-situ adding ductile metallic particles was introduced to produce the Mg-Zn-Ca bulk metallic glass composite (BMGC) to meet the requirement of mechanical property for the application of suture anchor. In this Study, the Mg66Zn29Ca5 BMG was selected as the base alloy and added with different micro-sized spherical metal particles (Fe or porous Mo or TiZr-based metallic glass particles) to enhance its fracture toughness. The optima results occur at 3 mm Mg-Zn-Ca BMGC rods with 15 vol.% porous Mo particles, the fracture toughness increased upto 6.01 MPa‧m1/2 and remained the maximum compressive strength of 702 MPa. Due to the limitation of cooling rate, both Mg66Zn29Ca5 BMG and BMGC rods with 4 mm in diameter present only partial amorphous status. Therefore, a novel core-shell structure rod was developed, with pure Mg rod as core and Mg66Zn29Ca5 BMG and BMGC as shell to increase the cooling rate. As a result, the 1.25 mm thick shell area of 4 mm core-shell BMGCs rods (added with porous Mo particles) exhibits a fully amorphous matrix co-existing with Mo particles. The optimum performance occurs at the 4 mm core-shell rods with 15 vol.% porous Mo particle additions, the fracture toughness increased from 1.5 to 4.81 MPa∙m1/2 and remained the maximum compressive strength of 589 MPa.
Yi-ChenHuang and 黃一宸. "Utilizing Dual-Jet Atomization, Electroless Plating and Extrusion to Synthesize Mg-Cu-Gd/Cu Bulk Metallic Glass Composite and Study of its Mechanical Properties." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/zhnj56.
Full text國立成功大學
材料科學及工程學系
107
Mg-Cu-Gd metallic glass powders were synthesized by Rapid-Solidifying Atomization (RSA). The RSAed powder was fully amorphous shown by X-Ray Diffractometry (XRD), and the glass transition temperature (Tg), crystallization temperature (Tx) and incubation time were determined by Differential Scanning Calorimeter (DSC). The value of Trg and γ were criterion with the glass forming ability (GFA) of Mg-based metallic glass. The Mg-Cu-Gd/Cu ex-situ metallic glass powders is synthesized by electroless plating via different coating time. The bulk Mg-Cu-Gd/Cu ex-situ metallic glass composite is consolidated by hot pressing and backward extrusion. The micro structure is studied by Scanning Electron Microscope(SEM).
Kuo, Che-Nan, and 郭哲男. "Microstructural and mechanical response of CuZrAl-V/Co bulk metallic glass composites." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/03884400305583880630.
Full text國立中山大學
材料與光電科學學系研究所
101
CuZrAl and CuZrAl-V and CuZrAl-Co amorphous alloys were cast by rapid suction casting. Flow serrations and fracture morphologies of the base monolithic Cu50Zr43Al7 bulk metallic glasses (BMGs) are first studied by compression at a low strain rate and analyzed by an energy release perspective. Vanadium or cobalt from 3 to 10 at% is alloyed to the amorphous CuZrAl base alloys to induce precipitation in order to form the bulk metallic glass composites (BMGCs) with micro-sized second phase domains. The V-rich second phase formed during rapid cooling possesses a sharp dendrite shape, inducing stress concentration in the amorphous matrix and lowering the mechanical performance. The Co-rich phase, formed from liquid phase separation, possesses round morphology, lowering the stress concentration and raising or sustaining the mechanical properties. Meanwhile, 1 at% vanadium was alloyed to the amorphous CuZrAl base alloy to induce nano-sized B2-CuZr phase formation in order to improve compressive plasticity. It was found that the dilute vanadium addition induced B2-CuZr formation and, thus, improved plasticity of the CuZrAl alloy. The role of vanadium on plasticity improvement was discussed in the frame of shear band multiplication, energy dissipation during shear banding, twinning/phase transformation of the B2-CuZr particles during deformation, and deformation induced B2-CuZr particle coarsening. It was suggested that such transformation induced plasticity would show dependence on the B2 particle size, which in-turn depends on the inlet shape of the suction casting mold in use. It follows that the final task of this research was to examine the effects of the B2 size and distribution, resulted from the sharp or blunt inlet mold, on the mechanical plasticity in the CuZrAl and CuZrAlCo BMGs and BMGCs. It appears that the B2 particles need to be over some critical size to induce the martensitic/twinning transformation into the B19’ phase (sometimes with twins embedded). An analytic model, based on melt flow dynamics with or without vena contraction, is established, and the agreement between experiment and model is satisfactory.
Wu, Nan-yi, and 吳南儀. "Thermal and Mechanical Properties of Cu36Zr48Al8Ag8 Bulk Metallic Glass Microalloyed with Silicon." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/36642980667942551374.
Full text義守大學
材料科學與工程學系碩士班
98
(Cu36Zr48Al8Ag8)100-xSix (x = 0–1) amorphous alloy rod with (2~4)mm diameter were prepared by arc melting. The thermal properties and microstructure development during the annealing of amorphous alloys have been investigated by the combination of differential scanning calorimetry (DSC), scanning electron microscope (SEM) with energy dispersive spectrometer (EDS) capability, X-ray diffractometry (XRD),Vickers microhardness test and (TEM) techniques. The XRD result reveals that all these as-quenched, (Cu36Zr48Al8Ag8)100-xSix alloy exhibit broad diffraction patterns of amorphous phase. A clear Tg (glass transition temperature) and supercooled region (about 99 K) were revealed for all of those amorphous alloy rods. The crystallization temperature (Tx) and supercooled region (ΔTx) present a increasing trend with increasing Si content. TEM shows a homogenous and non-contrast pattern for the (Cu36Zr48Al8Ag8)100-xSix rods sample. The microhardness of CuZr base also increases with increasing Si content. The CuZr alloys exhibit highcompressive fracture strength of 1504–2070MPa with plastic strain of 0.1–3.0%。
Li, I.-sui, and 李易遂. "Thermal and Mechanical Properties of Cu42Zr42Al8Ag8 Bulk Metallic Glass Microalloyed With Silicon." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/23454914583232508712.
Full text義守大學
材料科學與工程學系碩士班
97
In recent years, The Zr-Cu-Al-Ag alloy system is expected to have higher GFA and higher stabilization of supercooled liquid. Jang et al. has reported that adding silicon could effectively increase the activation energy of crystallization as well as increasing the incubation time for the Zr-base amorphous alloys. Therefore, the high GFA (glass forming ability) Cu42Zr42Al8Ag8 amorphous alloy is selected as the base alloy to investigate the effect of microalloying with Si. The (Cu42Zr42Al8Ag8)100-xSix amorphous alloy rods, x =0 to 1, with 2~4 mm in diameter were prepared by Cu-mold drop casting method. The glass forming ability, thermal properties and microstructure evolution was studied by differential scanning calorimetry (DSC), and X-ray diffractometry (XRD). The XRD result reveals that these as-quenched (Cu42Zr42Al8Ag8)100-xSix alloy rods exhibit a broaden diffraction pattern of amorphous phase. The crystallization temperature and GFA (glass forming ability) of (Cu42Zr42Al8Ag8)100-xSix alloys increase with the silicon additions. In addition, both of the activation energy of crystallization and the incubation time of isothermal annealing for these (Cu42Zr42Al8Ag8)100-xSix alloys indicates that the (Cu42Zr42Al8Ag8)99.25Si0.75 alloy posses the best thermal stability among the (Cu42Zr42Al8Ag8)100-xSix alloy system. The Cu42Zr42Al8Ag8 alloy promoted the hardness with increasing Si content. the compression fracture strength and plastic strain can be reached about 2000 MPa and 3 % for the 1 at%Si and 0.5 at% amorphous alloy. Fracture occurs along the maximum shear stress plane, which is inclined at 45° to the direction of compressive loading,it have max stress for shear stress. Many shear bands can be observed on the side surfaces near the fracture area for the good plasticity.
Chang, Yung-Shang, and 張詠尚. "Ti particles reinforced Magnesium Based Metallic Glass Composites Synthesis and Mechanical Properties." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/63943250884642002799.
Full text義守大學
材料科學與工程學系碩士班
98
We have successfully synthesized the Ti particles reinforced Mg58Cu28.5Gd11Ag2.5 metallic glass composites (BMGCs) rods with a diameter of 2 ~ 4 mm by injection casting method in an Ar atmosphere. The glass forming ability (GFA) and the mechanical properties of these Mg-based BMGCs have been systematically investigated as a function of Vf of Ti particles. The results show that the compressive ductility increases with the volume fraction of Ti particles. A drastically improvement of compressive plastic strain and reaches up to 24% occurs at the Mg-base BMGC with 40 vol% Ti particles. In parallel, multiple-shear bands were revealed on the sample surface after compression test. This suggests that these dispersed Ti particles can highly absorb the energy of shear banding and branch the primary shear band into multiple shear bands, thus decrease the stress concentration for further propagation of shear band and so as to significantly enhance plasticity. Additionally, the yield strength can be kept at 800 MPa as increasing the addition of Ti particles to 40 vol.%. This was found presumably due to the good bonding of interface between the Ti particle and amorphous matrix.
Ciou, Jia-yu, and 邱家宇. "Microstructure and Mechanical Properties of Mg58Cu28.5Gd11Ag2.5 Metallic Glass Composites with Porous Mo Particles." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/94647261116157577259.
Full text義守大學
材料科學與工程學系碩士班
96
We present a porous ductile Mo particles reinforced Mg-based metallic glass composite, exhibiting superior mechanical performance with up to 10% compressive strain and 1100 MPa stress at room temperature. For a given amount of particles, the porous particles will generate more interfaces between the reinforcements and matrix and, thus, can confine lots of microsized compartments of the Mg based glassy phase within the porous particles. This promotes the deformation to distribute more uniformly across the specimens, improving the ductility. The toughness of Mg58Cu28.5Gd11Ag2.5 metallic glass which measured by the indentation method increases with porous Mo content. The KIC value of the metallic glass composite can reach to 25 MPa√m when the Mo content increases to 25 vol.%. We suggest that porous ductile particles might preferably be used to toughen amorphous materials with stubborn brittleness.
Chen, Hai-ming, and 陳海明. "Glass Forming Ability and Mechanical Properties of Mg-Cu-Ag-Gd Bulk Metallic Glasses." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/62716040590567227164.
Full text國立中山大學
材料科學研究所
94
The thermal and mechanical properties of the Mg-based bulk metallic glasses are reported in this thesis. The original ingots were prepared by arc melting and induction melting. The thermal and mechanical properties of the Mg-based bulk metallic glasses are reported in this thesis. The original ingots were prepared by arc melting and induction melting. The Mg65Cu25Gd10 and Mg65Cu15Ag10Gd10 bulk metallic glasses with different diameters from 3 to 6 mm were successfully fabricated by conventional copper mold casting in an inert atmosphere. The Mg65Cu25Gd10 bulk metallic glass shows the high glass forming ability and good thermal stability. However, the addition of Ag in the Mg65Cu15Ag10Gd10 alloy degrades the thermal stability. Based on the DSC results, the supercooled liquid region
Pradana, Yanuar Rohmat Aji, and 羅彥達. "Study on the Mechanical and Corrosion Properties of the Partial Crystallized Zr54Al17Co29 Bulk Metallic Glass." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/57146888183270013566.
Full text國立中央大學
機械工程學系
104
Development of metallic materials is recently essential for biomedical application. Therefore, Zr-based bulk metallic glasses become favorable due to their attractive properties. Zr-Al-Co BMGs, as low-toxic material, having less possibility to harm the human body compared with other Cu-, Ni-, and Be-containing Zr-based BMGs, however, most of them show the limited ductility. The structural modification through partial crystallization on Zr54Al17Co29 BMG was obtained by isothermal annealing and the correlation with the mechanical and corrosion resistance have been investigated. Zr54Al17Co29 BMG rod with diameter of 2, 3, and 4 mm was successfully fabricated by arc melting and suction casting, afterwards, the amorphous properties were examined by XRD, SEM, and DSC. A single broad peak of XRD pattern, good chemical homogeneity, and the information of Tg, Tx, and ∆Tx (742, 794, and 52 K) were obtained from the analyses, indicating the sample was fully amorphous. By Kissinger plots, activation energies of crystallization for the first and second exothermic peak are determined to be 233 and 253 kJ mol-1. The isothermal annealing was conducted at the temperature within SCL region for different times that was determined by JMA isothermal analysis in order to variate sample crystallinities. TEM analysis reveals that ZrCo2Al crystal phase with size of 10 nm is observed from sample with 40.1% crystallinity. Mechanical properties of as-cast and partially crystallized samples containing 6.6; 14.5; 19.8; 25.5; 31.5; 36.4; and 40.1% crystallinities were studied by hardness and compression test. The results reveal that the hardness slightly increases with increasing the crystallinity, in range 540 ± 5 to 575 ± 5 Hv. However, the results of compression test show a different trend, yield strength and plastic strain are significantly improved when the sample reaches 6.6% crystallinity. Afterwards, the deteriorating effect of excess nanocrystal contents for the sample with higher crystallinity on the plastic strain was observed while yield strength remains constant. The sample containing 6.6% crystallinity shows the remarkable improvement of yield strength and plastic strain (2160 ± 110 MPa and 4.7 ± 0.2%), higher than the as-cast counterparts (2130 ± 75 MPa and 2.2 ± 1.6%). This improvement is attributed to the optimum nanocrystal content to restrict the shear bands propagation accompanied without any free volume reduction effect due to short annealing time. In addition, the fracture surface morphology of the sample with 6.6% crystallinity shows the mixed vein and river-like pattern, indicating strong interaction between shear bands and nanocrystals. Moreover, the as-cast and partially crystallized with 6.6% crystallinity samples show similar corrosion resistance and comparable with the 316 stainless steel by potentiodynamic polarization test. In summary, the Zr54Al17Co29 BMG with 6.6% crystallinity is believed as promising candidate for biomaterial applications.
Wu, Ya-Hsuan, and 吳亞璇. "Microstructure and Mechanical Properties of Liquid-phase-separated Zr-Ti-Cu-Nd Metallic Glass Composites." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/u94j98.
Full text國立臺灣大學
材料科學與工程學研究所
105
The Zr-Ti-Cu-Nd metallic glass ribbons with different amounts of Nd were fabricated by melt spinning. The ribbons were used to examine the microstructure and the mechanical properties. Since the positive mixing enthalpy between some elements, the phenomenon of liquid phase separation occurred and formed the metallic glass composites. Specifically, Nd separated from the Zr/Ti based metallic glass matrix and precipitated with Cu during the cooling process. In addition to Nd, the distribution of Cu was nonuniform because its mixing enthalpies with Nd and Zr/Ti were different. This was verified by energy-dispersive X-ray spectroscopy. The images from scanning electron microscopy showed that the microstructure was inhomogeneous across the thickness of the ribbon because of the different cooling rates. By examining the hardness, the ribbons were softer in the middle and harder on both surface sides because of the different distributions of precipitates. Using modulus mapping, the matrix showed the higher storage modulus and the precipitates showed the higher loss modulus in contract. The micropillar compression tests showed that the samples with more additive Nd contents presented larger plasticity which proved that the soft second phase in these composites was effective in plasticity enhancements.
Tseng, Chien-yao, and 曾建堯. "Synthesis and Properties Characterization of Iron Based Bulk Metallic Glass Composites with Ex-situ Tantalum Particles Dispersed Reinforcement." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/48785511574013219606.
Full text國立中央大學
材料科學與工程研究所
100
Due to the widely used of steel, Fe-based amorphous alloy, also known as amorphous steel, is being studied by many researchers. Comparing to Zr- and Pt-based amorphous alloys, the cost of Fe-based amorphous alloy is the most attracting characteristic, especially. Unfortunately, the lack of plasticity of such material limits its application severely. According to such situation, the ex-situ method is applied in this study where the Fe-based bulk metallic glass composites Fe77Mo5P9C7.5B1.5 was casted with different amount of ex-situ Ta particles addition as the reinforcing phase by tilt mold casting in argon atmosphere. These composite alloys were examined by applying compression loading and indentation so the corresponding mechanical properties were then acquired. The BMG composite with 13vol. % Ta particles possessing a fracture toughness of 139.4 MPa m0.5 can sustain a plastic strain to failure of 6.43% at compressive fracture strength as high as 3.18GPa where the angle between the compressive shear plane and loading axis is ~38.8° while zero plasticity without reinforcing phase particles being distributed. Depending on SEM observation and analysis, the heterogeneous phase particles dispersing in the matrix decreased own sizes after casting which hold better performance to stop the propagation of micro-cracks. However, the formation of tantalum carbide which processing larger hardness and elastic modulus reduced the fraction of ductile Ta phase and thus harmed the plasticity eventually. The results of this study tended to solve the problems of fast propagation of shear bands and micro-cracks in Fe-based BMGs further providing an effective solution to improve the plasticity.
Zhang, Yong, Irene Mei Ling Lee, Hao Tan, Qin Jing, and Yi Li. "Effect of Microstructure Changes on Mechanical Properties of La₆₆Al₁₄(Cu, Ni)₂₀ Amorphous and Crystalline Alloys." 2003. http://hdl.handle.net/1721.1/3824.
Full textSingapore-MIT Alliance (SMA)
Wei-TingLiou and 劉威廷. "Study of the properties of the Mg-Cu-Gd/Ag Bulk Metallic Glass Composites Synthesized by Rapid-Solidifying Atomization and Electroless Plating." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/60965571915767918089.
Full textChiou, Mau-Sheng, and 邱茂盛. "Effects of Initial Welding Temperatures on the Microstructure Evolution and Mechanical Properties of Nd:YAG Laser Welded (Zr53Cu30Ni9Al8)99.5Si0.5 Bulk Metallic Glass." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/04347030558294338484.
Full text義守大學
材料科學與工程學系碩士班
98
To generate a rapid welding thermal cycle and eliminate the crystallization for a (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass (BMG) weld, the Nd:YAG single pulse laser welding process was used in this study.The test samples were welded with different parameters combinations, under the room temperature or lower initial temperatures. As the test accomplished, microstructure evolution in heat affected zone (HAZ) or weld fusion zone (WFZ) was studied by using OM, TEM, SEM, EDS or XRD.The results show that at room temperature with the single-pulsed laser welding approach, crystallization in the HAZ seems unavoidable while the WFZ appears crystal-free. As the initial temperature was decreased to 0oC, both WFZ and HAZ show the amorphous state. The crystallization phase was identified as Zr2Cu with crystal size from 50nm to 100nm.Furthermore, it was observed when the precipitates were greater in the HAZ, cracks were more likely to form, and hardness in the HAZ was decreased.Finally, using the optimal single pulse welding parameters, this study develops an innovated laser welding process to complete a continuous weld. Initially, this process finishes the odd numbers of single pulse weld. After that, every odd number weld was joined by the even numbers of single pulse weld. This approach can eliminate the pre-heat or post-heat effects on the weld which suppress the formation of the crystallization in the welds.Based on the above results, the effects of Nd:YAG laser welding parameters on the microstructure evolution and mechanical property for (Zr53Cu30Ni9Al8)Si0.5 BMG was established. Moreover, this results would be helpful to (Zr53Cu30Ni9Al8)Si0.5 BMG for the further applications.
Jiang, Yan-Long, and 江彥龍. "The evolution of ZrCu precipitation and mechanical properties affected by the trace addition of Ta particles in Zr-Cu-Al-Co bulk metallic glass." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/79029598822228047589.
Full text國立中央大學
材料科學與工程研究所
105
In some Zr-based bulk metallic glass composites (BMGCs), the ZrCu B2 phase can be precipitated from the matrix. When the ZrCu B2 phase subjected to the stress from the shear banding, it will absorb the energy of shear band and transform into ZrCu B19' phase, and so as to improve the plasticity of Zr-based BMG. However, the particle size and distribution of ZrCu B2 phase in Zr48Cu47.5Al4Co0.5 BMG cannot be well controlled in general casting. Large agglomerated and inhomogeneous distributed ZrCu B2 phase were usually found in the Zr48Cu47.5Al4Co0.5 BMG samples. Therefore, the concept of inoculation in conventional solidification process is applied in this study. The Ta particles (size of 5–30 µm) with 0 ~ 1.0 vol.% were added into Zr48Cu47.5Al4Co0.5 BMG matrix as the inoculant. By using the ultrahigh melting point of tantalum and immiscible with Zr-base substrate, the Ta particles can be uniformly dispersed in the Zr-based alloy melt as the nucleation sites for precipitating ZrCu B2 phase, and form a homogeneously distributed ZrCu B2 phase in the matrix of Zr48Cu47.5Al4Co0.5 BMG. Then, the different cooling rates of solidification process are further used to control the particle size of ZrCu B2 phase. Based on the results of XRD analysis, Zr48Cu47.5Al4Co0.5 alloy rods with 0 ~ 0.75 vol.% Ta particle additions made by the copper mold at the temperature of -30°C present amorphous structure co-existing with ZrCu B2 phase. However, when the temperature of copper mold increases to higher than -20 °C, the sample with 0.75 vol.% Ta particle additions will be totally crystallized. After adding Ta particles, the precipitates of ZrCu B2 phase in the Zr48Cu47.5Al4Co0.5 alloy matrix exhibit more even distribution and round shape. But when decrease the cooling rate of solidification, the large amount of ZrCu B2 precipitates will agglomerate and form a large particle. According to the results of DSC analysis, with increasing the amount of Ta particles and decreasing the cooling rate of solidification, the enthalpy value of crystallization exothermic peak decreases, which means that the volume fraction of amorphous matrix decreased and the precipitate of ZrCu B2 phase increased. The results of compression test reveal that the sample of Zr48Cu47.5Al4Co0.5 added with 0.75 vol.% Ta particle performs the highest mechanical properties, 1750 MPa yield stress, 1890 MPa fracture stress, and 14 % plastic strain. This is 6.5 % improvement of plastic strain in comparison with its base alloy.
Chen-AnHsu and 許鎮安. "Study of the Processing and Mechanical Properties of the Mg-Cu-Gd Bulk Metallic Glass Synthesized by Rapid-Solidifying Atomization and consolidated by Powder Metallurgy." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/16275643900794641984.
Full textBracchi, Alberto. "Structural and Magnetic Properties of the Glass-Forming Alloy Nd60Fe30Al10." Doctoral thesis, 2004. http://hdl.handle.net/11858/00-1735-0000-000D-F262-0.
Full textPalla, Murali *. "Multi-Scale Approaches For Understanding Deformation And Fracture Mechanisms In Amorphous Alloys." Thesis, 2007. http://hdl.handle.net/2005/650.
Full text