Journal articles on the topic 'Metallic melts'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Metallic melts.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Griesche, Axel, M. P. Macht, and Günter Frohberg. "Diffusion in Metallic Melts." Defect and Diffusion Forum 266 (September 2007): 101–8. http://dx.doi.org/10.4028/www.scientific.net/ddf.266.101.
Full textProschmann, J., Th Strangfeld, and H. Bach. "Separation in metallic melts." Journal of Crystal Growth 128, no. 1-4 (1993): 1172–75. http://dx.doi.org/10.1016/s0022-0248(07)80118-7.
Full textRätzke, Klaus, and Franz Faupel. "Diffusion in metallic glasses and undercooled metallic melts." Zeitschrift für Metallkunde 95, no. 10 (2004): 956–60. http://dx.doi.org/10.3139/146.018046.
Full textRätzke, Klaus, and Franz Faupel. "Diffusion in metallic glasses and undercooled metallic melts." International Journal of Materials Research 95, no. 10 (2004): 956–60. http://dx.doi.org/10.1515/ijmr-2004-0175.
Full textMeyer, A., H. Franz, J. Wuttke, B. Sepiol, O. G. Randl, and Winfried Petry. "Dynamics of Metastable Metallic Melts." Defect and Diffusion Forum 143-147 (January 1997): 821–24. http://dx.doi.org/10.4028/www.scientific.net/ddf.143-147.821.
Full textRamachandrarao, P. "Studies on undercooled metallic melts." Progress in Materials Science 42, no. 1-4 (1997): 301–9. http://dx.doi.org/10.1016/s0079-6425(97)00020-0.
Full textGriffin, William L., Sarah E. M. Gain, Martin Saunders, et al. "Parageneses of TiB2 in corundum xenoliths from Mt. Carmel, Israel: Siderophile behavior of boron under reducing conditions." American Mineralogist 105, no. 11 (2020): 1609–21. http://dx.doi.org/10.2138/am-2020-7375.
Full textDashevskii, V. Ya, and K. V. Grigorovich. "Oxygen solubility in binary metallic melts." Russian Metallurgy (Metally) 2007, no. 8 (2007): 694–701. http://dx.doi.org/10.1134/s0036029507080113.
Full textTsepelev, Vladimir, Viktor Konashkov, Vladimir Vjuchin, Arkadi Povodator, and Ann Podolskaja. "Developing Optimal Time-Temperature Conditions for Steel and Alloy Melting." Advanced Materials Research 746 (August 2013): 484–88. http://dx.doi.org/10.4028/www.scientific.net/amr.746.484.
Full textJiang, Ailong, Yujuan Li, Qihua Wu, et al. "Structure Models of Metal Melts: A Review." Materials 17, no. 23 (2024): 5882. https://doi.org/10.3390/ma17235882.
Full textDeev, V. B., I. F. Selyanin, and S. A. Tsetsorina. "Refining the cluster model of metallic melts." Steel in Translation 38, no. 8 (2008): 623–24. http://dx.doi.org/10.3103/s0967091208080093.
Full textHerlach, Dieter. "Non-Equilibrium Solidification of Undercooled Metallic Melts." Metals 4, no. 2 (2014): 196–234. http://dx.doi.org/10.3390/met4020196.
Full textHerlach, Dieter M. "Non-Equilibrium Solidification of Undercooled Metallic Melts." Key Engineering Materials 81-83 (January 1993): 83–94. http://dx.doi.org/10.4028/www.scientific.net/kem.81-83.83.
Full textFaupel, Franz, Werner Frank, Michael-Peter Macht, et al. "Diffusion in metallic glasses and supercooled melts." Reviews of Modern Physics 75, no. 1 (2003): 237–80. http://dx.doi.org/10.1103/revmodphys.75.237.
Full textMontanari, R. "Real-time XRD investigations on metallic melts." International Journal of Materials and Product Technology 20, no. 5/6 (2004): 452. http://dx.doi.org/10.1504/ijmpt.2004.004781.
Full textBattezzati, Livio, Alberto Castellero, and Paola Rizzi. "On the glass transition in metallic melts." Journal of Non-Crystalline Solids 353, no. 32-40 (2007): 3318–26. http://dx.doi.org/10.1016/j.jnoncrysol.2007.05.121.
Full textWang, Xidong, Hong Bao, and Wenchao Li. "Estimation of viscosity of ternary-metallic melts." Metallurgical and Materials Transactions A 33, no. 10 (2002): 3201–4. http://dx.doi.org/10.1007/s11661-002-0305-0.
Full textBorodina, T. I., G. E. Val'yano, L. P. Krishchenko, S. V. Onufriev, E. P. Pakhomov, and V. A. Petukhov. "Interaction between metallic melts and zirconia concrete." Refractories 37, no. 11 (1996): 391–95. http://dx.doi.org/10.1007/bf02238705.
Full textHerlach, D. M., and B. Feuerbacher. "Non-equilibrium solidification of undercooled metallic melts." Advances in Space Research 11, no. 7 (1991): 255–62. http://dx.doi.org/10.1016/0273-1177(91)90293-s.
Full textDubois, Jean-Marie, Frédéric Montoya, and Christophe Back. "Icosahedral order in glass-forming metallic melts." Materials Science and Engineering: A 178, no. 1-2 (1994): 285–91. http://dx.doi.org/10.1016/0921-5093(94)90555-x.
Full textBian, XiuFang, JingYu Qin, and XuBo Qin. "Structural relaxation of metallic glass forming melts." Science China Physics, Mechanics and Astronomy 53, no. 3 (2010): 405–8. http://dx.doi.org/10.1007/s11433-010-0143-9.
Full textSeeger, Alfred, Andreas Siegle, and Hermann Stoll. "Positron Annihilation in Stable and Supercooled Metallic Melts." International Journal of Materials Research 92, no. 7 (2001): 632–44. http://dx.doi.org/10.1515/ijmr-2001-0124.
Full textChen, Wei Min, Xiong Yang, and Li Jun Zhang. "Phenomenological Investigations on Diffusion Kinetics in Multicomponent Metallic Melts." Diffusion Foundations 15 (February 2018): 23–50. http://dx.doi.org/10.4028/www.scientific.net/df.15.23.
Full textZheng, Hai Jiao, Qi Jing Sun, Xi Zhao, and Li Na Hu. "Investigation of Viscosity Measurements of Molten Fe-Si-B-Nb Alloys." Materials Science Forum 849 (March 2016): 45–51. http://dx.doi.org/10.4028/www.scientific.net/msf.849.45.
Full textWu, Zhizhou, Yunfei Mo, Lin Lang, et al. "Topologically close-packed characteristic of amorphous tantalum." Physical Chemistry Chemical Physics 20, no. 44 (2018): 28088–104. http://dx.doi.org/10.1039/c8cp05897k.
Full textTyagunov, A. G., E. E. Baryshev, G. V. Tyagunov, V. S. Mushnikov, and V. S. Tsepelev. "Polytherms of the physical properties of metallic melts." Steel in Translation 47, no. 4 (2017): 250–56. http://dx.doi.org/10.3103/s096709121704012x.
Full textKato, Hidemi, and Takeshi Wada. "Bicontinuous Porous Metals by Dealloying in Metallic Melts." Materia Japan 55, no. 11 (2016): 519–27. http://dx.doi.org/10.2320/materia.55.519.
Full textMiyamoto, Susumu, Masatoshi Watanabe, Takayuki Narushima, and Yasutaka Iguchi. "Deoxidation of NiTi Alloy Melts Using Metallic Barium." MATERIALS TRANSACTIONS 49, no. 2 (2008): 289–93. http://dx.doi.org/10.2320/matertrans.mra2007219.
Full textMiyamoto, Susumu, Masatoshi Watanabe, Takayuki Narushima, and Yasutaka Iguchi. "Deoxidation of NiTi Alloy Melts Using Metallic Barium." MATERIALS TRANSACTIONS 49, no. 12 (2008): 2922. http://dx.doi.org/10.2320/matertrans.e2008003.
Full textNaidich, Yu V., V. S. Zhuravlev, N. I. Frumina, Yu B. Paderno, V. P. Krasovskii, and V. B. Filippov. "Contact interaction of lanthanum hexaboride with metallic melts." Soviet Powder Metallurgy and Metal Ceramics 31, no. 4 (1992): 345–48. http://dx.doi.org/10.1007/bf00796289.
Full textZhukov,, A. A., and S. I. Popel,. "Properties of Interface Boundaries in Segregating Metallic Melts." High Temperature Materials and Processes 14, no. 4 (1995): 255–62. http://dx.doi.org/10.1515/htmp.1995.14.4.255.
Full textShang Ji-Xiang, Zhao Yun-Bo, and Hu Li-Na. "Abnormal viscosity changes in high-temperature metallic melts." Acta Physica Sinica 67, no. 10 (2018): 106402. http://dx.doi.org/10.7498/aps.67.20172721.
Full textTyagunov, A. G., E. E. Baryshev, G. V. Tyagunov, V. S. Mushnikov, and V. S. Tsepelev. "SYSTEMATIZATION OF PHYSICAL PROPERTIES POLYTHERMS OF METALLIC MELTS." Izvestiya Visshikh Uchebnykh Zavedenii. Chernaya Metallurgiya = Izvestiya. Ferrous Metallurgy 60, no. 4 (2017): 310–17. http://dx.doi.org/10.17073/0368-0797-2017-4-310-317.
Full textLou, H., X. Wang, Q. Cao, et al. "Negative expansions of interatomic distances in metallic melts." Proceedings of the National Academy of Sciences 110, no. 25 (2013): 10068–72. http://dx.doi.org/10.1073/pnas.1307967110.
Full textStachel, Dörte, Frauke Zangenberg, and Thomas E. Müller. "Chemical behaviour of metallic inclusions in glass melts." Journal of Physics and Chemistry of Solids 68, no. 5-6 (2007): 1017–20. http://dx.doi.org/10.1016/j.jpcs.2007.02.051.
Full textKim, Yong Jin. "Containerless processing of the undercooled metallic melts — overview." Metals and Materials 1, no. 2 (1995): 85–98. http://dx.doi.org/10.1007/bf03025919.
Full textEgry, I., G. Jacobs, E. Schwartz, and J. Szekely. "Surface tension measurements of metallic melts under microgravity." International Journal of Thermophysics 17, no. 5 (1996): 1181–89. http://dx.doi.org/10.1007/bf01442005.
Full textChemezov, Denis Alexandrovich. "CONVECTIVE HEAT TRANSFER WHEN COOLING OF METALLIC MELTS." Theoretical & Applied Science 53, no. 09 (2017): 1–7. http://dx.doi.org/10.15863/tas.2017.09.53.1.
Full textGarcía-Moreno, F., B. Siegel, K. Heim, A. J. Meagher, and J. Banhart. "Sub-mm sized bubbles injected into metallic melts." Colloids and Surfaces A: Physicochemical and Engineering Aspects 473 (May 2015): 60–67. http://dx.doi.org/10.1016/j.colsurfa.2014.12.038.
Full textMutti, Suhanna, and Alan R. Hirsch. "82 Ice Melts Phantogeusia: Cold Inhibition of Gustatory Hallucinations." CNS Spectrums 24, no. 1 (2019): 216–17. http://dx.doi.org/10.1017/s1092852919000610.
Full textMakarov, A. S., R. A. Konchakov, G. V. Afonin, J. C. Qiao, N. P. Kobelev, and V. A. Khonik. "Excess Entropy of Metallic Glasses and Its Relation to the Glass-Forming Ability of Maternal Melts." JETP Letters 120, no. 10 (2024): 759–65. https://doi.org/10.1134/s0021364024602975.
Full textZhang, Xiang, Bing Li Sun, Wei Na Feng, Qin Xing Zhang, and Qian Li. "Wetting Behavior of Polymer Melts on Bulk Metallic Glasses." Applied Mechanics and Materials 404 (September 2013): 25–31. http://dx.doi.org/10.4028/www.scientific.net/amm.404.25.
Full textZhang, Ke-lin, Kai-ming Wu, Oleg Isayev, et al. "Effects of different deoxidization methods on high-temperature physical properties of high-strength low-alloy steels." High Temperature Materials and Processes 39, no. 1 (2020): 157–63. http://dx.doi.org/10.1515/htmp-2020-0050.
Full textLi, Hui, Lei Jia, Jing Wang, et al. "Electrochemical reduction mechanism of several oxides of refractory metals in FClNaKmelts." High Temperature Materials and Processes 39, no. 1 (2020): 1–9. http://dx.doi.org/10.1515/htmp-2020-0008.
Full textVatolin, N. A., A. M. Amdur, V. V. Pavlov, and S. A. Fedorov. "Mechanism of Flotation of Metallic Droplets in Oxide Melts." Russian Metallurgy (Metally) 2019, no. 2 (2019): 97–100. http://dx.doi.org/10.1134/s0036029519020289.
Full textSCHRADER, Devin L., Dante S. LAURETTA, Harold C. CONNOLLY jr., et al. "Sulfide-rich metallic impact melts from chondritic parent bodies." Meteoritics & Planetary Science 45, no. 5 (2010): 743–58. http://dx.doi.org/10.1111/j.1945-5100.2010.01053.x.
Full textNotthoff, C., H. Franz, M. Hanfland, et al. "Energy dispersive X-ray diffraction on undercooled metallic melts." Journal of Non-Crystalline Solids 250-252 (August 1999): 632–36. http://dx.doi.org/10.1016/s0022-3093(99)00287-2.
Full textZhao, Ding-guo, Pei-min Guo, and Pei Zhao. "Activity Model of Fe-Si-B Ternary Metallic Melts." Journal of Iron and Steel Research International 18, no. 6 (2011): 16–21. http://dx.doi.org/10.1016/s1006-706x(11)60071-x.
Full textLi, Mingjun, Kosuke Nagashio, and Kazuhiko Kuribayashi. "Containerless solidification of undercooled oxide and metallic eutectic melts." Materials Science and Engineering: A 375-377 (July 2004): 528–33. http://dx.doi.org/10.1016/j.msea.2003.10.132.
Full textXu, J. F., F. Liu, D. Zhang, and Z. Y. Jian. "An analytical model for solidification of undercooled metallic melts." Journal of Thermal Analysis and Calorimetry 119, no. 1 (2014): 273–80. http://dx.doi.org/10.1007/s10973-014-4089-4.
Full text