To see the other types of publications on this topic, follow the link: Metalloenzimi.

Journal articles on the topic 'Metalloenzimi'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Metalloenzimi.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Höcker, Birte. "A metalloenzyme reloaded." Nature Chemical Biology 8, no. 3 (2012): 224–25. http://dx.doi.org/10.1038/nchembio.800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

You, Jing-Song, Xiao-Qi Yu, Xiao-Yu Su, et al. "Hydrolytic metalloenzyme models." Journal of Molecular Catalysis A: Chemical 202, no. 1-2 (2003): 17–22. http://dx.doi.org/10.1016/s1381-1169(03)00199-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dong, Steven D., and Ronald Breslow. "Bifunctional cyclodextrin metalloenzyme mimics." Tetrahedron Letters 39, no. 51 (1998): 9343–46. http://dx.doi.org/10.1016/s0040-4039(98)02160-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hadianawala, Murtuza, and Bhaskar Datta. "Design and development of sulfonylurea derivatives as zinc metalloenzyme modulators." RSC Advances 6, no. 11 (2016): 8923–29. http://dx.doi.org/10.1039/c5ra27341b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kwon, Hanna, Jaswir Basran, Juliette M. Devos, et al. "Visualizing the protons in a metalloenzyme electron proton transfer pathway." Proceedings of the National Academy of Sciences 117, no. 12 (2020): 6484–90. http://dx.doi.org/10.1073/pnas.1918936117.

Full text
Abstract:
In redox metalloenzymes, the process of electron transfer often involves the concerted movement of a proton. These processes are referred to as proton-coupled electron transfer, and they underpin a wide variety of biological processes, including respiration, energy conversion, photosynthesis, and metalloenzyme catalysis. The mechanisms of proton delivery are incompletely understood, in part due to an absence of information on exact proton locations and hydrogen bonding structures in a bona fide metalloenzyme proton pathway. Here, we present a 2.1-Å neutron crystal structure of the complex form
APA, Harvard, Vancouver, ISO, and other styles
6

Valdez, Crystal E., Amanda Morgenstern, Mark E. Eberhart, and Anastassia N. Alexandrova. "Predictive methods for computational metalloenzyme redesign – a test case with carboxypeptidase A." Physical Chemistry Chemical Physics 18, no. 46 (2016): 31744–56. http://dx.doi.org/10.1039/c6cp02247b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Doerr, Allison. "Metalloenzyme structures in a shot." Nature Methods 10, no. 4 (2013): 287. http://dx.doi.org/10.1038/nmeth.2428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lancaster, Kyle M. "Revving up an artificial metalloenzyme." Science 361, no. 6407 (2018): 1071–72. http://dx.doi.org/10.1126/science.aau7754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stoecker, Walter, Russell L. Wolz, Robert Zwilling, Daniel J. Strydom, and David S. Auld. "Astacus protease, a zinc metalloenzyme." Biochemistry 27, no. 14 (1988): 5026–32. http://dx.doi.org/10.1021/bi00414a012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vallee, B. L. "Zinc metalloenzyme structure and function." Journal of Inorganic Biochemistry 36, no. 3-4 (1989): 299. http://dx.doi.org/10.1016/0162-0134(89)84446-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Marchal, Iris. "Microbial metalloenzyme boosts cellulose breakdown." Nature Biotechnology 43, no. 3 (2025): 301. https://doi.org/10.1038/s41587-025-02615-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Jackl, Moritz K., Hyeonglim Seo, Johannes Karges, Mark Kalaj, and Seth M. Cohen. "Salicylate metal-binding isosteres as fragments for metalloenzyme inhibition." Chemical Science 13, no. 7 (2022): 2128–36. http://dx.doi.org/10.1039/d1sc06011b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ehudin, Melanie A., Andrew W. Schaefer, Suzanne M. Adam, et al. "Influence of intramolecular secondary sphere hydrogen-bonding interactions on cytochrome c oxidase inspired low-spin heme–peroxo–copper complexes." Chemical Science 10, no. 10 (2019): 2893–905. http://dx.doi.org/10.1039/c8sc05165h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Li, Yinghao, Mingpan Cheng, Jingya Hao, Changhao Wang, Guoqing Jia, and Can Li. "Terpyridine–Cu(ii) targeting human telomeric DNA to produce highly stereospecific G-quadruplex DNA metalloenzyme." Chemical Science 6, no. 10 (2015): 5578–85. http://dx.doi.org/10.1039/c5sc01381j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Schneider, Camille R., and Hannah S. Shafaat. "An internal electron reservoir enhances catalytic CO2 reduction by a semisynthetic enzyme." Chemical Communications 52, no. 64 (2016): 9889–92. http://dx.doi.org/10.1039/c6cc03901d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Johnson, Heather C., Shaoguang Zhang, Anna Fryszkowska, et al. "Biocatalytic oxidation of alcohols using galactose oxidase and a manganese(iii) activator for the synthesis of islatravir." Organic & Biomolecular Chemistry 19, no. 7 (2021): 1620–25. http://dx.doi.org/10.1039/d0ob02395g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Smith, Meghan A., Sean H. Majer, Avery C. Vilbert, and Kyle M. Lancaster. "Controlling a burn: outer-sphere gating of hydroxylamine oxidation by a distal base in cytochrome P460." Chemical Science 10, no. 13 (2019): 3756–64. http://dx.doi.org/10.1039/c9sc00195f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Reed, Christopher J., Quan N. Lam, Evan N. Mirts, and Yi Lu. "Molecular understanding of heteronuclear active sites in heme–copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling." Chemical Society Reviews 50, no. 4 (2021): 2486–539. http://dx.doi.org/10.1039/d0cs01297a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Zubi, Yasmine S., Bingqing Liu, Yifan Gu, Dipankar Sahoo, and Jared C. Lewis. "Controlling the optical and catalytic properties of artificial metalloenzyme photocatalysts using chemogenetic engineering." Chemical Science 13, no. 5 (2022): 1459–68. http://dx.doi.org/10.1039/d1sc05792h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

TAGAKI, Waichiro, and Kenji OGINO. "Proteolytic Metalloenzyme Models in Micellar Systems." Journal of Japan Oil Chemists' Society 39, no. 10 (1990): 744–52. http://dx.doi.org/10.5650/jos1956.39.10_744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Mayer, Clemens, Dennis G. Gillingham, Thomas R. Ward, and Donald Hilvert. "An artificial metalloenzyme for olefin metathesis." Chemical Communications 47, no. 44 (2011): 12068. http://dx.doi.org/10.1039/c1cc15005g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bersellini, Manuela, and Gerard Roelfes. "A metal ion regulated artificial metalloenzyme." Dalton Transactions 46, no. 13 (2017): 4325–30. http://dx.doi.org/10.1039/c7dt00533d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Day, Joshua A., and Seth M. Cohen. "Investigating the Selectivity of Metalloenzyme Inhibitors." Journal of Medicinal Chemistry 56, no. 20 (2013): 7997–8007. http://dx.doi.org/10.1021/jm401053m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Funk, Michael A. "Itaconate brings metalloenzyme to a halt." Science 366, no. 6465 (2019): 583.13–585. http://dx.doi.org/10.1126/science.366.6465.583-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Armstrong, Richard N. "Mechanistic Diversity in a Metalloenzyme Superfamily†." Biochemistry 39, no. 45 (2000): 13625–32. http://dx.doi.org/10.1021/bi001814v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Koder, Ronald L., Bernard Everson, Lei Zhang, Jonathan Preston, and Emma Bjerkefeldt. "Optimizing Protein Dynamics in Metalloenzyme Design." Biophysical Journal 112, no. 3 (2017): 193a. http://dx.doi.org/10.1016/j.bpj.2016.11.1072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Haeggström, Jesper Z., Anders Wetterholm, Robert Shapiro, Bert L. Vallee, and Bengt Samuelsson. "Leukotriene A4 hydrolase: A zinc metalloenzyme." Biochemical and Biophysical Research Communications 172, no. 3 (1990): 965–70. http://dx.doi.org/10.1016/0006-291x(90)91540-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Grubmeyer, Charles, Marios Skiadopoulos, and Alan E. Senior. "l-Histidinol dehydrogenase, a Zn2+-metalloenzyme." Archives of Biochemistry and Biophysics 272, no. 2 (1989): 311–17. http://dx.doi.org/10.1016/0003-9861(89)90224-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Okamoto, Yasunori, and Thomas R. Ward. "Cross-Regulation of an Artificial Metalloenzyme." Angewandte Chemie 129, no. 34 (2017): 10290–94. http://dx.doi.org/10.1002/ange.201702181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Dong, Steven D., and Ronald Breslow. "ChemInform Abstract: Bifunctional Cyclodextrin Metalloenzyme Mimics." ChemInform 30, no. 10 (2010): no. http://dx.doi.org/10.1002/chin.199910229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Okamoto, Yasunori, and Thomas R. Ward. "Cross-Regulation of an Artificial Metalloenzyme." Angewandte Chemie International Edition 56, no. 34 (2017): 10156–60. http://dx.doi.org/10.1002/anie.201702181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Mafy, Noushaba Nusrat, Dorothea B. Hudson, and Emily L. Que. "Control of metalloenzyme activity using photopharmacophores." Coordination Chemistry Reviews 499 (January 2024): 215485. http://dx.doi.org/10.1016/j.ccr.2023.215485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Karges, Johannes, Ryjul W. Stokes, and Seth M. Cohen. "Photorelease of a metal-binding pharmacophore from a Ru(ii) polypyridine complex." Dalton Transactions 50, no. 8 (2021): 2757–65. http://dx.doi.org/10.1039/d0dt04290k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Zhang, Yaoyao, Weiying Wang, Wenqin Fu, et al. "Titanium(iv)-folded single-chain polymeric nanoparticles as artificial metalloenzyme for asymmetric sulfoxidation in water." Chemical Communications 54, no. 68 (2018): 9430–33. http://dx.doi.org/10.1039/c8cc05590d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lionetto, Maria Giulia. "Carbonic Anhydrase and Biomarker Research: New Insights." International Journal of Molecular Sciences 24, no. 11 (2023): 9687. http://dx.doi.org/10.3390/ijms24119687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Schneider, Camille R., Anastasia C. Manesis, Michael J. Stevenson, and Hannah S. Shafaat. "A photoactive semisynthetic metalloenzyme exhibits complete selectivity for CO2 reduction in water." Chemical Communications 54, no. 37 (2018): 4681–84. http://dx.doi.org/10.1039/c8cc01297k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Horch, Marius, Ana Filipa Pinto, Maria Andrea Mroginski, Miguel Teixeira, Peter Hildebrandt, and Ingo Zebger. "Metal-induced histidine deprotonation in biocatalysis? Experimental and theoretical insights into superoxide reductase." RSC Adv. 4, no. 96 (2014): 54091–95. http://dx.doi.org/10.1039/c4ra11976b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Cheng, Wenting, Jiehua Ma, Yongchen Zhang, et al. "Bio-inspired construction of a semi-artificial enzyme complex for detecting histone acetyltransferases activity." Analyst 145, no. 2 (2020): 613–18. http://dx.doi.org/10.1039/c9an01896d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Mus, Florence, Alexander B. Alleman, Natasha Pence, Lance C. Seefeldt, and John W. Peters. "Exploring the alternatives of biological nitrogen fixation." Metallomics 10, no. 4 (2018): 523–38. http://dx.doi.org/10.1039/c8mt00038g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Li, Yinghao, Changhao Wang, Jingya Hao, Mingpan Cheng, Guoqing Jia, and Can Li. "Higher-order human telomeric G-quadruplex DNA metalloenzyme catalyzed Diels–Alder reaction: an unexpected inversion of enantioselectivity modulated by K+ and NH4+ ions." Chemical Communications 51, no. 67 (2015): 13174–77. http://dx.doi.org/10.1039/c5cc05215g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Dick, Benjamin L., Ashay Patel, and Seth M. Cohen. "Effect of heterocycle content on metal binding isostere coordination." Chemical Science 11, no. 26 (2020): 6907–14. http://dx.doi.org/10.1039/d0sc02717k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Harty, Matthew L., Amar Nath Sharma, and Stephen L. Bearne. "Catalytic properties of the metal ion variants of mandelate racemase reveal alterations in the apparent electrophilicity of the metal cofactor." Metallomics 11, no. 3 (2019): 707–23. http://dx.doi.org/10.1039/c8mt00330k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

D’Alonzo, Daniele, Maria De Fenza, Vincenzo Pavone, Angela Lombardi, and Flavia Nastri. "Selective Oxidation of Halophenols Catalyzed by an Artificial Miniaturized Peroxidase." International Journal of Molecular Sciences 24, no. 9 (2023): 8058. http://dx.doi.org/10.3390/ijms24098058.

Full text
Abstract:
The development of artificial enzymes for application in sustainable technologies, such as the transformation of environmental pollutants or biomass, is one of the most challenging goals in metalloenzyme design. In this work, we describe the oxidation of mono-, di-, tri- and penta-halogenated phenols catalyzed by the artificial metalloenzyme Fe-MC6*a. It promoted the dehalogenation of 4-fluorophenol into the corresponding 1,4-benzoquinone, while under the same experimental conditions, 4-chloro, 4-bromo and 4-iodophenol were selectively converted into higher molecular weight compounds. Analysis
APA, Harvard, Vancouver, ISO, and other styles
44

Albareda, Marta, Agnès Rodrigue, Belén Brito, et al. "Rhizobium leguminosarum HupE is a highly-specific diffusion facilitator for nickel uptake." Metallomics 7, no. 4 (2015): 691–701. http://dx.doi.org/10.1039/c4mt00298a.

Full text
Abstract:
Functional and topological analysis ofRhizobium leguminosarumHupE, the founding member of the HupE/UreJ family of nickel permeases, provides new hints on how bacteria manage nickel provision for metalloenzyme synthesis.
APA, Harvard, Vancouver, ISO, and other styles
45

Zambrano, Gerardo, Alina Sekretareva, Daniele D'Alonzo, et al. "Oxidative dehalogenation of trichlorophenol catalyzed by a promiscuous artificial heme-enzyme." RSC Advances 12, no. 21 (2022): 12947–56. http://dx.doi.org/10.1039/d2ra00811d.

Full text
Abstract:
The artificial metalloenzyme FeMC6*a is able to perform the H2O2-mediated dechlorination of 2,4,6-trichlorophenol with unrivalled catalytic efficiency, highlighting its potential application for the removal of toxic pollutants.
APA, Harvard, Vancouver, ISO, and other styles
46

Herrero, Christian, Annamaria Quaranta, Rémy Ricoux, et al. "Oxidation catalysis via visible-light water activation of a [Ru(bpy)3]2+ chromophore BSA–metallocorrole couple." Dalton Transactions 45, no. 2 (2016): 706–10. http://dx.doi.org/10.1039/c5dt04158a.

Full text
Abstract:
Light induced enantioselective oxidation of thioanisole with water as the oxygen atom source is catalyzed by a Mn-corrole–BSA artificial metalloenzyme in the presence of a photoactivable ruthenium complex.
APA, Harvard, Vancouver, ISO, and other styles
47

Laureanti, Joseph A., Qiwen Su, and Wendy J. Shaw. "A protein scaffold enables hydrogen evolution for a Ni-bisdiphosphine complex." Dalton Transactions 50, no. 43 (2021): 15754–59. http://dx.doi.org/10.1039/d1dt03295j.

Full text
Abstract:
An artificial metalloenzyme acting as a functional biomimic of hydrogenase enzymes was activated by assembly via covalent attachment of the molecular complex, [Ni(PNglycineP)2]2−, within a structured protein scaffold.
APA, Harvard, Vancouver, ISO, and other styles
48

Honarmand Ebrahimi, Kourosh. "A unifying view of the broad-spectrum antiviral activity of RSAD2 (viperin) based on its radical-SAM chemistry." Metallomics 10, no. 4 (2018): 539–52. http://dx.doi.org/10.1039/c7mt00341b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zhang, Lu, Yajun Yang, Ying Yang, and Zhiyan Xiao. "Discovery of Novel Metalloenzyme Inhibitors Based on Property Characterization: Strategy and Application for HDAC1 Inhibitors." Molecules 29, no. 5 (2024): 1096. http://dx.doi.org/10.3390/molecules29051096.

Full text
Abstract:
Metalloenzymes are ubiquitously present in the human body and are relevant to a variety of diseases. However, the development of metalloenzyme inhibitors is limited by low specificity and poor drug-likeness associated with metal-binding fragments (MBFs). A generalized drug discovery strategy was established, which is characterized by the property characterization of zinc-dependent metalloenzyme inhibitors (ZnMIs). Fifteen potential Zn2+-binding fragments (ZnBFs) were identified, and a customized pharmacophore feature was defined based on these ZnBFs. The customized feature was set as a require
APA, Harvard, Vancouver, ISO, and other styles
50

Kim, Sung-Kun, Cynthe L. Sims, Susan E. Wozniak, Stephanie H. Drude, Dustin Whitson, and Robert W. Shaw. "Antibiotic Resistance in Bacteria: Novel Metalloenzyme Inhibitors." Chemical Biology & Drug Design 74, no. 4 (2009): 343–48. http://dx.doi.org/10.1111/j.1747-0285.2009.00879.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!