To see the other types of publications on this topic, follow the link: Metalloproteins; Electron transfer.

Journal articles on the topic 'Metalloproteins; Electron transfer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Metalloproteins; Electron transfer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Brunori, Maurizio. "Control of electron transfer in metalloproteins." Biosensors and Bioelectronics 9, no. 9-10 (1994): 633–36. http://dx.doi.org/10.1016/0956-5663(94)80059-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Murgida, Daniel Horacio. "Modulation of Functional Features in Electron Transferring Metalloproteins." Science Reviews - from the end of the world 1, no. 2 (2020): 45–65. http://dx.doi.org/10.52712/sciencereviews.v1i2.18.

Full text
Abstract:
Electron transferring metalloproteins are typically implicated in shuttling electrons between energy transduction chains membrane complexes, such as in (aerobic and anaerobic) respiration and photosynthesis, among other functions. The thermodynamic and kinetic electron transfer parameters of the different metalloproteins need to be adjusted in each case to the specific demands, which can be quite diverse among organisms. Notably, biology utilizes very few metals, essentially iron and copper, to cover this broad range of redox needs imposed by biodiversity. Here, I will describe some crucial st
APA, Harvard, Vancouver, ISO, and other styles
3

Gray, Harry B., and Bo G. Malmstroem. "Long-range electron transfer in multisite metalloproteins." Biochemistry 28, no. 19 (1989): 7499–505. http://dx.doi.org/10.1021/bi00445a001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

De Jonge, N., H. K. Rau, and W. Haehnel. "Light-induced Electron Transfer in Synthetic Metalloproteins." Zeitschrift für Physikalische Chemie 1, no. 1 (1998): 375–80. http://dx.doi.org/10.1524/zpch.1998.1.1.375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

De Jonge, N., H. K. Rau, and W. Haehnel. "Light-induced Electron Transfer in Synthetic Metalloproteins." Zeitschrift für Physikalische Chemie 213, Part_2 (1999): 175–80. http://dx.doi.org/10.1524/zpch.1999.213.part_2.175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ogawa, Michael Y., Jiufeng Fan, Anna Fedorova, et al. "Electron-transfer functionality of synthetic coiled-coil metalloproteins." Journal of the Brazilian Chemical Society 17, no. 8 (2006): 1516–21. http://dx.doi.org/10.1590/s0103-50532006000800006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Malmstr�m, Bo G. "Structural control of electron-transfer properties in metalloproteins." Biology of Metals 3, no. 2 (1990): 64–66. http://dx.doi.org/10.1007/bf01179504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Elliott, Martin, and D. Dafydd Jones. "Approaches to single-molecule studies of metalloprotein electron transfer using scanning probe-based techniques." Biochemical Society Transactions 46, no. 1 (2017): 1–9. http://dx.doi.org/10.1042/bst20170229.

Full text
Abstract:
The single-molecule properties of metalloproteins have provided an intensely active research area in recent years. This brief review covers some of the techniques used to prepare, measure and analyse the electron transfer properties of metalloproteins, concentrating on scanning tunnelling microscopy-based techniques and advances in attachment of proteins to electrodes.
APA, Harvard, Vancouver, ISO, and other styles
9

Butler, Clive S. "Metals, non-metals and minerals: The complexity of bacterial selenate respiration." Biochemist 34, no. 5 (2012): 23–27. http://dx.doi.org/10.1042/bio03405023.

Full text
Abstract:
Metalloproteins and enzymes are an essential part of all respiratory electron-transfer chains and provide a pathway for electron transfer to terminal electron acceptors. Since bacteria can utilize a wide range of respiratory substrates, this variety of potential electron acceptors has facilitated the need for many different respiratory metalloproteins. Bacterial selenate respiration requires the sequential reduction of the selenium oxyanions selenate and selenite resulting in the precipitation of elemental selenium. The initial bioenergetic processes of selenate respiration are driven by metal
APA, Harvard, Vancouver, ISO, and other styles
10

Winkler, J. R., B. G. Malmström, and H. B. Gray. "Rapid electron injection into multisite metalloproteins: intramolecular electron transfer in cytochrome oxidase." Biophysical Chemistry 54, no. 3 (1995): 199–209. http://dx.doi.org/10.1016/0301-4622(94)00156-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

BARKER, Paul D., Kati GLERIA, H. Allen O. HILL, and Valerie J. LOWE. "Electron transfer reactions of metalloproteins at peptide-modified gold electrodes." European Journal of Biochemistry 190, no. 1 (1990): 171–75. http://dx.doi.org/10.1111/j.1432-1033.1990.tb15561.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Zuo, Xiaolei, Shijiang He, Di Li, et al. "Graphene Oxide-Facilitated Electron Transfer of Metalloproteins at Electrode Surfaces." Langmuir 26, no. 3 (2010): 1936–39. http://dx.doi.org/10.1021/la902496u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Mutz, M. W., G. L. McLendon, J. F. Wishart, E. R. Gaillard, and A. F. Corin. "Conformational dependence of electron transfer across de novo designed metalloproteins." Proceedings of the National Academy of Sciences 93, no. 18 (1996): 9521–26. http://dx.doi.org/10.1073/pnas.93.18.9521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Prytkova, Tatiana R., Igor V. Kurnikov, and David N. Beratan. "Ab Initio Based Calculations of Electron-Transfer Rates in Metalloproteins." Journal of Physical Chemistry B 109, no. 4 (2005): 1618–25. http://dx.doi.org/10.1021/jp0457491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bernauer, Klaus, Simona Ghizdavu, and Luca Verardo. "Chiral metal complexes as probes in electron-transfer reactions involving metalloproteins." Coordination Chemistry Reviews 190-192 (September 1999): 357–69. http://dx.doi.org/10.1016/s0010-8545(99)00094-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Durham, Bill, and Frank Millett. "Ruthenium(II) Polypyridine Complexes and the Electron-Transfer Reactions of Metalloproteins." Journal of Chemical Education 74, no. 6 (1997): 636. http://dx.doi.org/10.1021/ed074p636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Hong, Jing, Olesya A. Kharenko, and Michael Y. Ogawa. "Incorporating Electron-Transfer Functionality into Synthetic Metalloproteins from the Bottom-up." Inorganic Chemistry 45, no. 25 (2006): 9974–84. http://dx.doi.org/10.1021/ic060222j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Solomon, Edward I., David W. Randall, and Thorsten Glaser. "Electronic structures of active sites in electron transfer metalloproteins: contributions to reactivity." Coordination Chemistry Reviews 200-202 (May 2000): 595–632. http://dx.doi.org/10.1016/s0010-8545(00)00332-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Itaya, A., H. Sugawara, M. Nakakomi, A. Nagasawa, T. Kohzuma, and S. Suzuki. "Kinetic study on the electron transfer reactions of metalloproteins with cobalt complexes." Journal of Inorganic Biochemistry 67, no. 1-4 (1997): 404. http://dx.doi.org/10.1016/s0162-0134(97)80267-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Rau, H. K., N. DeJonge, and W. Haehnel. "Modular synthesis of de novo-designed metalloproteins for light-induced electron transfer." Proceedings of the National Academy of Sciences 95, no. 20 (1998): 11526–31. http://dx.doi.org/10.1073/pnas.95.20.11526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Chi, Qijin, Jingdong Zhang, Palle S. Jensen, Hans E. M. Christensen, and Jens Ulstrup. "Long-range interfacial electron transfer of metalloproteins based on molecular wiring assemblies." Faraday Discuss. 131 (2006): 181–95. http://dx.doi.org/10.1039/b506136a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Taniguchi, Isao. "Probing Metalloproteins and Bioelectrochemical Systems (Rapid electron-transfer at functional electrode surfaces.)." Electrochemical Society Interface 6, no. 4 (1997): 34–37. http://dx.doi.org/10.1149/2.f07974if.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

TANIGUCHI, Isao. "Electron-Transfer Reactions of Metalloproteins at Electrodes and Preparation of Electro-functional Devices." Seibutsu Butsuri 34, no. 2 (1994): 72–77. http://dx.doi.org/10.2142/biophys.34.72.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bernauer, Klaus, and Luca Verardo. "Selection of Different Reactive Sites by Enantiomers in Electron-Transfer Reactions Involving Metalloproteins." Angewandte Chemie International Edition in English 35, no. 15 (1996): 1716–17. http://dx.doi.org/10.1002/anie.199617161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lam, Quan, Mallory Kato, and Lionel Cheruzel. "Ru(II)-diimine functionalized metalloproteins: From electron transfer studies to light-driven biocatalysis." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1857, no. 5 (2016): 589–97. http://dx.doi.org/10.1016/j.bbabio.2015.09.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Arnesano, Fabio, Lucia Banci, and Mario Piccioli. "NMR structures of paramagnetic metalloproteins." Quarterly Reviews of Biophysics 38, no. 2 (2005): 167–219. http://dx.doi.org/10.1017/s0033583506004161.

Full text
Abstract:
1. Introduction 1681.1 Genomic annotation of metalloproteins 1681.2 Why NMR structures? 1681.3 Why paramagnetic metalloproteins? 1692. General theory 1702.1 Nuclear and electron spins 1702.2 Hyperfine coupling 1712.3 The effect of the hyperfine coupling on the NMR shift: the hyperfine shift 1732.4 The effect of the hyperfine coupling on nuclear relaxation 1742.5 Interplay between electron spin properties and features of the NMR spectra 1783. Paramagnetism-based structural restraints 1803.1 Contact shifts and relaxation rates as restraints 1813.2 Locating the metal ion within the protein frame:
APA, Harvard, Vancouver, ISO, and other styles
27

Armstrong, F. A., J. N. Butt, and A. Sucheta. "Electrochemical studies of the kinetics and thermodynamics of gated electron-transfer reactions in metalloproteins." Journal of Inorganic Biochemistry 51, no. 1-2 (1993): 9. http://dx.doi.org/10.1016/0162-0134(93)85047-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hosseinzadeh, Parisa, and Yi Lu. "Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1857, no. 5 (2016): 557–81. http://dx.doi.org/10.1016/j.bbabio.2015.08.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Chuev, G. N. "Influence of the protein medium on the electronic state and electron transfer in metalloproteins." Theoretical and Experimental Chemistry 28, no. 2 (1993): 157–60. http://dx.doi.org/10.1007/bf00573930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Fereiro, Jerry A., Xi Yu, Israel Pecht, Mordechai Sheves, Juan Carlos Cuevas, and David Cahen. "Tunneling explains efficient electron transport via protein junctions." Proceedings of the National Academy of Sciences 115, no. 20 (2018): E4577—E4583. http://dx.doi.org/10.1073/pnas.1719867115.

Full text
Abstract:
Metalloproteins, proteins containing a transition metal ion cofactor, are electron transfer agents that perform key functions in cells. Inspired by this fact, electron transport across these proteins has been widely studied in solid-state settings, triggering the interest in examining potential use of proteins as building blocks in bioelectronic devices. Here, we report results of low-temperature (10 K) electron transport measurements via monolayer junctions based on the blue copper protein azurin (Az), which strongly suggest quantum tunneling of electrons as the dominant charge transport mech
APA, Harvard, Vancouver, ISO, and other styles
31

Lin, Ying-Wu. "Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters." Molecules 24, no. 15 (2019): 2743. http://dx.doi.org/10.3390/molecules24152743.

Full text
Abstract:
Metalloproteins and metalloenzymes play important roles in biological systems by using the limited metal ions, complexes, and clusters that are associated with the protein matrix. The design of artificial metalloproteins and metalloenzymes not only reveals the structure and function relationship of natural proteins, but also enables the synthesis of artificial proteins and enzymes with improved properties and functions. Acknowledging the progress in rational design from single to multiple active sites, this review focuses on recent achievements in the design of artificial metalloproteins and m
APA, Harvard, Vancouver, ISO, and other styles
32

Bernauer, K. "Stereo- and site selection by enantiomers in electron-transfer reactions involving native and recombinant metalloproteins." Journal of Inorganic Biochemistry 67, no. 1-4 (1997): 400. http://dx.doi.org/10.1016/s0162-0134(97)80263-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bernauer, K., P. Schürmann, C. Nusbaumer, L. Verardo, and Simona Ghizdavu. "Stereo- and site selection by enantiomers in electron-transfer reactions involving native and recombinant metalloproteins." Pure and Applied Chemistry 70, no. 4 (1998): 985–91. http://dx.doi.org/10.1351/pac199870040985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Bond, A. M. "Chemical and electrochemical approaches to the investigation of redox reactions of simple electron transfer metalloproteins." Inorganica Chimica Acta 226, no. 1-2 (1994): 293–340. http://dx.doi.org/10.1016/0020-1693(94)04082-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kornilova, Anna Y., James F. Wishart, and Michael Y. Ogawa. "Effect of Surface Charges on the Rates of Intermolecular Electron-Transfer between de Novo Designed Metalloproteins†." Biochemistry 40, no. 40 (2001): 12186–92. http://dx.doi.org/10.1021/bi011156u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Silveira, Célia M., Lidia Zuccarello, Catarina Barbosa, et al. "Molecular Details on Multiple Cofactor Containing Redox Metalloproteins Revealed by Infrared and Resonance Raman Spectroscopies." Molecules 26, no. 16 (2021): 4852. http://dx.doi.org/10.3390/molecules26164852.

Full text
Abstract:
Vibrational spectroscopy and in particular, resonance Raman (RR) spectroscopy, can provide molecular details on metalloproteins containing multiple cofactors, which are often challenging for other spectroscopies. Due to distinct spectroscopic fingerprints, RR spectroscopy has a unique capacity to monitor simultaneously and independently different metal cofactors that can have particular roles in metalloproteins. These include e.g., (i) different types of hemes, for instance hemes c, a and a3 in caa3-type oxygen reductases, (ii) distinct spin populations, such as electron transfer (ET) low-spin
APA, Harvard, Vancouver, ISO, and other styles
37

Kharkats, Yurij I., and Jens Ulstrup. "A simple approach to the solvent reorganization Gibbs free energy in electron transfer reactions of redox metalloproteins." Chemical Physics Letters 303, no. 3-4 (1999): 320–24. http://dx.doi.org/10.1016/s0009-2614(99)00231-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Bâldea, Ioan. "Important Insight into Electron Transfer in Single-Molecule Junctions Based on Redox Metalloproteins from Transition Voltage Spectroscopy." Journal of Physical Chemistry C 117, no. 48 (2013): 25798–804. http://dx.doi.org/10.1021/jp408873c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Gupta, Sanju, and Aline Irihamye. "Probing the nature of electron transfer in metalloproteins on graphene-family materials as nanobiocatalytic scaffold using electrochemistry." AIP Advances 5, no. 3 (2015): 037106. http://dx.doi.org/10.1063/1.4914186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Brunori, M., R. Santucci, L. Campanella, and G. Tranchida. "Membrane-entrapped microperoxidase as a ‘solid-state’ promoter in the electrochemistry of soluble metalloproteins." Biochemical Journal 264, no. 1 (1989): 301–4. http://dx.doi.org/10.1042/bj2640301.

Full text
Abstract:
Immobilization of biological systems in solid matrices is presently of great interest, in view of the many potential advantages associated with both the higher stability of the immobilized macromolecules and the potential utilization for biotechnology. In the present paper the electrochemical behaviour of the undecapeptide from cytochrome c (called microperoxidase) tightly entrapped in cellulose triacetate membrane is reported; its utilization as ‘solid-state’ promoter in the electrochemistry of soluble metalloproteins is presented. The results obtained indicate that: (i) membrane-entrapped mi
APA, Harvard, Vancouver, ISO, and other styles
41

SUZUKI, Masato, Kenichi MURATA, Nobuhumi NAKAMURA, and Hiroyuki OHNO. "The Effect of Particle Size on the Direct Electron Transfer Reactions of Metalloproteins Using Au Nanoparticle-Modified Electrodes." Electrochemistry 80, no. 5 (2012): 337–39. http://dx.doi.org/10.5796/electrochemistry.80.337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Friis, E. P., J. E. T. Andersen, Y. I. Kharkats, et al. "An approach to long-range electron transfer mechanisms in metalloproteins: In situ scanning tunneling microscopy with submolecular resolution." Proceedings of the National Academy of Sciences 96, no. 4 (1999): 1379–84. http://dx.doi.org/10.1073/pnas.96.4.1379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Rees, Douglas C., F. Akif Tezcan, Chad A. Haynes, et al. "Structural basis of biological nitrogen fixation." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363, no. 1829 (2005): 971–84. http://dx.doi.org/10.1098/rsta.2004.1539.

Full text
Abstract:
Biological nitrogen fixation is mediated by the nitrogenase enzyme system that catalyses the ATP dependent reduction of atmospheric dinitrogen to ammonia. Nitrogenase consists of two component metalloproteins, the MoFe-protein with the FeMo-cofactor that provides the active site for substrate reduction, and the Fe-protein that couples ATP hydrolysis to electron transfer. An overview of the nitrogenase system is presented that emphasizes the structural organization of the proteins and associated metalloclusters that have the remarkable ability to catalyse nitrogen fixation under ambient conditi
APA, Harvard, Vancouver, ISO, and other styles
44

Hervás, M., J. A. Navarro, A. Díaz, H. Bottin, and M. A. De la Rosa. "Kinetic models for the reaction mechanism of electron transfer from the metalloproteins cytochrome C6 and plastocyanin to photosystem I." Journal of Inorganic Biochemistry 59, no. 2-3 (1995): 272. http://dx.doi.org/10.1016/0162-0134(95)97375-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chang, I. Jy, Harry B. Gray, and Jay R. Winkler. "High-driving-force electron transfer in metalloproteins: intramolecular oxidation of ferrocytochrome c by Ru(2,2'-bpy)2(im)(his-33)3+." Journal of the American Chemical Society 113, no. 18 (1991): 7056–57. http://dx.doi.org/10.1021/ja00018a064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Chi, Qijin, Jingdong Zhang, Palle S. Jensen, Renat R. Nazmudtinov, and Jens Ulstrup. "Surface-induced intramolecular electron transfer in multi-centre redox metalloproteins: the di-haem protein cytochromec4in homogeneous solution and at electrochemical surfaces." Journal of Physics: Condensed Matter 20, no. 37 (2008): 374124. http://dx.doi.org/10.1088/0953-8984/20/37/374124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Roger, Magali, Cindy Castelle, Marianne Guiral, et al. "Mineral respiration under extreme acidic conditions: from a supramolecular organization to a molecular adaptation in Acidithiobacillus ferrooxidans." Biochemical Society Transactions 40, no. 6 (2012): 1324–29. http://dx.doi.org/10.1042/bst20120141.

Full text
Abstract:
Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotrophic Gram-negative bacterium that can derive energy from the oxidation of ferrous iron at pH 2 using oxygen as electron acceptor. The study of this bacterium has economic and fundamental biological interest because of its use in the industrial extraction of copper and uranium from ores. For this reason, its respiratory chain has been analysed in detail in recent years. Studies have shown the presence of a functional supercomplex that spans the outer and the inner membranes and allows a direct electron transfer from the extracell
APA, Harvard, Vancouver, ISO, and other styles
48

Fedurco, Milan. "Redox reactions of heme-containing metalloproteins: dynamic effects of self-assembled monolayers on thermodynamics and kinetics of cytochrome c electron-transfer reactions." Coordination Chemistry Reviews 209, no. 1 (2000): 263–331. http://dx.doi.org/10.1016/s0010-8545(00)00292-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zhou, Jian S., and Nenad M. Kostic. "Kinetics of static and diffusive electron transfer between zinc-substituted cytochrome c and plastocyanin. Indications of nonelectrostatic interactions between highly charged metalloproteins." Journal of the American Chemical Society 113, no. 16 (1991): 6067–73. http://dx.doi.org/10.1021/ja00016a021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Govindaraju, K., Hans E. M. Christensen, Emma Lloyd, et al. "A new approach to the study of intramolecular electron-transfer reactions of metalloproteins: pulse radiolysis of nitrogen dioxide-modified tyrosine derivatives of plastocyanin." Inorganic Chemistry 32, no. 1 (1993): 40–46. http://dx.doi.org/10.1021/ic00053a007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!