Academic literature on the topic 'Metallurgical'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Metallurgical.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Metallurgical"
Huang, Peng, Xi Sun, Xixi Su, Qiang Gao, Zhanhao Feng, and Guoyin Zu. "Three-Point Bending Behavior of Aluminum Foam Sandwich with Different Interface Bonding Methods." Materials 15, no. 19 (October 6, 2022): 6931. http://dx.doi.org/10.3390/ma15196931.
Full textWang, Y. S., F. D. Zhu, and N. W. Liu. "Preparation and Properties Study of Laser Cladding of Ni-Based Alloy on Copper." Key Engineering Materials 455 (December 2010): 216–19. http://dx.doi.org/10.4028/www.scientific.net/kem.455.216.
Full textVasiltsov, V. S., and M. S. Nysh. "EXPLICATION OF THE INVESTMENT POLICY ESSENCE BY THE CASE OF METALLURGICAL SECTOR COMPLEX." Bulletin of Udmurt University. Series Economics and Law 31, no. 2 (April 20, 2021): 204–14. http://dx.doi.org/10.35634/2412-9593-2021-31-2-204-214.
Full textDang, Jie, Jichao Li, Xuewei Lv, Shuang Yuan, and Katarzyna Leszczyńska-Sejda. "Metallurgical Slag." Crystals 12, no. 3 (March 17, 2022): 407. http://dx.doi.org/10.3390/cryst12030407.
Full textShimoyama, Izumi, and Kiyoshi Fukada. "Metallurgical coke." TANSO 2008, no. 235 (2008): 316–24. http://dx.doi.org/10.7209/tanso.2008.316.
Full textShimoyama, Izumi, and Kiyoshi Fukada. "Metallurgical coke." Carbon 47, no. 4 (April 2009): 1208. http://dx.doi.org/10.1016/j.carbon.2008.11.027.
Full textLis, Teresa, Krzysztof Nowacki, and Tomasz Małysa. "Utilization of Metallurgical Waste in Non-Metallurgical Industry." Solid State Phenomena 212 (December 2013): 195–200. http://dx.doi.org/10.4028/www.scientific.net/ssp.212.195.
Full textBaychayev, F. X. "МЕТОДИКА ВЫБОРА ПРОФЕССИОНАЛЬНО ОРИЕНТИРОВАННЫХ ЗАДАЧ НА ПРАКТИЧЕСКИХ ЗАНЯТИЯХ ПО ФИЗИКЕ ДЛЯ БУДУЩИХ СПЕЦИАЛИСТОВ ГОРНО-МЕТАЛЛУРГИЧЕСКОЙ ПРОМЫШЛЕННОСТИ." Education and innovative research, no. 4 (August 5, 2021): 96–103. http://dx.doi.org/10.53885/edinres.2021.23.53.015.
Full textJeong, Ye-Seon, Kyeong-Min Kim, Hyungsoo Lee, Seong-Moon Seo, and Eun-Joon Chun. "Evaluation and Control of Liquation Cracking Susceptibility for CM247LC Superalloy Weld Heat-Affected Zone via Visualization-Based Varestraint Test." Korean Journal of Metals and Materials 59, no. 7 (July 5, 2021): 445–58. http://dx.doi.org/10.3365/kjmm.2021.59.7.445.
Full textLotter, U., H. P. Schmitz, and L. Zhang. "Structure of the metallurgically oriented modelling system TK-StripCam for simulation of hot strip manufacture and application in research and production practice." Journal de Physique IV 120 (December 2004): 801–8. http://dx.doi.org/10.1051/jp4:2004120093.
Full textDissertations / Theses on the topic "Metallurgical"
Kero, Ida. "Ti3SiC2 synthesis by powder metallurgical methods." Licentiate thesis, Luleå tekniska universitet, Materialvetenskap, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-17858.
Full textGodkänd; 2007; 20070523 (ysko)
Valenzuela, Armando. "Arsenic management in the metallurgical industry." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0019/MQ55887.pdf.
Full textAndersson, Emil. "Online Metallurgical Mass Balance and Reconciliation." Thesis, Umeå universitet, Institutionen för fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-185252.
Full textI malmanrikning, är flotation en av de viktigaste och mest mångsidiga metoderna. Flotation utnyttjar de fysikaliska ytegenskaperna som partiklar av värdemineral har för att separera dessa från det mindre värdefulla gråberget i malmen. Krossad och mald malm blandas med vatten och matas in i flotationstankar. I flotationstankarna görs partiklarna av värdemineral hydrofobiska. På så vis kan de fästa sig vid luftbubblor och flyta till ytan och bilda ett skum. Detta skum samlas sedan ihop och behandlas vidare eftersom det innehåller en högre koncentration av värdemineral. Flotationskretsen styrs och underhålls med hjälp av mätningar av massflödena och halterna av de olika ämnena som finns i kretsen. På grund av ekonomiska, praktiska, och teknologiska hinder kan dessa mätningar bara göras på ett utvalt antal punkter i kretsen samt bara vid diskreta tillfällen. Felaktigt data kan ha förödande konsekvenser om operatörerna lämnas med begränsad information och processen fortlöper med oupptäckta fel. Mätsäkerheten kan förbättras med hjälp av massbalansering och haltjustering. Traditionellt görs massbalansering genom att summera den totala massan som löpt genom kretsen samt medelvärden av halterna över lång tid för att undvika att räkna in den interna massan i systemet. Det är önskvärt att utföra massbalansering direkt för att möjliggöra snabbare ingrepp ifall fel uppstår i kretsen under den fortlöpande processen. Denna rapport beskriver en dynamisk lösning för massbalansering och justering av massflöden och halter i en flotationskrets. Här används fysikaliska modeller av kretsen för att konstruera bivillkor för massbalans med hjälp utav interpolation och testfunktioner och massbalanseringsproblemet ställs upp som ett optimeringsproblem. Optimeringen sker genom att justera mätserien så att residualen, skillnaden mellan det uppmätta värdet och det justerade värdet, minimeras under uppfyllande av mass balans. En implementation i MATLAB och tester på syntetisk data visar att den dynamiska formuleringen av massbalans justerar de felaktiga mätvärdena så att massbalans uppfylls. Med det resultatet i åtanke, finns det fortfarande viktiga aspekter av implementationen som bör tas hänsyn till. Modellen använder de okända och cellspecifika parametrarna flotationshastighet och utbytet och dessa måste kunna bestämmas för att denna modell ska kunna användas. Ett förslag på modellering av flotationshastigheten föreslås i rapporten. Dessutom ges förslag på strategier att hitta utbytet. Kraven på noggrannhet och snabbhet diskuteras också. Möjliga nästa steg för projektet är att vidareutveckla en tidseffektiv implementation genom att använda syntetiska data. Därefter kan en implementation för naturligt data verifiera modellerna.
Matsie, Simon Sello. "Impact of metallurgical industries on water." Thesis, Vaal University of Technology, 2012. http://hdl.handle.net/10352/391.
Full textKero, Ida. "Ti₃3SiC₂ synthesis by powder metallurgical methods /." Luleå : Luleå tekniska universitet/Tillämpad fysik, maskin- och materialteknik/Materialteknik, 2007. http://epubl.ltu.se/1402-1757/2007/34/.
Full textNavarra, Pietro 1979. "Heat pipe cooling of metallurgical furnace equipment." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=102819.
Full textThe purpose of the research presented in this thesis was to develop a viable cooling system based on novel heat pipe technology which addresses these problems. This technology employs boiling as the means to store and transfer heat energy. The large heat extraction capacity of the device is owed to two design features: firstly, a separate return line that generates a column of liquid working fluid which drains into the evaporator by gravity, and secondly, a helical flow modifier in the evaporator that stabilizes annular two-phase flow.
A full-scale copper tapblock and launder were designed with water-based heat pipe cooling systems. These systems were successfully tested under industrial heat loading conditions, using a gas burner to simulate the heat loads.
The tapblock cooling system was able to dissipate 142 kW per heat pipe, at heat fluxes as high as 2.4 MW/m2. These values are the largest to date using the novel water-based heat pipe technology. The launder system was the first to incorporate horizontal heat pipes, as well as have multiple evaporators feeding a single condenser.
The cooling systems used in both experiments were fundamentally safer than watercooling systems, being operated at low pressures and with only several kilograms of water exposed to the heat source. The cooling water requirements of these systems represent a reduction of 80-95% compared to conventional water-cooling, with increased potential for energy recovery.
During the testing, dry-out and film boiling were identified as the main limitations. It was found that film boiling occurs when the flow in the evaporator is not great enough to generate a helical motion. The dry-out limitation was achieved when the velocity of the flow within the evaporator was too great, causing a large pressure gradient that opposes the gravity head of the return line.
Both of these limitations are related to the configuration of the evaporator, i.e. the return line and the flow modifier. A methodology was developed to model the evaporator numerically using computational fluid dynamics. This methodology can be used to understand how the design parameters of the evaporator affect the flow patterns during operation.
Moreland, Angela. "The structure and strength of metallurgical coke." Thesis, Loughborough University, 1990. https://dspace.lboro.ac.uk/2134/13759.
Full textJenkins, Neil Travis 1973. "Chemistry of airborne particles from metallurgical processing." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/17033.
Full textVita.
Includes bibliographical references.
Airborne particles fall into one of three size ranges. The nucleation range consists of nanoparticles created from vapor atom collisions. The decisive parameter for particle size and composition is the supercooling of the vapor. The accumulation range, which comprises particles less than 2 micrometers, consists of particles formed from the collision of smaller primary particles from the nucleation range. The composition of agglomerates and coalesced particles is the same as the bulk vapor composition. Coarse particles, the composition of which is determined by a liquid precursor, are greater than 1 micrometer and solidify from droplets whose sizes are controlled by surface, viscous, and inertial forces. The relationship between size and composition of airborne particles could be seen in welding fume, a typical metallurgical aerosol. This analysis was performed with a cascade impactor and energy dispersive spectrometry with both scanning electron microscopy (SEM-EDS) and scanning transmission electron microscopy (STEM-EDS). Other methods for properly characterizing particles were discussed. In the analysis, less than 10% of the mass of fume particles for various types of gas metal arc welding (GMAW) were coarse, while one-third of flux cored arc welding (FCAW) fume particles were coarse. Coarse particles had a composition closer to that of the welding electrode than did fine particles. Primary particles were not homogeneous. Particles larger than the mean free path of the carrier gas had the same composition as that of the vapor, but for particles 20 to 60 nanometers, smaller particles were more enriched in volatile metals than larger particles were. This was explained by the cooling path along the bubble point line of a binary phase diagram.
(cont.) Particles were not necessarily homogenous internally. Because nanoparticles homogenize quickly, they may form in a metastable state, but will not remain in that state. In this analysis, the presence of multiple stable immiscible phases explains this internal heterogeneity. The knowledge contained herein is important for industries that depend on the properties of nanoparticles, and for manufacturing, where industrial hygiene is important because of respirable particle by-products, such as high-energy-density metallurgical processing.
by Neil Travis Jenkins.
Ph.D.
Bojcevski, David. "Metallurgical characterisation of George Fisher mesotextures and microtextures /." [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18152.pdf.
Full textHanson, Svenja. "Interfaces between the textural components in metallurgical cokes." Thesis, Loughborough University, 1996. https://dspace.lboro.ac.uk/2134/28121.
Full textBooks on the topic "Metallurgical"
Piatak, Nadine M., and Vojtech Ettler, eds. Metallurgical Slags. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839164576.
Full textYin, Ruiyu. Metallurgical Process Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-13956-7.
Full textYin, Ruiyu. Metallurgical Process Engineering. Berlin, Heidelberg: Metallurgical Industry Press,Beijing and Springer-Verlag Berlin Heidelberg and Metallurgical Industry Press, 2011.
Find full textRay, Hem Shanker, and Saradindukumar Ray. Kinetics of Metallurgical Processes. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0686-0.
Full textKaufman, Brett, and Clyde L. Briant, eds. Metallurgical Design and Industry. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93755-7.
Full textColangelo, Vito J. Analysis of metallurgical failures. 2nd ed. New York: Wiley, 1987.
Find full textTanaka, Fujio John. Metallurgical industries in Zambia. [S.l.]: United Nations Industrial Development Organization, 1989.
Find full textGrong, Oystein. Metallurgical modelling of welding. London: Institute of materials, 1994.
Find full textTanaka, Fujio John. Metallurgical industries in Zambia. [Vienna, Austria]: United Nations Industrial Development Organization, 1989.
Find full textBook chapters on the topic "Metallurgical"
Frear, D. R., and K. N. Tu. "Metallurgical Factors." In Area Array Interconnection Handbook, 1108–44. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1389-6_28.
Full textBradford, Samuel A. "Metallurgical Cells." In Corrosion Control, 47–76. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4684-8845-6_4.
Full textHwang, Jennie S. "Metallurgical Aspects." In Solder Paste in Electronics Packaging, 71–121. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3528-7_4.
Full textWranglén, Gösta. "Metallurgical elements." In An Introduction to Corrosion and Protection of Metals, 28–46. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4850-1_2.
Full textHwang, Jennie S. "Metallurgical Aspects." In Solder Paste in Electronics Packaging, 71–121. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-011-6050-6_4.
Full textCornu, Jean. "Metallurgical Concepts." In Fundamentals of Fusion Welding Technology, 29–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-11049-2_4.
Full textShamsuddin, Mohammad. "Metallurgical Slag." In Physical Chemistry of Metallurgical Processes, Second Edition, 107–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58069-8_4.
Full textBaláž, Matej. "Metallurgical Waste." In Environmental Mechanochemistry, 261–81. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75224-8_8.
Full textLingzhong, Meng, and Xu Kuangdi. "Metallurgical Machinery." In The ECPH Encyclopedia of Mining and Metallurgy, 1–3. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-0740-1_1342-1.
Full textClarke, A. B., and S. H. Coverman. "Metallurgical considerations." In Structural Steelwork, 1–25. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003416548-1.
Full textConference papers on the topic "Metallurgical"
Pribulova, Alena. "HYDRAULICITY OF METALLURGICAL SLAGS." In 18th International Multidisciplinary Scientific GeoConference SGEM2018. Stef92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018/4.2/s18.012.
Full textBEČKA, Miloslav, Tomáš SIRNÍK, Martin MENŠÍK, and Ivana BARČÁKOVÁ. "Digitization of Metallurgical Processes." In METAL 2022. TANGER Ltd., 2022. http://dx.doi.org/10.37904/metal.2022.4521.
Full textPribulova, Alena. "METALLURGICAL SLAG IN CIVIL ENGINEERING." In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/41/s18.018.
Full textAksyonov, K., E. Bykov, O. Aksyonova, N. Goncharova, and A. Nevolina. "Industrial Simulation of Metallurgical Logistics." In International Conference on Computer Information Systems and Industrial Applications. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/cisia-15.2015.163.
Full textEinhaus, R., J. Kraiem, F. Lissalde, S. Dubois, N. Enjalbert, and R. Monna. "Crystallisation of purified metallurgical silicon." In 2008 33rd IEEE Photovolatic Specialists Conference (PVSC). IEEE, 2008. http://dx.doi.org/10.1109/pvsc.2008.4922521.
Full textRednikov, Sergei, Elena Akhmedyanova, Karina Akhmedyanova, and Denis Toymurzin. "Effective Diagnostics of Metallurgical Equipment." In 2020 Global Smart Industry Conference (GloSIC). IEEE, 2020. http://dx.doi.org/10.1109/glosic50886.2020.9267858.
Full textKOZINSKI, Ondřej, Miroslav KLUS, and Jan BŘEZINA. "INTELLIGENT FLOWMETERS FOR METALLURGICAL INDUSTRY." In METAL 2021. TANGER Ltd., 2021. http://dx.doi.org/10.37904/metal.2021.4298.
Full textBednárová, Dagmar, Gabriela Bogdanovská, and Erika Fecková Škrabuľáková. "Improving the Metallurgical Production Process." In 2024 25th International Carpathian Control Conference (ICCC). IEEE, 2024. http://dx.doi.org/10.1109/iccc62069.2024.10569292.
Full textBrooks, J. W., and P. J. Bridges. "Metallurgical Stability of Inconel Alloy 718." In Superalloys. TMS, 1988. http://dx.doi.org/10.7449/1988/superalloys_1988_33_42.
Full textPribulova, Alena. "HOW TO REDUCE METALLURGICAL BRIQETTES DEZINTEGRATION." In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/41/s18.015.
Full textReports on the topic "Metallurgical"
Bird, E. L., and T. L. Clift. Metallurgical examination of gun barrel screws. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/446024.
Full textImrich, K. J. Metallurgical evaluation of recycled stainless steel. Office of Scientific and Technical Information (OSTI), January 1997. http://dx.doi.org/10.2172/522728.
Full textLouthan, Jr., M. R. Process water system integrity: A metallurgical evaluation. Office of Scientific and Technical Information (OSTI), March 1989. http://dx.doi.org/10.2172/6343280.
Full textGayle, Frank W., Richard J. Fields, William E. Luecke, Stephen W. Banovic, Timothy Foecke, Thomas A. Siewart, and J. David McColskey. Mechanical and metallurgical analysis of structural steel. Gaithersburg, MD: National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.ncstar.1-3.
Full textVessel, E. P-Area reactor tank: Area metallurgical report. Office of Scientific and Technical Information (OSTI), May 1987. http://dx.doi.org/10.2172/6975944.
Full textBagnall, C., and W. Wise. Metallurgical evaluation of FMPC Vessel No. 2. Office of Scientific and Technical Information (OSTI), March 1989. http://dx.doi.org/10.2172/6239524.
Full textPrice, J. T., and J. F. Gransden. Metallurgical coals in Canada: resources, research, and utilization. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1987. http://dx.doi.org/10.4095/306985.
Full textNorby, B. C. Supercritical water oxidation benchscale testing metallurgical analysis report. Office of Scientific and Technical Information (OSTI), February 1993. http://dx.doi.org/10.2172/149997.
Full textKrchnavek. (DEPSCOR-92) Acquisition of a Metallurgical Optical Microscope. Fort Belvoir, VA: Defense Technical Information Center, February 1995. http://dx.doi.org/10.21236/ada292439.
Full textPepi, Marc. Metallurgical Examination of M61A1 Breech Bolt Assembly Components. Fort Belvoir, VA: Defense Technical Information Center, February 1995. http://dx.doi.org/10.21236/ada293512.
Full text