Academic literature on the topic 'Metamagnetický'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Metamagnetický.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Metamagnetický"

1

Zyuzin, A. A., and A. Y. Zyuzin. "Spin Injection as a Source of the Metamagnetic Phase Transition." Solid State Phenomena 168-169 (December 2010): 461–64. http://dx.doi.org/10.4028/www.scientific.net/ssp.168-169.461.

Full text
Abstract:
We consider a metamagnetic phase transition of itinerant electrons in the metamagnetic- ferromagnetic metal junction. The current flow between a ferromagnetic metal and a metamagnetic metal produces the non-equilibrium spin imbalance acting as an effective magnetic field and initiating the first-order type transition from low- to high-magnetization states of the metamagnet in the vicinity of the ferromagnet. We show that the current dependence of the length of high-magnetization state region diverges at some threshold value, due to nonequilibrium shift, generated in a contact between the high
APA, Harvard, Vancouver, ISO, and other styles
2

Kainuma, Ryosuke, W. Ito, R. Y. Umetsu, V. V. Khovaylo, and T. Kanomata. "Metamagnetic Shape Memory Effect and Magnetic Properties of Ni-Mn Based Heusler Alloys." Materials Science Forum 684 (May 2011): 139–50. http://dx.doi.org/10.4028/www.scientific.net/msf.684.139.

Full text
Abstract:
In some Ni-Mn-In- and Ni-Mn-Sn-based Heusler-type alloys, martensitic transformation from the ferromagnetic parent phase to the paramagnetic martensite phase appears and magnetic field-induced reverse transformation, namely, metamagnetic phase transition, is detected. In this paper, the metamagnetic shape memory effect due to the metamagnetic phase transition and the magnetostress effect in the Ni-Co-Mn-In alloys are introduced and the phase diagrams of Ni50Mn50-yXy (X: In, Sn, Sb) alloys are shown as basic information. Furthermore, the magnetic properties of both the parent and martensite pha
APA, Harvard, Vancouver, ISO, and other styles
3

Oomi, G., N. Matsuda, T. Kagayama, C. K. Cho, and P. C. Canfield. "Electronic Properties of Magnetic Superconductor HoNi2B2C Under High Pressure." International Journal of Modern Physics B 17, no. 18n20 (2003): 3664–71. http://dx.doi.org/10.1142/s0217979203021587.

Full text
Abstract:
The electrical resistivity of single crystalline HoNi 2 B 2 C has been measured at high pressure and magnetic fields. The three anomalies in the magnetoresistance due to metamagnetic transitions are observed both at ambient and high pressures. It is found that the metamagnetic transition fields increase with increasing pressure. The temperature dependence of electrical resistivity is strongly dependent on magnetic field. Non Fermi liquid behavior is observed near the metamagnetic transition fields. But the normal Fermi liquid behavior recovers after completing the phase transition. The Grüneis
APA, Harvard, Vancouver, ISO, and other styles
4

YAMADA, H. "ITINERANT ELECTRON METAMAGNETISM OF Co-COMPOUNDS." International Journal of Modern Physics B 07, no. 01n03 (1993): 589–92. http://dx.doi.org/10.1142/s0217979293001232.

Full text
Abstract:
On the Landau-Ginzburg theory the metamagnetic transition observed at low temperature in some Co-compounds YCo2, LuCo2, Co(S, Se)2 and others has been shown to be related with the susceptibility maximum at room temperature through a characteristic quantity given in terms of the Landau expansion coefficients of the magnetic free energy. The present theory can explain the metamagnetic behaviours observed in the d-electron system at finite temperature.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Xi, Gayatri Venugopal, Jinwei Zeng, et al. "Optical fiber metamagnetics." Optics Express 19, no. 21 (2011): 19813. http://dx.doi.org/10.1364/oe.19.019813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Peschke, Simon, Lisa Gamperl, Valentin Weippert, and Dirk Johrendt. "Flux synthesis, crystal structures, and physical properties of new lanthanum vanadium oxyselenides." Dalton Transactions 46, no. 19 (2017): 6230–43. http://dx.doi.org/10.1039/c7dt00779e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jing, C., H. L. Zhang, Z. Li, D. H. Yu, S. X. Cao, and J. C. Zhang. "Martensitic Transformation and Metamagnetic Shape Memory Effect in Ni46Co4Mn37in13 Heusler Alloy." Materials Science Forum 687 (June 2011): 505–9. http://dx.doi.org/10.4028/www.scientific.net/msf.687.505.

Full text
Abstract:
The phase transition strain and magnetostrain during the martensitic transformation have been systematically investigated in Ni46Co4Mn37In13 Heusler alloy. A large phase transition strain with the value of about 0.25% upon martensitic transition has been observed, which is much larger than that in other metamagnetic shape memory alloys. In addition, such phase transition strain can be also obtained by the field change of about 50 kOe, exhibiting a large metamagnetic shape memory effect with nonprestrain. This behavior can be attributed to magnetoelastic coupling, which is caused by large diffe
APA, Harvard, Vancouver, ISO, and other styles
8

Grado-Caffaro, M. A., and M. Grado-Caffaro. "Mathematical–Physics Investigation on the Behaviour of a Metamagnetic System." Zeitschrift für Naturforschung A 72, no. 5 (2017): 463–67. http://dx.doi.org/10.1515/zna-2016-0485.

Full text
Abstract:
AbstractIn order to exemplify, we consider a finite itinerant-electron metamagnetic gas at sufficiently low absolute temperature so that relevant new results are obtained. In fact, we study key aspects related to derive the electronic energy of the abovementioned metamagnetic gas in relation to the Fermi levels of the spin-up and spin-down electron bands and in relation to the exchange energy and magnetic susceptibility. Within an unprecedented mathematical–physics approach, the abovementioned electronic energy is reinterpreted by defining it as an averaged quantity from the corresponding nonr
APA, Harvard, Vancouver, ISO, and other styles
9

Ye, Jingfan, Marco Hauke, Vikram Singh, et al. "Magnetic properties of ordered polycrystalline FeRh thin films." RSC Advances 7, no. 70 (2017): 44097–103. http://dx.doi.org/10.1039/c7ra06738k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gawai, U. P., D. K. Gaikwad, M. R. Bodke, et al. "Doping effect on the local structure of metamagnetic Co doped Ni/NiO:GO core–shell nanoparticles using X-ray absorption spectroscopy and the pair distribution function." Physical Chemistry Chemical Physics 21, no. 3 (2019): 1294–307. http://dx.doi.org/10.1039/c8cp05267k.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Metamagnetický"

1

Zadorozhnii, Oleksii. "Výměnná anizotropie v metamagnetických heterostrukturách." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443234.

Full text
Abstract:
Výměnná anizotropie je zajímavý fyzikální jev vznikající na rozhraní antiferomagnetických (AF) a feromagnetických (FM) materiálů, který již je široce používán v elektronickém průmyslu a magnetickém záznamu. Přestože byl tento jev dlouhou dobu intenzivně studován, jeho přesný mechanizmus zatím nebyl uspokojivě vysvětlen. V této práci je představen přehled studií dokumentujících výměnnou anizotropii v tenkých dvojvrstvách, včetně experimentálních výsledků a teoretických modelů. Experimentální úkoly této diplomové práce zahrnovaly jak výrobu, tak měření různých modelových systémů vykazujících vým
APA, Harvard, Vancouver, ISO, and other styles
2

Hajduček, Jan. "Zobrazování metamagnetických tenkých vrstev pomocí TEM." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443233.

Full text
Abstract:
Komplexní magnetické materiály v nanoměřítku mají své nezastupitelné místo v moderních zařízeních, jako jsou digitální paměti nebo senzory. Moderní technologické procesy vyžadují porozumění a možnost kontroly moderních magnetických materiálů až na atomární úrovni. Jednou z možných cest je magnetická analýza za použití transmisní elektronové mikroskopie (TEM), která je unikátní díky možnosti zobrazování až v subatomárním měřítku. Tato práce popisuje možnosti zobrazování metamagnetických materiálů metodou TEM. Tyto materiály se vyznačují možností stabilizace více magnetických uspořádání najednou
APA, Harvard, Vancouver, ISO, and other styles
3

Jaskowiec, Jiří. "Vliv prostorového omezení na vlastnosti metamagnetických nanostruktur." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-402581.

Full text
Abstract:
Silné prostorové omezení materiálů způsobuje jejich nové vlastnosti, které mohou najit uplatnění v mnoha vědeckých i technických odvětvích. Snaha zmenšit velikosti součástek, zvětšit hustotu zápisu a zefektivnit procesy je současným trendem elektronického průmyslu. V této práci je studován vliv prostorového omezení na vlastnosti metamagnetického železo-rhodia (FeRh) během fázové přeměny. FeRh je materiál vykazující fázovou přeměnu prvního druhu mezi antiferomagnetickou a feromagnetickou fází. Metodou mikroskopie magnetických sil v magnetickém poli kolmém na rovinu vzorku je zobrazeni a analyzo
APA, Harvard, Vancouver, ISO, and other styles
4

Lin, Chunqing. "Crystallographic study on Ni-Mn-Sn metamagnetic shape memory alloys." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0359.

Full text
Abstract:
En tant que nouveau matériau magnétique à mémoire de forme, les alliages basés sur le système Ni-Mn-Sn possèdent de multiples propriétés physiques telles que l'effet de mémoire de forme des alliages polycristallins, l'effet magnétocalorique géant, l'effet de magnétorésistance et l'effet de polarisation d'échange. Jusqu'à présent, la plupart des études ont été axées sur l'amélioration des multifonctionnalités de ces alliages, mais l'information fondamentale qui est fortement associée à ces propriétés n'est toujours pas claire. Ainsi, une étude approfondie sur les structures cristallines de la m
APA, Harvard, Vancouver, ISO, and other styles
5

Kitagawa, Kentaro. "Itinerant metamagnetism and metamagnetic quantum criticality in Sr3Ru2O7 revealed by 17O-NMR." 京都大学 (Kyoto University), 2007. http://hdl.handle.net/2433/136747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bautista, Anthony. "TUNNELING SPECTROSCOPY STUDY OF CALCIUM RUTHENATE." UKnowledge, 2010. http://uknowledge.uky.edu/gradschool_diss/784.

Full text
Abstract:
The ruthenates are perhaps one of the most diverse group of materials known up to date. These compounds exhibit a wide array of behaviors ranging from the exotic pwave superconductivity in Sr2RuO4, to the itinerant ferromagnetism in SrRuO3, and the Mott-insulating behavior in Ca2RuO4. One of the most intriguing compounds belonging to this group is Ca3Ru2O7 which is known to undergo an antiferromagnetic ordering at 56K and an insulating transition at 48K. Most intriguing, however, is the behavior displayed by this compound in the presence of an external magnetic field. For fields parallel to th
APA, Harvard, Vancouver, ISO, and other styles
7

Turabi, Ali S. "EFFECTS OF MAGNETIC FIELD ON THE SHAPE MEMORY BEHAVIOR OF SINGLE AND POLYCRYSTALLINE MAGNETIC SHAPE MEMORY ALLOYS." UKnowledge, 2015. http://uknowledge.uky.edu/me_etds/58.

Full text
Abstract:
Magnetic Shape Memory Alloys (MSMAs) have the unique ability to change their shape within a magnetic field, or in the presence of stress and a change in temperature. MSMAs have been widely investigated in the past decade due to their ability to demonstrate large magnetic field induced strain and higher frequency response than conventional shape memory alloys (SMAs). NiMn-based alloys are the workhorse of metamagnetic shape memory alloys since they are able to exhibit magnetic field induced phase transformation. In these alloys, martensite and austenite phases have different magnetization behav
APA, Harvard, Vancouver, ISO, and other styles
8

Cherifi, Ryan. "Experimental design of a strong Magneto-Electric coupling system between a ferroelectric and a magnetic phase transition alloy : BaTiO3/FeRh, and theoretical study of the metamagnetic transition of FeRh." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066309.

Full text
Abstract:
Aujourd'hui, la puissance de calcul des processeurs et la capacité de stockage des disques durs tels que conçus dans l'électronique moderne sont limités par la limite thermodynamique aux systèmes finis. Pour garder une vitesse de développement tel que prédit par la loi de Moore, il est donc nécessaire de considérer de nouveaux types d’architecture d’unité de calcul et stockage d’information. Un autre problème réside dans la gestion des pertes de courant par effet Joule, qui deviennent critiques dès lors que l’on atteint de très fortes densités de transistors et bits magnétiques. Notre étude s’
APA, Harvard, Vancouver, ISO, and other styles
9

Robert, Anthony. "Étude du couplage magnétique dans des nanoparticules bimétalliques de FeRh et de CoTb." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1309/document.

Full text
Abstract:
L'enregistrement magnétique sur disque dur est aujourd'hui le moyen le plus fiable pour stocker l'information. L'enregistrement perpendiculaire magnétique a permis de multiplier par dix la densité de stockage par rapport à l'enregistrement longitudinal. Mais cette diminution de la taille des bits d'information se heurte à une limite physique, dite « limite superparamagnétique », qui correspond à une instabilité thermique de l'aimantation. Afin de repousser cette limite, il convient donc de fabriquer des bits avec une forte anisotropie. Mais plus les grains ont une grande anisotropie magnétique
APA, Harvard, Vancouver, ISO, and other styles
10

Diop, Léopold Vincent Birane. "Structure et propriétés physiques de composés magnétiques de type RT12B6 et (Hf,Ta)Fe2 et leur dépendance en fonction de la pression (physique ou chimique) (R=élément de terre rare et T=élément de transition 3d)." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENY011/document.

Full text
Abstract:
Notre étude à caractère pluridisciplinaire comprend l'élaboration de composés intermétalliques ainsi que la caractérisation de leurs propriétés tant structurales que magnétiques. Nos travaux ont porté sur des borures RT12B6 où R est un élément de terre rare ou l'yttrium et T un métal de transition 3d ainsi que des phases de Laves (Hf,Ta)Fe2. Pour appréhender les propriétés physiques de ces composés, nous avons mis en œuvre diverses variables externes (température, champ magnétique, pression) mais aussi internes telle que la pression chimique liée à la substitution d'un élément par un autre. No
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Metamagnetický"

1

Detlefs, Carsten, F. Bourdarot, P. Burlet, S. L. Bud’ko, and P. C. Canfield. "Metamagnetic Structures of HoNi2B2C." In Rare Earth Transition Metal Borocarbides (Nitrides): Superconducting, Magnetic and Normal State Properties. Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0763-4_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schofield, A. J., A. J. Millis, S. A. Grigera, and G. G. Lonzarich. "Metamagnetic Quantum Criticality in Sr3Ru2O7." In Ruthenate and Rutheno-Cuprate Materials. Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45814-x_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zvezdin, A. K., I. A. Lubashevsky, R. Z. Levitin, G. M. Musaev, V. V. Platonov, and O. M. Tatsenko. "Spin—Flop and Metamagnetic Transitions in Itinerant Ferrimagnets." In Itinerant Electron Magnetism: Fluctuation Effects. Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5080-4_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Capogna, L., E. M. Forgan, S. M. Hayden, et al. "Metamagnetic Transition and Low-Energy Spin Density Fluctuations in Sr3Ru2O7." In Ruthenate and Rutheno-Cuprate Materials. Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45814-x_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ustinov, V. V., L. N. Romashev, M. A. Milyaev, T. P. Krinitsina, and A. M. Burkhanov. "Metamagnetic Transitions and Stepwise GMR in Uniaxial Fe/Cr Superlattices." In Advances in Science and Technology. Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-08-7.104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Czaja, P., R. Chulist, M. Szlezynger, M. Fitta, and W. Maziarz. "Multiphase Microstructure and Extended Martensitic Phase Transformation in Directionally Solidified and Heat Treated Ni44Co6Mn39Sn11 Metamagnetic Shape Memory Alloy." In Proceedings of the International Conference on Martensitic Transformations: Chicago. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76968-4_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sato, H. "Giant Magnetoresistance: Metamagnetic Transitions in Metallic Antiferromagnets." In Reference Module in Materials Science and Materials Engineering. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-803581-8.02793-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kihara, Takumi, Xiao Xu, Wataru Ito, et al. "Magnetocaloric Effects in Metamagnetic Shape Memory Alloys." In Shape Memory Alloys - Fundamentals and Applications. InTech, 2017. http://dx.doi.org/10.5772/intechopen.69116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sato, H. "Giant Magnetoresistance: Metamagnetic Transitions in Metallic Antiferromagnets." In Encyclopedia of Materials: Science and Technology. Elsevier, 2001. http://dx.doi.org/10.1016/b0-08-043152-6/00628-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sakon, Takuo, Naoki Fujimoto, Sho Saruki, Takeshi Kanomata, Hiroyuki Nojiri, and Yoshiya Adachi. "Magnetic Field-Induced Strain of Metamagnetic Heusler Alloy Ni41Co9Mn31.5Ga18.5." In Shape-Memory Materials. InTech, 2018. http://dx.doi.org/10.5772/intechopen.76291.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Metamagnetický"

1

Yuan, Hsiao-Kuan, Wenshan Cai, Uday K. Chettiar, et al. "Fabrication of Metamagnetics for Visible Wavelengths." In Frontiers in Optics. OSA, 2007. http://dx.doi.org/10.1364/fio.2007.fwd4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yuan, Hsiao-Kuan, Wenshan Cai, Uday K. Chettiar, et al. "Metamagnetics for Visible Wavelengths (491 – 754 nm)." In Photonic Metamaterials: From Random to Periodic. OSA, 2007. http://dx.doi.org/10.1364/meta.2007.ma4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

GRIGERA, S. A., A. P. MACKENZIE, A. J. SCHOFELD, S. R. JULIAN, and G. G. LONZARICH. "A METAMAGNETIC QUANTUM CRITICAL ENDPOINT IN Sr3Ru2O7." In Physical Phenomena at High Magnetic Fields - IV. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777805_0092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Araki, Shingo, Minami Hayashida, Naoto Nishiumi, et al. "Metamagnetic Transition of Itinerant Ferromagnet U3P4under High Pressure." In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2013). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.3.011081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

SUSLOV, A., D. DASGUPTA, J. R. FELLER, et al. "ULTRASONIC MEASUREMENTS AT THE METAMAGNETIC TRANSITION IN URu2Si2." In Physical Phenomena at High Magnetic Fields - IV. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777805_0031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Galgano, G. D., A. B. Henriques, G. Bauer, G. Springholz, Jisoon Ihm, and Hyeonsik Cheong. "Optical Probing of metamagnetic phases in epitaxial EuSe." In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Drachev, Vladimir P., Tom Tiwald, Josh Borneman, et al. "Bi-Anisotropy of Optical Metamagnetics Studied with Spectroscopic Ellipsometry." In Quantum Electronics and Laser Science Conference. OSA, 2010. http://dx.doi.org/10.1364/qels.2010.qwf2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

SUSLOV, A., D. DASGUPTA, J. R. FELLER, B. K. SARMA, J. B. KETTERSON, and D. G. HINKS. "ULTRASONIC AND MAGNETIZATION STUDIES AT THE METAMAGNETIC TRANSITION IN UPt3." In Physical Phenomena at High Magnetic Fields - IV. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777805_0039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chandrasekar, Rohith, Naresh K. Emani, Alexei Lagutchev, et al. "Second Harmonic Generation by Metamagnetics: Interplay of Electric and Magnetic Resonances." In Frontiers in Optics. OSA, 2014. http://dx.doi.org/10.1364/fio.2014.fm4b.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

OHTA, H., T. ARIOKA, E. KULATOV, S. HALILOV, and L. VINOKUROVA. "BAND CALCULATION STUDY OF METAMAGNETIC TRANSITIONS OF FeSi IN MEGAGAUSS FIELD." In Proceedings of the VIIIth International Conference on Megagauss Magnetic Field Generation and Related Topics. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702517_0044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!