Journal articles on the topic 'Metamaterial'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Metamaterial.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Smolyaninov, Igor I., and Vera N. Smolyaninova. "Metamaterial superconductors." Nanophotonics 7, no. 5 (May 24, 2018): 795–818. http://dx.doi.org/10.1515/nanoph-2017-0115.
Full textTzarouchis, Dimitrios C., Maria Koutsoupidou, Ioannis Sotiriou, Konstantinos Dovelos, Dionysios Rompolas, and Panagiotis Kosmas. "Electromagnetic metamaterials for biomedical applications: short review and trends." EPJ Applied Metamaterials 11 (2024): 7. http://dx.doi.org/10.1051/epjam/2024006.
Full textGu, Leilei, Hongzhan Liu, Zhongchao Wei, Ruihuan Wu, and Jianping Guo. "Optimized Design of Plasma Metamaterial Absorber Based on Machine Learning." Photonics 10, no. 8 (July 27, 2023): 874. http://dx.doi.org/10.3390/photonics10080874.
Full textTan, Plum, and Singh. "Surface Lattice Resonances in THz Metamaterials." Photonics 6, no. 3 (June 26, 2019): 75. http://dx.doi.org/10.3390/photonics6030075.
Full textRizzi, Gianluca, Marco Valerio d’Agostino, Patrizio Neff, and Angela Madeo. "Boundary and interface conditions in the relaxed micromorphic model: Exploring finite-size metastructures for elastic wave control." Mathematics and Mechanics of Solids 27, no. 6 (November 20, 2021): 1053–68. http://dx.doi.org/10.1177/10812865211048923.
Full textZhou, Xiaoshu, Qide Xiao, and Han Wang. "Metamaterials Design Method based on Deep learning Database." Journal of Physics: Conference Series 2185, no. 1 (January 1, 2022): 012023. http://dx.doi.org/10.1088/1742-6596/2185/1/012023.
Full textLi, Yafei, Jiangtao Lv, Qiongchan Gu, Sheng Hu, Zhigang Li, Xiaoxiao Jiang, Yu Ying, and Guangyuan Si. "Metadevices with Potential Practical Applications." Molecules 24, no. 14 (July 22, 2019): 2651. http://dx.doi.org/10.3390/molecules24142651.
Full textHu, Hua-Liang, Ji-Wei Peng, and Chun-Ying Lee. "Dynamic Simulation of a Metamaterial Beam Consisting of Tunable Shape Memory Material Absorbers." Vibration 1, no. 1 (July 18, 2018): 81–92. http://dx.doi.org/10.3390/vibration1010007.
Full textHou, Zheyu, Pengyu Zhang, Mengfan Ge, Jie Li, Tingting Tang, Jian Shen, and Chaoyang Li. "Metamaterial Reverse Multiple Prediction Method Based on Deep Learning." Nanomaterials 11, no. 10 (October 11, 2021): 2672. http://dx.doi.org/10.3390/nano11102672.
Full textZhang, Yumei, Jie Zhang, Ye Li, Dan Yao, Yue Zhao, Yi Ai, Weijun Pan, and Jiang Li. "Research Progress on Thin-Walled Sound Insulation Metamaterial Structures." Acoustics 6, no. 2 (March 26, 2024): 298–330. http://dx.doi.org/10.3390/acoustics6020016.
Full textGao, Shanshi, Weidong Liu, Liangchi Zhang, and Asit Kumar Gain. "A New Polymer-Based Mechanical Metamaterial with Tailorable Large Negative Poisson’s Ratios." Polymers 12, no. 7 (July 3, 2020): 1492. http://dx.doi.org/10.3390/polym12071492.
Full textGamal, Moh Danil Hendry, Yan Soerbakti, Zamri Zamri, Saktioto Saktioto, Defrianto Defrianto, Romi Fadli Syahputra, and Vepy Asyana. "Negative refractive index anomaly characteristics of SRR hexagonal array metamaterials." Science, Technology and Communication Journal 4, no. 2 (February 29, 2024): 57–60. http://dx.doi.org/10.59190/stc.v4i2.261.
Full textYuchao, Ma, Mo Juan, Xu Ke, Li Xiang, and Sun Xinbo. "Material Parameters Acquisition and Sound Insulation Performance analysis of Membrane-type Acoustic Metamaterials Applied for Transformer." E3S Web of Conferences 136 (2019): 01031. http://dx.doi.org/10.1051/e3sconf/201913601031.
Full textYang, Jing Jing, Ming Huang, Jun Sun, and Jun Dong Yang. "Metamaterial Sensor Based on WGM." Key Engineering Materials 495 (November 2011): 28–32. http://dx.doi.org/10.4028/www.scientific.net/kem.495.28.
Full textAhmad, Ali, Abeer Asad, Pocholo Pacpaco, Claire Thampongphan, and Muhammad Hasibul Hasan. "Application of Metamaterial in Renewable Energy: A Review." International Journal of Engineering Materials and Manufacture 9, no. 2 (April 15, 2024): 60–80. http://dx.doi.org/10.26776/ijemm.09.02.20243.04.
Full textYang, Jing Jing, Ming Huang, Hao Tang, Jia Zeng, and Ling Dong. "Metamaterial Sensors." International Journal of Antennas and Propagation 2013 (2013): 1–16. http://dx.doi.org/10.1155/2013/637270.
Full textRen, Yi, Minghui Duan, Rui Guo, and Jing Liu. "Printed Transformable Liquid-Metal Metamaterials and Their Application in Biomedical Sensing." Sensors 21, no. 19 (September 22, 2021): 6329. http://dx.doi.org/10.3390/s21196329.
Full textGao, Xu, Jiyuan Wei, Jiajing Huo, Zhishuai Wan, and Ying Li. "The Vibration Isolation Design of a Re-Entrant Negative Poisson’s Ratio Metamaterial." Applied Sciences 13, no. 16 (August 21, 2023): 9442. http://dx.doi.org/10.3390/app13169442.
Full textDatta, Srijan, Saptarshi Mukherjee, Xiaodong Shi, Mahmood Haq, Yiming Deng, Lalita Udpa, and Edward Rothwell. "Negative Index Metamaterial Lens for Subwavelength Microwave Detection." Sensors 21, no. 14 (July 13, 2021): 4782. http://dx.doi.org/10.3390/s21144782.
Full textZhang, Wu, Jiahan Lin, Zhengxin Yuan, Yanxiao Lin, Wenli Shang, Lip Ket Chin, and Meng Zhang. "Terahertz Metamaterials for Biosensing Applications: A Review." Biosensors 14, no. 1 (December 21, 2023): 3. http://dx.doi.org/10.3390/bios14010003.
Full textYan, Dexian, Yi Wang, Yu Qiu, Qinyin Feng, Xiangjun Li, Jining Li, Guohua Qiu, and Jiusheng Li. "A Review: The Functional Materials-Assisted Terahertz Metamaterial Absorbers and Polarization Converters." Photonics 9, no. 5 (May 11, 2022): 335. http://dx.doi.org/10.3390/photonics9050335.
Full textMachac, Jan. "A negative permittivity metamaterial composed of planar resonators with randomly detuned resonant frequencies and randomly distributed in space." International Journal of Microwave and Wireless Technologies 10, no. 9 (July 4, 2018): 1028–34. http://dx.doi.org/10.1017/s1759078718001046.
Full textSaravana Jothi, N. S., and A. Hunt. "Active mechanical metamaterial with embedded piezoelectric actuation." APL Materials 10, no. 9 (September 1, 2022): 091117. http://dx.doi.org/10.1063/5.0101420.
Full textKaschke, Johannes, and Martin Wegener. "Optical and Infrared Helical Metamaterials." Nanophotonics 5, no. 4 (September 1, 2016): 510–23. http://dx.doi.org/10.1515/nanoph-2016-0005.
Full textVangelatos, Z., K. Komvopoulos, and CP Grigoropoulos. "Vacancies for controlling the behavior of microstructured three-dimensional mechanical metamaterials." Mathematics and Mechanics of Solids 24, no. 2 (November 29, 2018): 511–24. http://dx.doi.org/10.1177/1081286518810739.
Full textKarimi Mahabadi, Rayehe, Taha Goudarzi, Romain Fleury, Bakhtiyar Orazbayev, and Reza Naghdabadi. "Effect of mechanical nonlinearity on the electromagnetic response of a microwave tunable metamaterial." Journal of Physics D: Applied Physics 55, no. 20 (February 17, 2022): 205102. http://dx.doi.org/10.1088/1361-6463/ac5209.
Full textFan, Yuancheng, Xuan He, Fuli Zhang, Weiqi Cai, Chang Li, Quanhong Fu, Nataliia V. Sydorchuk, and Sergey L. Prosvirnin. "Fano-Resonant Hybrid Metamaterial for Enhanced Nonlinear Tunability and Hysteresis Behavior." Research 2021 (August 13, 2021): 1–9. http://dx.doi.org/10.34133/2021/9754083.
Full textLiu, Xiajun, Feng Xia, Mei Wang, Jian Liang, and Maojin Yun. "Working Mechanism and Progress of Electromagnetic Metamaterial Perfect Absorber." Photonics 10, no. 2 (February 14, 2023): 205. http://dx.doi.org/10.3390/photonics10020205.
Full textSun, Zhanshuo, Xin Wang, Junlin Wang, Hao Li, Yuhang Lu, and Yu Zhang. "Switchable Multifunctional Terahertz Metamaterials Based on the Phase-Transition Properties of Vanadium Dioxide." Micromachines 13, no. 7 (June 27, 2022): 1013. http://dx.doi.org/10.3390/mi13071013.
Full textFitzgerald, Thomas M., and Michael A. Marciniak. "Full Optical Scatter Analysis for Novel Photonic and Infrared Metamaterials." Advances in Science and Technology 75 (October 2010): 240–45. http://dx.doi.org/10.4028/www.scientific.net/ast.75.240.
Full textZeng, Yi, Liyun Cao, Sheng Wan, Tong Guo, Shuowei An, Yan-Feng Wang, Qiu-Jiao Du, Brice Vincent, Yue-Sheng Wang, and Badreddine Assouar. "Inertially amplified seismic metamaterial with an ultra-low-frequency bandgap." Applied Physics Letters 121, no. 8 (August 22, 2022): 081701. http://dx.doi.org/10.1063/5.0102821.
Full textLan, Jun, Yunpeng Liu, Tao Wang, Yifeng Li, and Xiaozhou Liu. "Acoustic coding metamaterial based on non-uniform Mie resonators." Applied Physics Letters 120, no. 16 (April 18, 2022): 163501. http://dx.doi.org/10.1063/5.0071897.
Full textZhai, Zirui, Yong Wang, and Hanqing Jiang. "Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness." Proceedings of the National Academy of Sciences 115, no. 9 (February 12, 2018): 2032–37. http://dx.doi.org/10.1073/pnas.1720171115.
Full textHu, Longfei, Ketian Shi, Xiaoguang Luo, Jijun Yu, Bangcheng Ai, and Chao Liu. "Application of Additively Manufactured Pentamode Metamaterials in Sodium/Inconel 718 Heat Pipes." Materials 14, no. 11 (June 2, 2021): 3016. http://dx.doi.org/10.3390/ma14113016.
Full textWang, Xingzhong, Shiteng Rui, Shaokun Yang, Weiquan Zhang, and Fuyin Ma. "A low-frequency pure metal metamaterial absorber with continuously tunable stiffness." Applied Mathematics and Mechanics 45, no. 7 (July 2024): 1209–24. http://dx.doi.org/10.1007/s10483-024-3158-7.
Full textSoerbakti, Yan, Saktioto, Ari Sulistyo Rini, Budi Astuti, Syamsudhuha, Sofia Anita, Hery Suyanto, and Yolanda Rati. "Optimization of Semiconductor-Based SRR Metamaterials as Sensors." Journal of Physics: Conference Series 2696, no. 1 (January 1, 2024): 012015. http://dx.doi.org/10.1088/1742-6596/2696/1/012015.
Full textZhao, Long, Zeqi Lu, Hu Ding, and Liqun Chen. "A viscoelastic metamaterial beam for integrated vibration isolation and energy harvesting." Applied Mathematics and Mechanics 45, no. 7 (July 2024): 1243–60. http://dx.doi.org/10.1007/s10483-024-3159-7.
Full textChoi, Jung Sik, and Gil Ho Yoon. "An Acoustic Hyperlens with Negative Direction Based on Double Split Hollow Sphere." Journal of Theoretical and Computational Acoustics 27, no. 02 (June 2019): 1850025. http://dx.doi.org/10.1142/s2591728518500251.
Full textXie, Xin, Xiao Ming Wang, and Yu Lin Mei. "Acoustic Metamaterial Design Method Based on Green Coordinate Transformation." Materials Science Forum 976 (January 2020): 15–24. http://dx.doi.org/10.4028/www.scientific.net/msf.976.15.
Full textJiang, Haoqing, Yue Wang, Zijian Cui, Xiaoju Zhang, Yongqiang Zhu, and Kuang Zhang. "Vanadium Dioxide-Based Terahertz Metamaterial Devices Switchable between Transmission and Absorption." Micromachines 13, no. 5 (April 30, 2022): 715. http://dx.doi.org/10.3390/mi13050715.
Full textCraig, Steven R., Bohan Wang, Xiaoshi Su, Debasish Banerjee, Phoebe J. Welch, Mighten C. Yip, Yuhang Hu, and Chengzhi Shi. "Extreme material parameters accessible by active acoustic metamaterials with Willis coupling." Journal of the Acoustical Society of America 151, no. 3 (March 2022): 1722–29. http://dx.doi.org/10.1121/10.0009771.
Full textBang, Sanghun, Jeonghyun Kim, Gwanho Yoon, Takuo Tanaka, and Junsuk Rho. "Recent Advances in Tunable and Reconfigurable Metamaterials." Micromachines 9, no. 11 (October 31, 2018): 560. http://dx.doi.org/10.3390/mi9110560.
Full textBOURAS, Khedidja, Abdelhadi LABIAD, Chaker SALEH, and Mouloud BOUZOUAD. "Emulation of metamaterial waveguides." Algerian Journal of Signals and Systems 3, no. 3 (September 15, 2018): 117–24. http://dx.doi.org/10.51485/ajss.v3i3.67.
Full textBaz, Amr M. "Bandgap and mode shape tuning of piezoelectric metamaterial." Journal of the Acoustical Society of America 151, no. 4 (April 2022): A156. http://dx.doi.org/10.1121/10.0010956.
Full textNeil, Thomas R., Zhiyuan Shen, Daniel Robert, Bruce W. Drinkwater, and Marc W. Holderied. "Moth wings are acoustic metamaterials." Proceedings of the National Academy of Sciences 117, no. 49 (November 23, 2020): 31134–41. http://dx.doi.org/10.1073/pnas.2014531117.
Full textHe, Yufang, Xiangtian Kong, Juntao He, Junpu Ling, and Mingyao Pi. "A novel all-metal metamaterial for constructing relativistic slow wave structure." AIP Advances 12, no. 3 (March 1, 2022): 035345. http://dx.doi.org/10.1063/5.0083360.
Full textXu, Rui-Jia, and Yu-Sheng Lin. "Actively MEMS-Based Tunable Metamaterials for Advanced and Emerging Applications." Electronics 11, no. 2 (January 13, 2022): 243. http://dx.doi.org/10.3390/electronics11020243.
Full textEnaki, Nicolae A., Ion Munteanu, Tatiana Paslari, Marina Turcan, Elena Starodub, Sergiu Bazgan, Diana Podoleanu, et al. "Topological Avenue for Efficient Decontamination of Large Volumes of Fluids via UVC Irradiation of Packed Metamaterials." Materials 16, no. 13 (June 24, 2023): 4559. http://dx.doi.org/10.3390/ma16134559.
Full textKhodaei, Mohammad Javad, Amin Mehrvarz, Reza Ghaffarivardavagh, and Nader Jalili. "Retrieving effective acoustic impedance and refractive index for size mismatch samples." AIP Advances 12, no. 6 (June 1, 2022): 065224. http://dx.doi.org/10.1063/5.0082371.
Full textCui, Hangrui, Jiazhen Zhang, Ziping Wang, and Rahim Gorgin. "A Pragmatic Design of Elastic Metamaterial with Extreme Anisotropic Stiffness." Journal of Physics: Conference Series 2671, no. 1 (January 1, 2024): 012016. http://dx.doi.org/10.1088/1742-6596/2671/1/012016.
Full text