To see the other types of publications on this topic, follow the link: Meteorology. Atmospheric physics.

Dissertations / Theses on the topic 'Meteorology. Atmospheric physics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Meteorology. Atmospheric physics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Potvin, Guy. "The application of RASS in urban boundary layer meteorology." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0019/NQ44556.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Froelich, Norma Jeanne. "Modeling of thermotopographic flows in forested terrain." [Bloomington, Ind.] : Indiana University, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3386677.

Full text
Abstract:
Thesis (Ph.D.)--Indiana University, Dept. of Geography, 2009.
Title from PDF t.p. (viewed on Jul 20, 2010). Source: Dissertation Abstracts International, Volume: 70-12, Section: B, page: 7439. Advisers: Scott Robeson; Hans Peter Schmid.
APA, Harvard, Vancouver, ISO, and other styles
3

Malinga, Sandile Bethuel. "A comparative study of atmospheric dynamics in the mesosphere and lower thermosphere (MLT) near Grahamstown (South Africa) and Adelaide (Australia)." Thesis, Rhodes University, 2002. http://hdl.handle.net/10962/d1007307.

Full text
Abstract:
The observations made near Grahamstown (33 .3°S, 26.5°E), South Africa and Adelaide (34.5°S, 138.5°E), Australia over the years 1987 to 1994 are used to study the dynamics of the mesosphere and lower thermosphere (ML T) region with a focus on ∼ 90 km altitude. In particular this thesis deals with on the atmospheric mean flow and the solar diurnal and semi diurnal oscillations with a view to (i) deducing their patterns at the two sites, (ii) comparing the dynamic structures observed at the two sites with special emphases on longitudinal variations, and (iii) putting these observations in a global context by comparing with other ground-based observations, satellite observations and numerical simulations. The main findings are summarised below. The mean flow and the tides at Grahamstown and Adelaide are characteristically variable at planetary time scales. Wavelet spectral and multiresolution analyses reveal that the dominant planetary oscillation is the quasi-16-day oscillation. However, no apparent correlation in the 16-day waves of the mean flow, the diurnal tide and the semidiurnal tide was found. The short-term fluctuations were also investigated using complex demodulation and bispectral techniques and it was found that some of the observed variations in tides could be due to non-linear wave-wave interactions. The long-term trends of the mean flow and tides show patterns that are in broad agreement with theory, results from elsewhere (ground-based and satellite) and the results of the Global-Scale Wave Model and various models by Portnyagin and others. In general the mean flow, the amplitudes and phases of both tides were found to exhibit seasonal and interannual variations which are thought to be related to various factors including (i) changes in the atmospheric mean environment, (ii) thermotidal forcing (iii) gravity wave effects, (iv) planetary scale influence, (v) long-term (e.g. quasi-biennial oscillation) modulation, and (vi) solar activity. There are significant longitudinal differences in the dynamic structure between Grahamstown and Adelaide. More especially, Grahamstown tends to have stronger mean flow and tidal activity than Adelaide. For tides, these differences are thought to be partly due to nonmigrating tidal modes but, in general, migrating modes were found to be dominant.
APA, Harvard, Vancouver, ISO, and other styles
4

Lewis, Michael M. "Development and evolution of cirrus in a mesoscale model." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Mar%5FLewis.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vellore, Ramesh K. "Challenges in forecasting the cloud-capped marine boundary layer and utilization of satellite data to improve mesoscale modeling." abstract and full text PDF (free order & download UNR users only), 2006. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3239879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lathem, Terry Lee. "On the water uptake of atmospheric aerosol particles." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/50112.

Full text
Abstract:
The feedbacks among aerosols, clouds, and radiation are important components for understanding Earth's climate system and quantifying human-induced climate change, yet the magnitude of these feedbacks remain highly uncertain. Since every cloud droplet in the atmosphere begins with water condensing on a pre-existing aerosol particle, characterizing the ability of aerosols to uptake water vapor and form cloud condensation nuclei (CCN) are key to understanding the microphysics behind cloud formation, as well as assess the impact aerosols have on the Earth system. Through a combination of controlled laboratory experiments and field measurements, this thesis characterizes the ability of atmospheric aerosols to uptake water vapor and become CCN at controlled levels of water vapor supersaturation. The origin of the particle water uptake, termed hygroscopicity, is also explored, being from either the presence of deliquescent soluble material and/or adsorption onto insoluble surfaces. The data collected and presented is comprehensive and includes (1) ground samples of volcanic ash, collected from six recent eruptions re-suspended in the laboratory for analysis, (2) laboratory chamber and flow-tube studies on the oxidation and uptake of surface active organic compounds, and (3) in-situ aircraft measurements of aerosols from the Arctic background, Canadian boreal forests, fresh and aged biomass burning, anthropogenic industrial pollution, and from within tropical cyclones in the Atlantic basin. Having a more thorough understanding of aerosol water uptake will enable more accurate representation of cloud droplet number concentrations in global models, which can have important implications on reducing the uncertainty of aerosol-cloud-climate interactions, as well as additional uncertainties in aerosol transport, atmospheric lifetime, and impact on storm dynamics.
APA, Harvard, Vancouver, ISO, and other styles
7

Han, Weiqing. "Influence of Salinity on Dynamics, Thermodynamics and Mixed-Layer Physics in the Indian Ocean." NSUWorks, 1999. http://nsuworks.nova.edu/occ_stuetd/62.

Full text
Abstract:
A nonlinear, 4½-layer model with active thermodynamics and mixed-layer physics is used to examine salinity effects due to various forcings in the Indian Ocean. Theses forcings include: evaporation (ε) and precipitation (Ρ), river runoff in the Bay of Bengal, the Indonesian Throughflow, and the influx of salty waters from the Persian Gulf and the Red Sea. Solutions with P - ε forcing produce salinity patterns that agree qualitatively with the observations in the upper three layers. Quantitatively, however, salinity values tend to be higher than the observations in most of the basin. In regions where precipitation is strong (P - ε » 0), a thin surface mixed layer (layer 1), and thus a thicker seasonal thermocline (layer 2, a barrier layer), are formed due to decreased entrainment. In these regions, surface currents generally strengthen, T2 warms considerably and SST increases somewhat, resulting in temperature inversions at some locations of the southern Bay and the eastern equatorial ocean. Somewhat surprisingly, P - ε also causes large temperature changes in layer 3 (thermocline) and thickness changes in layers 3 and 4 (intermediate water). The Bay-of-Bengal river runoff improves salinity values significantly in the upper three layers, especially within the Bay and alongC the west coast of India. During the Southwest onsoon (SWM), coastal Kelvin waves driven by the Ganges-Brahmaputra river inflow suppress upwelling along the northeast coast of India, increasing SST by 1°C. During the Northeast Monsoon (NEM), fresh water from the rivers is carried southward by the East India Coastal Current (EICC), raising sea level and thus strengthening the EICGby 10 cm/s. This fresh water can flow directly through the India-Sri Lanka separation in the surface mixed layer, generating a strong salinity gradient along the west Indian coast during winter. The river water decreases entrainment around the perimeter of the Bay during winter, thereby producing a thin surface mixed layer, increasing T2 , and resulting in temperature inversions in the northwestern Bay. Like P - ε, the rivers cause significant thickness and temperature anomalies in layer 3. The Indonesian Throughflow improves salinities in all four layers of the model, especially in the southern tropical ocean. Consistent with previous studies, most of the Throughflow water flows out of the Indian Ocean along the western boundary and near Madagascar. A significant amount of water, however, is advected northward into the Somali basin and subsequently carried eastward into the ocean interior and northward into the Arabian Sea. The Throughflow increases SST primarily along the west Australian coast but warms the thermocline (layer 3) throughout the Indian Ocean, especially in the southern tropical ocean. As a consequence, sea level is raised in the entire basin. Warmer and saltier Persian-Gulf water (PGW) enters the Indian Ocean in layer 3, warming the northern Arabian Sea by 0.2-2°C and increasing the salinity by 0.1-0.6 psu through horizontal mixing. It increases sea-surface salinity (SSS) in a broad region of the Arabian Sea by 0.1- 0.2 psu because entrainment and, to a less extent, coastal upwelling bring PGW into the surface mixed layer, where it spreads over a large region due to advection. High-salinity and high-temperature Red-Sea water (RSW) warms layer-4 (upper intermediate layer) and increases its salinity by a significant amount in most region of the Indian Ocean, especially in the Somali Basin, the interior Arabian Sea, and the central and western equatorial ocean.
APA, Harvard, Vancouver, ISO, and other styles
8

Fenlason, Joel W. "Accuracy of tropical cyclone induced winds using TYDET at Kadena AB." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Mar%5FFenlason.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Munoz, Esparza Domingo. "Multiscale modelling of atmospheric flows: towards improving the representation of boundary layer physics." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209363.

Full text
Abstract:
Atmospheric boundary layer flows are characterized by the coexistence of a broad range of scales. These scales cover from synoptic- (100-5000 km) and meso-scales (1-100 km) up to three-dimensional micro-scale turbulence (less than a few kilometers). This multiscale nature inherent to atmospheric flows clearly determines the behaviour of the atmospheric boundary layer, whose structure and evolution are of major importance for the wind energy community. This PhD thesis is focused on the development of a numerical methodology that allows to include contribution from all the above mentioned scales, with the purpose of improving the representation of boundary layer processes. The multiscale numerical methodology is developed based on a numerical weather prediction (NWP) model, the Weather Research and Forecasting (WRF) model.

Prior to the development of the multiscale numerical methodology, one-year of sonic anemometer and wind LiDAR measurements from the FINO1 offshore platform are analyzed. A comprehensive database of offshore measurements in the lowest 250 m of the boundary layer is developed after quality data check and correction for flow distortion effects by the measurement mast, allowing the characterization of the offshore conditions at FINO1. Spectral analysis of high frequency sonic anemometer measurements is used to estimate a robust averaing time for the turbulent fluxes that minimizes non-universal contributions from mesoscale structures but captures the contribution from boundary layer turbulence, employing the Ogive function concept. A stability classification of the measurements is carried out based on the Obukhov length. Results compare well to other surface layer observational studies while vertical wind speed profiles exhibit the expected stability-dependency.

Although NWP models have been extensively used for weather forecasting purposes, a comprehensive analysis of its suitability to meet the wind energy requirements needs to be carried out. The applicability of the WRF mesoscale model to reproduce offshore boundary layer characteristics is evaluated and validated against field measurements from FINO1. The ability of six planetary boundary layer (PBL) parameterizations to account for stability effects is analyzed. Overall, PBL parameterizations are rather accurate in reproducing the vertical structure of the boundary layer for convective and neutral stabilities. However, difficulties are found under stable stratifications, due to the general tendency of PBL formulations to be overdiffusive and therefore, not capable to develope the strong vertical gradients found in the observations. A low-level jet and a very shallow boundary layer cases are simulated to provide further insights into the limits of the parameterizations.

Large-eddy simulations (LES) based on averaged conditions from a convective episode at FINO1 are conducted to understand the mechanisms of transition and equilibration that occur in turbulent one-way nested simulations. The nonlinear backscatter and anisotropy subgrid scale model with a prognostic turbulent kinetic energy equation is found to be capable of providing similar results when performing one-way nested large-eddy simulations to a reference stand-alone domain using periodic lateral boundary conditions. A good agreement is obtained in terms of velocity shear and turbulent fluxes of heat and momentum, while velocity variances are overestimated. A considerable streamwise fetch is needed following each domain transition for appropriate energy levels to be reached at high wavelengths and for the solution to reach quasi-stationary results. A pile-up of energy is observed at low wavelengths on the first nested domain, mitigated by the inclusion of a second nested domain with higher resolution that allows the development of an appropriate turbulent energy cascade.

As the final step towards developing the multiscale capabilities of WRF, the specific problem of the transition from meso- to micro-scales in atmospheric models is addressed. The challenge is to generate turbulence on inner LES domain from smooth mesoscale inflow. Several new methods are proposed to trigger the development of turbulent features. The inclusion of adequate potential temperature perturbations near the inflow boundaries of the LES domain results in a very good agreement of mean velocity profiles, variances and turbulent fluxes, as well as velocity spectra, when compared to periodic stand-alone simulations. This perturbation method allows an efficient generation of fully developed turbulence and is tested under a broad range of atmospheric stabilities: convective, neutral and stable conditions, showing successful results in all the regimes.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
10

Monaghan, Andrew J. "Recent variability and trends in antarctic snowfall accumulation and near-surface air temperature." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1173210638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Allen, Christopher J. T. "Atmospheric mechanisms of central Saharan dust storm formation in boreal summer : observations from the Fennec campaign." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:896c26f3-c7a5-4c93-9e53-69b69b28d1cb.

Full text
Abstract:
In boreal summer, satellite measurements show that the central Sahara is the dustiest region of the planet. However, ground-based observations of the central Sahara have been limited to its outer edges, leaving a void in observations approximately 1 million km2 in area. The Fennec Project has been the first campaign to instrument this remote but climatologically important region. This thesis uses these new observations to detect and explain the atmospheric mechanisms that make the central Sahara the summer global dust maximum. Four atmospheric mechanisms are found to cause dust storms in the central Sahara in June 2011 and June 2012. These are cold pool outflows, low-level jets (LLJs), monsoon surges and dry convective plumes. Dust may be emitted locally by these phenomena, or be advected, principally by cold pools. In both field seasons, dust emission by cold pool outflows is the most important dust mechanism, causing roughly half of the total dust loadings at the Fennec supersite of Bordj-Badji Mokhtar (BBM), the closest station to the dust maximum. The second most important mechanism is dust advection by cold pools (roughly 30% dust at BBM), followed by dust emission by monsoon surges, LLJs and finally dry convective plumes (only 2% dust at BBM). Although June 2012 was significantly more dusty than June 2011, the relative importance of the different atmospheric dust mechanisms at BBM did not change. At the automatic weather stations (AWSs) across the remote desert, cold pools and LLJs are by far the most frequently detected atmospheric dust mechanisms. LLJs are particularly common in the Atlantic Inflow in western Mauritania and in the north-easterly Harmattan in western Algeria. Cold pools are much more frequent at BBM, the station under the greatest moist monsoon influence, than at the AWSs to the north. Detection of advected dust is a particular difficulty without dedicated dust-detection instrumentation or human observers (e.g. at the AWSs). Detection of dust emission mechanisms can be very successful with only routine ground observations and satellite measurements, but quantifying the associated dust burden without dedicated dust instruments is problematic. The choice of instrumentation for dust measurement is crucial. Because cold pool outflows - the most important dust mechanism - frequently occur at night or under cloud, sun photometers miss about half of cold pool dust. Lidars have the advantage of providing height resolved dust profiles, but they suffer from attenuation in thick dust. The nephelometer proved to be the most reliable dust instrument. Although LLJs occurred on 21/28 mornings at BBM in June 2011, only five of these jets led to dust emission. Calculations of momentum exchanges through the atmospheric column show that momentum mix-down from the jet core is the cause of dust emission on these occasions, but that the LLJ has to be particularly strong (≥ 16 m s-1) to result in dust emission at the surface. Met Office Africa-LAM underestimates monsoon LLJ wind profiles and ERA-Interim reanalysis underestimates both monsoon and Harmattan LLJ wind profiles. At the surface, the Met Office Africa-LAM and GLOBAL models significantly underpredict the frequency of observed wind speeds >6 m s-1. This will cause them to significantly underestimate dust emission, as emission is a threshold process proportional to the cube of wind speed. A particularly interesting implication of the research presented here is that the central Sahara is likely much more dusty than previously thought. This is because almost all of the techniques currently used to study dust in the region are systematically biased to result in underestimates of dust burden. Cold pools are the most important dust mechanism but, since they rarely occur during the daytime or in cloud-free conditions they are often missed by sun photometers. Many will be missed by satellites that cannot retrieve below cloud and satellites that pass over the Sahara in daylight hours (e.g. the A-train). A commonly-used satellite dust detection algorithm often misses dust under moist (i.e. cold pool) conditions. Cold pools cannot be simulated by models without explicit convection, which requires very high spatial resolution. Finally, the numerical models assessed here significantly underpredict the frequency of wind speeds over the dust emission threshold. The Sahara is probably much dustier than current estimates suggest.
APA, Harvard, Vancouver, ISO, and other styles
12

Wilson, Colin Frank. "Measurement of wind on the surface of Mars." Thesis, University of Oxford, 2003. http://ora.ox.ac.uk/objects/uuid:08343673-77de-4e46-a2fd-5c7c6e3be0e8.

Full text
Abstract:
The Martian atmosphere is of great scientific interest, both because of its similarity to Earth’s atmosphere, and because of its relevance to exploration of Mars. Although satellite instruments have provided a wealth of atmospheric data, they have provided little information about the atmospheric boundary layer. Conditions in the lowest few metres of the Martian atmosphere are perhaps the most directly interesting to humans, as this is the portion of our own atmosphere with which we have the most contact. In this thesis is described the design, calibration and operations planning for a new wind sensor for use on Mars. This sensor is lighter and smaller than previous Mars wind sensors. At the time of writing, the wind sensor is on its way to Mars as part of the science payload of Beagle 2, a small exobiology lander due to arrive in December 2003. The Beagle 2 wind sensor (B2WS) is a hot-film anemometer. Three platinum films are equally spaced around the surface of a vertical cylinder. A known current is dissipated in each film, heating the film 40-80°C above the ambient gas temperature. The film temperature is obtained by measuring its resistance. An effective heat transfer coefficient is then calculated for each film. A novel scheme has been developed which allows calculation of a wind vector from the differences between these heat transfer coefficients, rather than from their average. This makes the measured wind vector less prone to common-mode errors such as uncertainties in air temperature or sky temperature. The sensor was calibrated in a low density wind tunnel, optimised to provide stable winds of air or carbon dioxide at Martian pressures (5 – 10 mbar) and speeds (0.5 – 30 m/s). The flow field in the test section was calculated using analytical and finite element modelling techniques, and validated experimentally using a pitot probe. This facility’s stability and accuracy represent a significant improvement over previous calibration facilities. An analytical model of heat flow in the sensor has been developed in order to permit correction for conditions which may be encountered on Mars, but were not tested for in the wind tunnel. The wind sensor’s performance in a real Martian atmosphere is simulated using wind and temperature data from a previous Mars lander. The position of the wind sensor position at the end of Beagle 2's motorised arm allows several new possibilities for wind measurement on Mars that were unavailable in previous missions. The height of the wind and air temperature sensors can be adjusted to any height between 20 and 95 cm above the ground. The temperature sensor can be scanned horizontally and vertically above the lander to study convective updrafts above the heated lander. Planned operations sequences on Mars are discussed.
APA, Harvard, Vancouver, ISO, and other styles
13

Alves, Claudia Marins. "Stochastic models for the treatment of dispersion in the atmosphere." Laboratório Nacional de Computação Científica, 2006. http://www.lncc.br/tdmc/tde_busca/arquivo.php?codArquivo=135.

Full text
Abstract:
Lagrangian stochastic models are a largely used tool in the study of passive substances dispersion inside the Atmospheric Boundary Layer. Its application is related to the trajectory computation of thousands of particles, that numerically simulate the dispersion of suspense substances in the atmosphere. In this study, the basic concepts related to the Lagrangian stochastic modelling are presented and discussed together with its main characteristics and its computational implementation, to the study of particles dispersion in the atmosphere. In a computational experiment, the obtained results are compared with observational data from the TRACT experiment, that took place in Europe in 1992. The input data needed for the dispersion model are extracted from simulations with the numerical weather forecast model RAMS. Dispersion over Rio de Janeiro region is also tested in a second experiment.
Modelos Lagrangianos estocásticos constituem ferramenta muito utilizada no estudo da dispersão de substâncias passivas na Camada Limite Atmosférica. Sua aplicação consiste em calcular a trajetória de milhares de partículas, que simulam numericamente a dispersão de uma substância em suspensão na atmosfera. Nesta tese, são apresentados e discutidos os conceitos básicos relacionados à Modelagem Lagrangiana Estocástica de Partículas, bem como suas principais características e sua implementação computacional, para o estudo da dispersão de partículas na atmosfera. Numa experimentação computacional, comparam-se os resultados obtidos com dados observacionais provenientes do experimento TRACT, realizado na Europa em 1992. Os dados de entrada necessários ao modelo de dispersão são extraídos de simulações do modelo de previsão numérica do tempo RAMS. A dispersão sobre o Estado do Rio de Janeiro é também testada em um segundo experimento.
APA, Harvard, Vancouver, ISO, and other styles
14

Tshisaphungo, Mpho. "Validation of high frequency propagation prediction models over Africa." Thesis, Rhodes University, 2010. http://hdl.handle.net/10962/d1015239.

Full text
Abstract:
The ionosphere is an important factor in high frequency (HF) radio propagation providing an opportunity to study ionospheric variability as well as the space weather conditions under which HF communication can take place. This thesis presents the validation of HF propagation conditions for the Ionospheric Communication Enhanced Profile Analysis and Circuit (ICEPAC) and Advanced Stand Alone Prediction System (ASAPS) models over Africa by comparing predictions with the measured data obtained from the International Beacon Project (IBP). Since these models were not developed using information on the African region, a more accurate HF propagation prediction tool is required. Two IBP transmitter stations are considered, Ruaraka, Kenya (1.24°S, 36.88°E) and Pretoria, South Africa (25.45°S, 28.10°E) with one beacon receiver station located in Hermanus, South Africa (34.27°S, 19.l2°E). The potential of these models in terms of HF propagation conditions is illustrated. An attempt to draw conclusions for future improvement of the models is also presented. Results show a low prediction accuracy for both ICEPAC and ASAPS models, although ICEPAC provided more accurate predictions for daily HF propagation conditions. This thesis suggests that the development of a new HF propagation prediction tool for the African region or the modification of one of the existing models to accommodate the African region, taking into account the importance of the African ionospheric region, should be considered as an option to ensure more accurate HF Propagation predictions over this region.
APA, Harvard, Vancouver, ISO, and other styles
15

Young, Roland Michael Brendon. "Predictability of a laboratory analogue for planetary atmospheres." Thesis, University of Oxford, 2009. http://ora.ox.ac.uk/objects/uuid:b4f483a6-437c-4914-b94e-cb04d996b337.

Full text
Abstract:
The thermally-driven rotating annulus is a laboratory experiment used to study the dynamics of planetary atmospheres under controlled and reproducible conditions. The predictability of this experiment is studied by applying the same principles used to predict the atmosphere. A forecasting system for the annulus is built using the analysis correction method for data assimilation and the breeding method for ensemble generation. The results show that a range of flow regimes with varying complexity can be accurately assimilated, predicted, and studied in this experiment. This framework is also intended to demonstrate a proof-of-concept: that the annulus could be used as a testbed for meteorological techniques under laboratory conditions. First, a regime diagram is created using numerical simulations in order to select points in parameter space to forecast, and a new chaotic flow regime is discovered within it. The two components of the framework are then used as standalone algorithms to measure predictability in the perfect model scenario and to demonstrate data assimilation. With a perfect model, regular flow regimes are found to be predictable until the end of the forecasts, and chaotic regimes are predictable over hundreds of seconds. There is a difference in the way predictability is lost between low-order chaotic regimes and high-order chaos. Analysis correction is shown to be accurate in both regular and chaotic regimes, with residual velocity errors about 3-8 times the observational error. Specific assimilation scenarios studied include information propagation from data-rich to data-poor areas, assimilation of vortex shedding observations, and assimilation over regime and rotation rate transitions. The full framework is used to predict regular and chaotic flow, verifying the forecasts against laboratory data. The steady wave forecasts perform well, and are predictable until the end of the available data. The amplitude and structural vacillation forecasts lose quality and skill by a combination of wave drift and wavenumber transition. Amplitude vacillation is predictable up to several hundred seconds ahead, and structural vacillation is predictable for a few hundred seconds.
APA, Harvard, Vancouver, ISO, and other styles
16

Oyola, Mayra I. "Implementation of a Global Dust Physical Sea Surface Temperature Retrieval For Numerical Weather Prediction Applications." Thesis, Howard University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10188977.

Full text
Abstract:

This works presents the results for the first study to ever attempt to analyze the full potential and limitations of incorporating aerosols within a truly physical SST retrieval for operational weather forecasting purposes. This is accomplished through the application of a satellite sea surface temperature (SST) physical retrieval for satellite split-window and hyperspectral infrared (IR) sensors that allows a better representation of the atmospheric state under aerosol-laden conditions. The new algorithm includes 1) accurate specification of the surface emissivity that characterizes the surface leaving radiance and 2) transmittance and physical characterization of the atmosphere by using the Community Radiative transfer model (CRTM). This project includes application of the NEMS-Global Forecasting System Aerosol Component (NGAC) fields, which corresponds to the first global interactive atmosphere-aerosol forecast system ever implemented at NOAA’s National Center for Environmental Prediction (NCEP).

A number of limiting factors were identified by analysing brightness temperatures and SST outputs biases as a function of latitude, zenith angle, wind and moisture for cases in January and November 2013. SST ouputs are validated against a bulk SST (Reynolds SST) and a parameterized SST derived from operational products and partly against observed measurements from the eastern Atlantic Ocean, which is dominated by Saharan dust throughout most of the year and that is also a genesis region for Atlantic tropical cyclones. These observations are obtained from the NOAA Aerosols and Ocean Science Expeditions (AEROSE). The improved physical SST methodology has the potential to allow for improved representation of the geophysical state under dust-laden conditions.

APA, Harvard, Vancouver, ISO, and other styles
17

Evans, Katherine J. "A quantitative analysis of the physical mechanisms governing the life cycles of persistent flow anomalies." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/26013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Beveridge, Susan Lynn. "Quantifying the Relationship Between Southern-end Supercells and Tornado Production." Ohio University Honors Tutorial College / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ouhonors1556127178521766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Edwards, Jennifer L. "Post-disaster climatology for hurricanes and tornadoes in the United States| 2000-2009." Thesis, Kent State University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1555294.

Full text
Abstract:

Natural disasters can be very devastating to the public during their impact phase. After a natural disaster impacts a region, the response and recovery phases begin immediately. Weather conditions may interrupt emergency response and recovery in the days following the disaster. This study analyzes the climatology of weather conditions during the response and recovery phases of hurricanes and tornadoes to understand how weather may impact both environment and societal needs. Using specific criteria, 66 tornadoes and 16 hurricane cases were defined. National Weather Service (NWS) recognized weather stations were used to provide temperature, precipitation, snowfall, relative humidity, wind speed, and wind direction data. Regional and temporal groups were defined for tornado cases, but only one group was defined for hurricanes. By applying statistical analysis to weather observations taken in the week following the disasters, a climatology was developed for the response and recovery phase. Tornado and hurricane post-disaster climate closely mimicked their synoptic climatology with cooler and drier weather prevailing in days 2-4 after a disaster until the next weather system arrived about 5 days later. Winter tornadoes trended to occur in the Southeast and were associated with more extreme temperature differences than in other regions and season. The results of this study may help governmental and non-governmental organizations prepare for weather conditions during the post-disaster phase.

APA, Harvard, Vancouver, ISO, and other styles
20

Mattison, Catherine A. "The Influence of Physical and Anthropogenic Factors on the Distribution of Loggerhead Sea Turtle (Caretta caretta) Nests in Broward County, Florida. (1990-1999)." NSUWorks, 2004. http://nsuworks.nova.edu/occ_stuetd/279.

Full text
Abstract:
The distribution of loggerhead sea turtle (Caretta caretta) nests in Broward County was analyzed, using data from the Broward County Sea Turtle Conservation Project, to determine what features of the beach or nearby areas attract or repel nesting females. Two of the goals of this study were to determine if nest density had increased over time and if the yearly distribution of nests was consistently high or low in the same areas. Comparisons used data collected from eighty-four zones of equal length over a ten-year period (1990-1999). Both physical and human-related (anthropogenic) characteristics of each beach zone and adjoining offshore areas were also examined using multivariate regression analysis. Nest density per zone between zones differed significantly over the study period. Nest density within an individual zone remained statistically similar (some zones were preferred over others); zones that contained relatively high (or low) numbers of nests in one year also did so in all other years. Light intensity and an index of the ease of public access combined explain 35.6% of the variance in nest density per zone that was found. There was no significant relationship detected between nesting density per zone and beach width, offshore slope, and onshore slope.
APA, Harvard, Vancouver, ISO, and other styles
21

Hartz, Aaron. "The Effects of Physical and Biological Parameters on the Survival of Fecal Indicator Bacteria in Beach Sand and Seawater in a Sub-Tropical Environment." NSUWorks, 2003. http://nsuworks.nova.edu/occ_stuetd/297.

Full text
Abstract:
Analysis of samples collected bimonthly between summer 2001 and spring 2002 showed that the numbers of enterococci on three South Florida beaches were significantly higher in 'dry' sand compared to wet sand. Moreover, the wet and dry sand samples showed higher levels of fecal organisms than present in seawater. Other fecal bacteria (E. coli and total coliforms) showed similar trends. These interesting results suggest that the sand is acting as a filter and is concentrating fecal bacteria from the water column. This idea was supported by quantitative laboratory and field experiments showing that sand does actively filter fecal organisms out of the water column. However, this does not satisfactorily explain how high numbers of fecal bacteria are being amassed in the upper beach sand (='dry' sand), which is above the high water mark. The possibility that high numbers of fecal organisms were being transported in the air was tested using an Anderson Type impactor air sampler. A total of 45,000 liters of air were filtered but no airborne enterococci were detected. A more likely explanation is that there W8 increased survival of sand-trapped enteric bacteria in beach sand although the degree of survival must fluctuate given the wide range of different physical and chemical parameters from the water line to the top of the beach. Mesocosm experiments were conducted in a controlled laboratory environment, using sterile seawater and sterile beach sand seeded with a known number of E. coli and enterococci. Parameters of interest included temperature, moisture content, salinity, particle size, and nutrient status. Generally, these mesocosm experiments showed that fecal bacteria can grow (and reproduce) in sand but slowly die in seawater alone. Additional mesocosm experiments conducted using natural seawater and beach sand containing indigenous microbiota suggested that predation had a dramatic effect on the fate of fecal bacteria in the beach environment. A series of palatability studies added additional information by showing that micropredators were capable of consuming fecal indicator bacteria in the beach environment.
APA, Harvard, Vancouver, ISO, and other styles
22

Alves, Claudia Marins. "Modelos estocásticos para tratamento da dispersão de material particulado na atmosfera." Laboratório Nacional de Computação Científica, 2006. https://tede.lncc.br/handle/tede/62.

Full text
Abstract:
Made available in DSpace on 2015-03-04T18:50:49Z (GMT). No. of bitstreams: 1 tese.pdf: 5590910 bytes, checksum: a89ccd96ade2b696f0e5b9163dc31bf5 (MD5) Previous issue date: 2006-11-13
Lagrangian stochastic models are a largely used tool in the study of passive substances dispersion inside the Atmospheric Boundary Layer. Its application is related to the trajectory computation of thousands of particles, that numerically simulate the dispersion of suspense substances in the atmosphere. In this study, the basic concepts related to the Lagrangian stochastic modelling are presented and discussed together with its main characteristics and its computational implementation, to the study of particles dispersion in the atmosphere. In a computational experiment, the obtained results are compared with observational data from the TRACT experiment, that took place in Europe in 1992. The input data needed for the dispersion model are extracted from simulations with the numerical weather forecast model RAMS. Dispersion over Rio de Janeiro region is also tested in a second experiment.
Modelos Lagrangianos estocásticos constituem ferramenta muito utilizada no estudo da dispersão de substâncias passivas na Camada Limite Atmosférica. Sua aplicação consiste em calcular a trajetória de milhares de partículas, que simulam numericamente a dispersão de uma substância em suspensão na atmosfera. Nesta tese, são apresentados e discutidos os conceitos básicos relacionados à Modelagem Lagrangiana Estocástica de Partículas, bem como suas principais características e sua implementação computacional, para o estudo da dispersão de partículas na atmosfera. Numa experimentação computacional, comparam-se os resultados obtidos com dados observacionais provenientes do experimento TRACT, realizado na Europa em 1992. Os dados de entrada necessários ao modelo de dispersão são extraídos de simulações do modelo de previsão numérica do tempo RAMS. A dispersão sobre o Estado do Rio de Janeiro é também testada em um segundo experimento.
APA, Harvard, Vancouver, ISO, and other styles
23

Rodríguez, i. Ballester Oriol. "Tornadic events in the Iberian Peninsula and Balearic Islands: characteristics and environmental conditions." Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/671823.

Full text
Abstract:
Tornadoes are the meteorological phenomenon which can produce the strongest surface wind on Earth, causing damage, injuries and fatalities. Several studies show that severe storm environments could be more frequent due to global warming, especially during the second half of the century. Thus, it is necessary to deep on tornado knowledge. The main aim of this thesis is to study tornadic events in the Iberian Peninsula and Balearic Islands both to characterise them and to describe favourable conditions for tornadogenesis. The work is divided into three different blocks. In the first part, a methodology to conduct wind damage field surveys for high-impact weather events of convective origin has been proposed. Moreover, orthophotographs have been used to identify areas affected by damaging winds, through the comparison of images taken before and after case studies. With both methods it is usually possible to know which phenomenon occurred (i.e. tornado or downburst) by studying the damage pattern, and to provide relevant data to complete severe weather databases. In the second part, a tornado and waterspout database for Catalonia is built up, containing 434 cases for the period 2000-2019. In addition, an analysis of characteristics of tornadic events is also performed. In the third part, sounding data has been used to describe different weather types in Catalonia, including days with tornadoes, by the calculation of several thermodynamic, kinematic and composite parameters. Furthermore, vertical temperature, humidity and wind profiles from tornado and waterspout events registered in the Iberian Peninsula and Balearic Islands between 1980 and 2018 have been analysed using ERA5 reanalysis Finally, Szilagyi nomogram has been tested to detect waterspout-related environments. Results may contribute to enhance the detection and analysis of damaged areas due to strong- convective winds in the Iberian Peninsula and Balearic Islands. The tools presented here help to build up robust and homogeneous databases, and the analysis of favourable conditions for tornadogenesis carried out may be useful for forecasting and surveillance tasks. The improvement of typical tornadic environments detection is especially interesting for the area of study, as contains some of the regions where tornadoes are the most frequent in southern Europe.
Els tornados són el fenomen meteorològic que pot donar lloc als vents més forts en superfície a la Terra. Si bé a les Grans Planes dels Estats Units és on es registren fiblons amb més freqüència, a Europa també se n’observen, fins i tot amb danys milionaris, ferits i víctimes mortals. Diversos estudis apunten que podria augmentar la freqüència d’ocurrència d’entorns favorables per a tempestes violentes a causa de l’escalfament global, especialment durant la segona meitat de segle. Davant d’aquest escenari, cal aprofundir en el coneixement dels fiblons. L’objectiu d’aquesta tesi és estudiar els tornados a la Península Ibèrica i a les Illes Balears, tant pel que fa a la caracterització dels episodis com pel que fa a les condicions favorables per a la seva formació. Per a aconseguir-ho, el treball s’estructura en tres blocs. A la primera part s’estudien dos recursos que afavoreixen l’homogeneïtzació de les bases de dades de ventades fortes d’origen convectiu, amb l’objectiu que diferenciïn entre tornados i esclafits. Per una banda, es proposa una metodologia per a dur a terme treballs de camp. Per l’altra, s’utilitzen ortofotografies per a identificar les zones afectades per ventades fortes, mitjançant la comparativa d’imatges anteriors i posteriors als casos d’estudi. El patró de danys observat amb aquests dos mètodes sovint permet conèixer quin fenomen meteorològic ha tingut lloc i aportar dades rellevants per a completar les bases de dades. A la segona part, es presenta una base de dades de tornados i mànegues marines registrats a Catalunya. En total hi consten 434 episodis observats entre els anys 2000 i 2019 procedents de diverses fonts d’informació, on destaquen mitjans de comunicació, bases de dades anteriors i xarxes socials. A més, s’ha dut a terme un procés de validació per a tots els casos recopilats mitjançant eines de teledetecció. A partir de les dades recollides, es fa una anàlisi de la distribució espacial i temporal dels episodis, de les característiques de les franges de danys i de l'impacte socioeconòmic. D’aquesta manera s’aconsegueix disposar d’una descripció completa d'aquests tipus de fenòmens i de les seves conseqüències. A la tercera part, es caracteritzen els entorns típics per a diversos tipus de temps, estudiant amb especial atenció els dies de tornado i, sobretot, els episodis més intensos. En una primera anàlisi centrada a Catalunya, s’utilitzen radiosondatges per a estudiar diversos paràmetres termodinàmics, cinemàtics i compostos per a dies sense precipitació, dies de tempesta sense tornado, dies de tornado d’intensitat EF0, dies de tornado d’intensitat EF1 o superior i dies de mànega marina. Tot seguit, s’analitzen els perfils verticals de temperatura, humitat i vent corresponents als episodis de tornados i mànegues marines registrats a la Península Ibèrica i les Illes Balears entre els anys 1980 i 2018, utilitzant dades de la reanàlisi ERA5. A més, es testeja el nomograma de Szilagyi per a detectar els entorns favorables per a la formació de trombes marines. Els resultats obtinguts contribueixen a millorar la detecció i l’anàlisi de les zones afectades per ventades fortes d’origen convectiu a la Península Ibèrica i les Illes Balears. Les eines que es presenten demostren ser d’ajut per a elaborar bases de dades robustes i homogènies, les quals afavoreixen poder disposar d’una descripció detallada dels episodis de tornados. Per altra banda, l’anàlisi de les condicions favorables per a la tornadogènesi duta a terme pot ser d’ajut per a la predicció i la vigilància d’aquest tipus de fenòmens de temps violent. La millora en la detecció dels entorns típics d’episodis de tornados és d’especial interès, tenint en compte que l’àrea d’estudi engloba algunes de les regions on més se’n registren del sud d’Europa.
APA, Harvard, Vancouver, ISO, and other styles
24

Lee, Cameron C. "The Development of a Gridded Weather Typing Classification Scheme." Thesis, Kent State University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3618946.

Full text
Abstract:

Since their development in the 1990s, gridded reanalysis data sets have proven quite useful for a broad range of synoptic climatological analyses, especially those utilizing a map pattern classification approach. However, their use in broad-scale, surface weather typing classifications and applications have not yet been explored. This research details the development of such a gridded weather typing classification (GWTC) scheme using North American Regional Reanalysis data for 1979-2010 for the continental United States.

Utilizing eight-times daily observations of temperature, dew point, pressure, cloud cover, u-wind and v-wind components, the GWTC categorizes the daily surface weather of 2,070 locations into one of 11 discrete weather types, nine core types and two transitional types, that remain consistent throughout the domain. Due to the use of an automated deseasonalized z-score initial typing procedure, the character of each type is both geographically and seasonally relative, allowing each core weather type to occur at every location, at any time of the year. Diagnostic statistics reveal a high degree of spatial cohesion among the weather types classified at neighboring locations, along with an effective partitioning of the climate variability of individual locations (via a Variability Skill Score metric) into these 11 weather types. Daily maps of the spatial distribution of GWTC weather types across the United States correspond well to traditional surface weather maps, and comparisons of the GWTC with the Spatial Synoptic Classification are also favorable.

While the potential future utility of the classification is expected to be primarily for the resultant calendars of daily weather types at specific locations, the automation of the methodology allows the classification to be easily repeatable, and therefore, easily transportable to other locations, atmospheric levels, and data sets (including output from gridded general circulation models). Further, the enhanced spatial resolution of the GWTC may also allow for new applications of surface weather typing classifications in mountainous and rural areas not well represented by airport weather stations.

APA, Harvard, Vancouver, ISO, and other styles
25

Colna, Kaitlyn E. "Latitudinal Position and Trends of the Intertropical Convergence Zone (ITCZ) and its Relationship with Upwelling in the Southern Caribbean Sea and Global Climate Indices." Thesis, University of South Florida, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10262701.

Full text
Abstract:

The Intertropical Convergence Zone (ITCZ) is a feature that results from the ocean-atmosphere interactions in the tropics around the world. The ITCZ is characterized by surface wind convergence, tall storm clouds, and it forms a belt of high time-averaged precipitation around the globe. The ITCZ undergoes seasonal migrations between 5°S and 15°N roughly following the subsolar point on Earth with the seasons, with a mean annual position located slightly above the Equator, between 2° and 5°N.

This study tested the hypothesis that there was a northward shift in the median position of the ITCZ in the first decade of the 2000’s relative to the 1900’s. This hypothesis has been posed in the literature given a weakening in the intensity of the Trade Winds observed in the southern Caribbean Sea during the first decade of the 2000’s, with concomitant ecological impacts due to weakening in coastal wind-driven upwelling. The hypothesis was tested by analyzing variations in the monthly latitudinal position of the ITCZ over the Atlantic Ocean relative to the median position computed for the period 1987–2011. The position of the ITCZ was derived from satellite-derived ocean surface wind measurements collected from 1987 to 2011. A Mann-Kendall analysis and a Monte Carlo simulation were used to test for trends in the median cross-basin latitudinal position of the ITCZ. The study included an analysis of regional changes across the tropical central Atlantic (50°W to 15°W), the Western Atlantic (50°W to 30°W), and the Eastern Atlantic (30°W to 15°W) within the tropics. The results show a slight southward trend in the median position of the ITCZ over the central Atlantic and also in the Eastern Atlantic in the first decade of the 2000’s relative to the 1990’s. While this trend is barely significant, it is likely simply due to interannual variation in the average annual position of the ITCZ.

The data were also examined for the timing and persistence of a double ITCZ in the Atlantic. The double ITCZ over the Atlantic appeared every year in February or March, with the largest separation between the northern and southern branches of the ITCZ observed in June and July.

The possible effects of changes in the average latitudinal position of the ITCZ on the upwelling in the Cariaco Basin (southeastern Caribbean Sea off Venezuela) were also examined. Anomalies of the median of the latitudinal position of the ITCZ in the Atlantic were compared with anomalies of in-situ temperature collected during the 1990’s and the first decade of the 2000’s by the CARIACO Ocean Time-Series program and with anomalies of satellite SST (from the Advanced Very High Resolution Radiometer satellite; AVHRR) from 1995 to 2016. Correlation analysis were performed between anomalies of water temperatures at various depths and anomalies of satellite SST with anomalies of the monthly mean ITCZ position with lags up to 3 months for the time series, and also just for the Cariaco basin upwelling months (December-April).

For the whole Cariaco time series there were no significant correlations between the anomalies of the ITCZ position and anomalies in subsurface temperatures in the Cariaco Basin. However, during the upwelling period, the central Atlantic and Western Atlantic ITCZ position anomalies were directly correlated with Cariaco Basin temperature anomalies with no-lag (r = 0.20), and the central and Eastern Atlantic ITCZ position anomalies were inversely correlated with Cariaco Basin temperatures (r ~ -0.22 to -0.28) with ITCZ leading Cariaco temperatures by 3 months. However, these correlations were low, indicating that other factors than the position of ITCZ latitudinal position play bigger role on the Cariaco basin upwelling variability.

Interannual variability in oceanographic and meteorological characteristics of the Atlantic Ocean are expected as a result of large-scale changes in other regions of the world, including due to changes such as the El Niño Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation (AMO). Six oceanic-atmospheric variables are used to monitor ENSO over the tropical Pacific, while the AMO is determined by monitoring SST over the Atlantic. Correlations with lags of up to ± 6 months were conducted with those climate indices and the anomalies of the median monthly latitudinal position of the ITCZ. Significant direct correlations with ENSO (Multivariate ENSO Index) were seen in the Atlantic and Western Atlantic (r = 0.15), with ENSO leading the position of the ITCZ anomalies by 3 months. This implies that within three months after an El Niño event (warm ENSO anomaly in the Pacific) the ITCZ over the mid-Atlantic and Western Atlantic Ocean tends to shift to a more northerly position. The AMO also had a direct influence on the anomalies of the ITCZ position (r = 0.13) in the Central and the Western Atlantic, with the AMO leading ITCZ anomalies by 1 month (i.e. a warming of the North Atlantic led to a northward shift in the ITCZ one month later). Correlations between AMO and the ITCZ anomalies in the Eastern Atlantic were also direct but with no lag. Although significant, these correlations were low.

An inverse correlation (~ -0.35) was found between ENSO and anomalies of water temperature of the Cariaco Basin. ENSO lagged ocean temperature anomalies by 3 to 4 months for both the whole Cariaco time series and for the upwelling months of CARIACO data. Correlations with AMO were direct (~ 0.4); for the whole time series AMO led Cariaco temperature anomalies by 3 months, but for the upwelling months AMO lagged Cariaco temperature anomalies by one month.

APA, Harvard, Vancouver, ISO, and other styles
26

Aiena, Christine N. "The Influence of the Wichita Mountain Range on Convection Initiation of Tornado and Large Hail Producing Supercells in Central Oklahoma." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou153374861711777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Arra, Venni. "Storm Frequency in the Northern Baltic Sea Region and its Association to the North Atlantic Oscillation." Thesis, Stockholms universitet, Institutionen för naturgeografi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-165907.

Full text
Abstract:
Storms can be both destructive and valuable at the same time. They expose coastal areas to various risks but can also enhance the supply of wind energy and provide marine ecosystems with oxygen rich water. As the North Atlantic Oscillation (NAO) is known to have a significant impact on the wind climate in Europe, investigating its interconnection to storm frequency and intensity under global warming circumstances in the Northern Baltic Sea region was of interest in this study. Wind speed data series of annual storm counts were obtained from five meteorological stations along with PC-based NAO values over the period 1960-2017. The data series were analysed in Microsoft Excel and modelled using a Poisson regression or negative binomial regression model in SPSS Statistics. The results display an unsystematic spatial pattern both in the association to the NAO as well as in the overall storm frequency. However, storm (≥ 21 m s-1) frequency has generally been decreasing, whereas the proportion of severe storms (≥ 24 m s-1) has slightly been increasing, suggesting a tendency toward stronger but fewer storms. Even though only certain data series display statistically significant findings (p ≤ .05), a majority of the winter storms and severe winter storms display a positive association, indicating that a higher NAOI is related to a greater number of winter storms. The spatial and temporal variability in the obtained results can partially be explained by storm tracks and prevalent wind directions. Nevertheless, inhomogeneities do presumably affect the wind speed observations through internal and external influences and changes related to the meteorological stations. Future research should, therefore, also consider integrating other storm related parameters, such as direct air pressure measurements, wave heights and storm surges, as well as implement different data homogenization methods and techniques.
APA, Harvard, Vancouver, ISO, and other styles
28

Mallet, Cécile. "Modélisation statistique appliquée à la propagation atmosphérique des ondes électromagnétiques et à l'observation des précipitations." Habilitation à diriger des recherches, Université de Versailles-Saint Quentin en Yvelines, 2009. http://tel.archives-ouvertes.fr/tel-00672039.

Full text
Abstract:
Dans la troposphère, le rayonnement électromagnétique hyperfréquence interagit avec la matière suivant trois processus : l'absorption par les molécules de gaz et d'eau, la diffusion due à la redirection de l'onde par les hydrométéores, et l'émission par les particules absorbantes d'un rayonnement naturel incohérent. Mes travaux ont pour base commune ces processus d'interaction des ondes électromagnétiques avec l'atmosphère, et concernent deux domaines distincts : la télédétection spatiale de l'atmosphère et les télécommunications Terre-satellite. J'ai développé une méthodologie originale de mise au point d'algorithmes neuronaux pour l'observation de l'atmosphère à partir de capteurs hyperfréquences passifs. Mes travaux ont mis en évidence la capacité des réseaux de neurones à restituer les paramètres physiques des phénomènes sous-jacents aux observations. Une amélioration des performances globales de la restitution des grandeurs atmosphériques est obtenue grâce à la modélisation de relations non linéaires que permet cette approche. Les perspectives multiples qu'offrent, en géophysique, l'emploi d'une architecture neuronale modulaire, ou l'utilisation des cartes de Kohonen, sont soulignées. L'évolution des systèmes de télécommunication hyperfréquence par satellites, pousse à utiliser des fréquences de plus en plus élevées. Aux fréquences supérieures à 20 GHz l'atmosphère est à l'origine de la dégradation de la qualité des liaisons. Je présenterai les campagnes de mesures, et les travaux de modélisation réalisés, dans le cadre de la mise au point de nouvelles techniques de lutte contre les affaiblissements (Fade Mitigation Technique). L'originalité de mes recherches relatives à la modélisation du canal de propagation réside dans l'usage de modélisations statistiques du type TARIMA GARCH, qui s'attachent, plutôt que de prévoir le comportement moyen du processus, à prévoir la variabilité et donc le risque d'un comportement extrême.
APA, Harvard, Vancouver, ISO, and other styles
29

Healey, Stephanie. "Biological and Physical Analysis of Currents and Water Masses Off the Coast of Southeast Florida." NSUWorks, 2010. http://nsuworks.nova.edu/occ_stuetd/219.

Full text
Abstract:
Biological and physical sampling of a 10km long, east-west transect was performed during 2007, off the coast of southeast Florida. Temperature and salinity measurements were recorded using a conductivity-temperature-depth (CTD) sensor, and current direction and magnitude measurements were recorded using an acoustic Doppler current profiler (ADCP). Zooplankton samples were collected, during the daytime, using a Tucker multiple net mid-water trawl, with 760μm mesh, at intended depths of ~25m and ~200m, at three stations along the transect. Laboratory analysis indicated that several currents and water masses influenced the density distribution of calanoid copepods and chaetognaths. During April and September 2007, a Subsurface Counter Current existed in conjunction with an offshore meander of the Florida Current. Physical data confirmed the presence of Continental Edge Water and Yucatan Water occupying different spatial and temporal scales, and the boundary between these two water masses existed as the western boundary of the Florida Current. Temperature and salinity profiles confirmed that the Subsurface Counter Current was composed of Continental Edge Water and not Yucatan Water. Therefore, the Subsurface Counter Current observed during the transect was not a cross section of a passing eddy caused by the meandering front of the Florida Current. Densities of both taxa were highest in the Subsurface Counter Current and the Intermediate water, while the lowest densities are found in the Florida Current. Calanoid copepod and chaetognath densities exhibited typical zooplankton trends for tropical and subtropical coastal waters. Densities were highly influenced by the physical parameters of each month. Highest densities were observed in April and the lowest in July/September, typically the nutrient limited season. Analysis by location showed that the calanoid copepod and chaetognath densities were highest inshore and decreased offshore. The Florida Current exhibited the lowest densities for both taxa, while the Subsurface Counter Current and Intermediate water had higher densities. Previously documented southward flow had been associated with an offshore meander of the Florida Current, but during May and July there was a Subsurface Counter Current and an onshore meander of the Florida Current. Densities of both taxa were still lowest in the Florida Current. The stable isotope values of the zooplankton were skewed because of the preservation media and it was not possible to determine if the currents and water masses were isotopically different, and thus creation of a correction factor for the preservation effect was not possible. The δ13C values were variable in magnitude and direction from the control for each taxon. The δ15N values were less variable, but increased from the control, rather than decrease, as was expected for each taxon.
APA, Harvard, Vancouver, ISO, and other styles
30

Bergman, Niclas. "Meteorological Conditions on Nordenskiöldbreen Glacier, Svalbard (2009 – 2015)." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-324406.

Full text
Abstract:
Glacial environments in the Arctic are a much-studied topic as well as a field of research with strong influences regarding the current and future global climate of our planet. This report is focused on the meteorological conditions on Nordenskiöldbreen glacier from 2009-2015 and how they correlate with each other, the glacier surface and the surrounding terrain. With data gathered from an automatic weather station located at the centre of the glacier, a range of meteorological parameters is examined; wind direction and velocity, snow depth, cloud cover, incoming and reflected shortwave radiation, temperature deficit, albedo and drifting snow. Seasonal differences were discovered, especially for wind direction and velocity where winds from the northeast occurred more frequently in the winter, indicating katabatic winds, whereas winds from the west and southwest were more pronounced in the summer. The calculated temperature deficit shows that katabatic winds blow down-glacier under stably stratified conditions and are shown to increase in strength with increasing temperature deficit (atmospheric temperature minus surface temperature). The mean albedo at Nordenskiöldbreen during this period is within the expected limits, 0.8 for snow and 0.3 for ice and the cloud cover was 0.58. Additionally, it could be observed that the occurrence of dry, drifting snow is present in the winter season as snow depth shows pronounced drops during high-wind events in winter. Overall, it is concluded that most of the examined parameters correlate and need each other to function and act as mechanisms within the cryosphere and as such it is crucial for scientists to understand their connected relationships when attempting to study global climate changes.
APA, Harvard, Vancouver, ISO, and other styles
31

Diaz, Gerardo Jr. "Analysis of 2017 Multi-Agency Field Campaign Data for Wintertime Surface Pollution in the Cache Valley of Utah." TopSCHOLAR®, 2019. https://digitalcommons.wku.edu/theses/3112.

Full text
Abstract:
Atmospheric motions resulting from rising airborne parcels help to scatter emissions, including PM, away from their sources, decreasing local pollution levels. However this pattern shifts during the wintertime, as cold air damming and inversion layers create stable conditions that limit the vertical transport of air masses. Both point and area sources of emissions currently dot the western United States and are responsible for the production of the vast majority of agricultural pollution in the region. At the same time, population-growth has resulted in an ever-increasing amount of urbansource emissions. The entrapment of PM, which are produced when a wide array of urban and agricultural emissions series are released onto a valley floor, aggregate until they become singular particles which vary in size and can negatively affect the human respiratory system. As such, this goal of this study was to investigate the processes that lead to poor wintertime air quality conditions in the Mountain West and primarily in Cache Valley, which experiences some of the worst air quality in the United States during the winter season. Several results, including the observation of chemical reactions such as the production of the NO3 radical, along with the discovery of significantly high levels of DMS in an area that is not known for its production, all suggest that the chemical behaviors of Cache Valley are rather complex and play a critical role in poor wintertime air quality conditions. Furthermore, the presence of DMS at such high concentrations could be due to its being produced on the valley floor. As such, we hope that these results will help in improving our understanding of the physical and chemical dynamics of the Valley during the winter season, which will in turn aid in our ability to forecast such conditions and also properly plan future industrial and commercial projects that will inevitably be introduced into the region as it continues to grow.
APA, Harvard, Vancouver, ISO, and other styles
32

Gardiner, Robert C. Jr. "Variable Patterns in Spur and Groove Reef Morphology Explained by Physical Controls and their Relevance for Platform-Top Sedimentology." NSUWorks, 2017. http://nsuworks.nova.edu/occ_stuetd/443.

Full text
Abstract:
Spur and groove (SaG) morphology is a common ornamentation of reef-armored Holocene carbonate platform margins. Composed of margin-normal promontories constructed of coral framestone, termed “spurs”, interleaved with similarly orientated gullies, “grooves”, this morphology varies based on a host of physical controls. Primarily, the surrounding oceanographic conditions as well as the size and shape of the platform the SaG is encompassing, directly influence the development and organization of SaG. Since grooves act as conduits for carbonate sediment transport, this study seeks to examine the relationship between SaG organization dictated by platform size and shape and how that in turn influences platform-top sedimentation. The analysis reveals trends that suggest platform shape plays a larger role than platform size in allowing highly organized SaG to develop on multiple margins around the platform. In turn, those trends would suggest these sites to have more stable platform top sediment deposits. However, many variables go in to the creation and maintenance of platform top cays. While this study enhanced the current understanding of how oceanographic conditions influence SaG development and organization, expanding on the concepts and results found in this study coupled with coring data of SaG and platform-top cays, could further link the connection between SaG and sediment transport.
APA, Harvard, Vancouver, ISO, and other styles
33

Thiel, Kevin C. Thiel. "Relating Multi-Radar/Multi-Sensor (MRMS) and Dual-Polarization Products to Lightning and Thunderstorm Severity Potential." Ohio University Art and Sciences Honors Theses / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ouashonors1524746999247939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Jarossy, Sara M. "An Evaluation of the Seagrass Habitat in North Biscayne Bay, Florida, in Relation to a Changing Environment and Urbanization in the Port of Miami Harbor Basin 2005-2011." NSUWorks, 2016. http://nsuworks.nova.edu/occ_stuetd/434.

Full text
Abstract:
Seagrass habitats in South Florida are exceptionally valuable. They play an important ecological role in the coastal environment by stabilizing sediment, providing habitat for other species and supporting a whole food web. The availability of light and nutrients in aquatic ecosystems are the driving factors behind seagrass distribution. Water quality has been known to influence the abundance, distribution and composition of seagrass beds. South Florida has extensive diverse coastal communities. Throughout its human development dramatic changes have occurred in its natural ecosystems. In South Florida, many examples of seagrass habitat loss are documented, with a variety of contributing factors. The present research investigates the spatial and temporal patterns in benthic vegetation of the North Biscayne Bay marine basin, located just south of the heavily urbanized Port of Miami. The area has been altered significantly through dredging projects to widen and deepen the channels around the port facilities in order to accommodate larger vessels. This study focuses primarily on environmental and physical conditions that are likely to alter the distribution of seagrass. The availability of light and nutrients in aquatic ecosystems are the driving factors behind seagrass distribution and therefore one may expect seagrass degradation if any drastic changes occurred in these parameters. Project data used were collected from the South Florida Fish and Invertebrate Assessment Network project (FIAN), an element of the greater Everglades Restoration Program. Additional Environmental and physical data were obtained from the South Florida Water Management District (SFWMD) and the National Ocean and Atmospheric Administration (NOAA). The FIAN Port of Miami (POM) study location is dominated by three species of seagrass: Thalassia testudinum, Syringodium filiforme, and Halodule wrightii. Analysis has shown that over the seven-year period, 2005 - 2011 the state of the seagrass has been fairly stable with minor perturbances (p > 0.05). There are some seasonal fluctuations evident in seagrass cover-densities, but minimal change was observed between the spring and fall (p > 0.05). Syringodium is the dominant species, followed by Thalassia and Halodule within the POM. Environmental and physical conditions from FIAN (salinity, temperature, sediment depth, turbidity, etc.) varied between years and seasons; however, most measurements remained in the ideal range for seagrass growth. Water depth, sediment depth, and turbidity were significant predictors of seagrass occurrence in the POM; however, water depth was the only major predictor of seagrass cover-density. The available environmental and physical data from the SFWMD showed minimal changes in the environmental and physical measurements across available sample years and are in the ideal range for seagrass. Turbidity has improved since the completion of the port construction and major weather disturbances (hurricanes) in 2005. Minimal changes were detected during the seven year study period (2005-2011) within the seagrass habitat of the heavily urbanized region of POM.
APA, Harvard, Vancouver, ISO, and other styles
35

Arbic, Brian K. "Generation of mid-ocean eddies : the local baroclinic instability hypothesis." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/53047.

Full text
Abstract:
Thesis (Ph.D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences and the Woods Hole Oceanographic Institution), 2000.
Includes bibliographical references (p. 284-290).
by Brian Kenneth Arbic.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
36

Edwards, Jennifer L. "Post-Disaster Climatology for Hurricanes and Tornadoes in the United States: 2000-2009." Kent State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=kent1366415657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Fischer, Albert S. (Albert Sok). "The upper ocean response to the monsoon in the Arabian Sea." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/58365.

Full text
Abstract:
Thesis (Ph.D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences and the Woods Hole Oceanographic Institution), 2000.
Includes bibliographical references (p. 217-222).
Estimation of the upper ocean heat budget from one year of observations at a moored array in the north central Arabian Sea shows a rough balance between the horizontal advection and time change in heat when the one-dimensional balance between the surface heat flux and oceanic heat content breaks down. The two major episodes of horizontal advection, during the early northeast (NE) and late southwest (SW) monsoon seasons, are both associated with the propagation of mesoscale eddies. During the NE monsoon, the heat fluxes within the mixed layer are not significantly different from zero, and the large heat flux comes from advected changes in the thermocline depth. During the SW monsoon a coastal filament exports recently upwelled water from the Omani coast to the site of the array, 600 km offshore. Altimetry shows mildly elevated levels of surface eddy kinetic energy along the Arabian coast during the SW monsoon, suggesting that such offshore transport may be an important component of the Arabian Sea heat budget. The sea surface temperature (SST) and mixed layer depth are observed to respond to high frequency (HF, diurnal to atmospheric synoptic time scales) variability in the surface heat flux and wind stress. The rectified effect of this HF forcing is investigated in a three-dimensional reduced gravity thermodynamic model of the Arabian Sea and Indian Ocean. Both the HF heat and wind forcing act locally to increase vertical mixing in the model, reducing the SST. Interactions between the local response to the surface forcing, Ekman divergences, and remotely propagated signals in the model can reverse this, generating greater SSTs under HF forcing, particularly at low latitudes. The annual mean SST, however, is lowered under HF forcing, changing the balance between the net surface heat flux (which is dependent on the SST) and the meridional heat flux in the model. A suite of experiments with one-dimensional upper ocean models with different representations of vertical mixing processes suggests that the rectified effect of the diurnal heating cycle is dependent on the model, and overstated in the formulation used in the three-dimensional model.
by Albert Sok Fischer.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
38

Cross, Cheryl L. "Predictive Habitat Models for Four Cetaceans in the Mid-Atlantic Bight." NSUWorks, 2010. http://nsuworks.nova.edu/occ_stuetd/221.

Full text
Abstract:
This study focuses on the habitats of cetaceans in the Mid-Atlantic Bight, a region characterized by bathymetric diversity and the presence of distinct water masses (i.e. the shelf water, slope water, and Gulf Stream). The combination of these features contributes to the hydrographic complexity of the area, which furthermore influences biological productivity and potential prey available for cetaceans. The collection of cetacean sighting data together with physical oceanographic data can be used to examine cetacean habitat associations. Cetacean habitat modeling is a mechanism for predicting cetacean distribution patterns based on environmental variables such as bathymetric and physical properties, and for exploring the potential ecological implications that contribute to cetacean spatial distributions. We can advance conservation efforts of cetacean populations by expanding our knowledge of their habitats and distribution. Generalized additive models (GAMs) were developed to predict the spatial distribution patterns of sperm whales (Physeter macrocephalus), pilot whales (Globicephala spp.), bottlenose dolphins (Tursiops truncatus), and Atlantic spotted dolphins (Stenella frontalis) based on significant physical parameters along the continental shelf-break region in the Mid-Atlantic Bight. Data implemented in the GAMs were collected in the summer of 2006 aboard the NOAA R/V Gordon Gunter. These included visual cetacean survey data collected along with physical data at depth via expendable bathythermograph (XBT), and conductivity-temperature-depth (CTD) instrumentation. Additionally, continual surface data were collected via the ship’s flow through sensor system. Interpolations of physical data were created from collected point data using the inverse distant weighted method (IDW) to estimate the spatial distribution of physical data within the area of interest. Interpolated physical data, as well as bathymetric (bottom depth and slope) data were extracted to overlaid cetacean sightings, so that each sighting had an associated value for nine potentially significant physical habitat parameters. A grid containing 5x5 km grid cells was created over the study area and cetacean sightings along with the values for each associated habitat parameter were summarized in each grid cell. Redundant parameters were reduced, resulting in a full model containing temperature at 50 m depth, mixed layer depth, bottom depth, slope, surface temperature, and surface salinity. GAMs were fit for each species based on these six potentially significant parameters. The resultant fit models for each species predicted the number of individuals per km2 based on a unique combination of environmental parameters. Spatial prediction grids were created based on the significant habitat parameters for each species to illustrate the GAM outputs and to indicate predicted regions of high density. Predictions were consistent with observed sightings. Sperm whale distribution was predicted by a combination of depth, sea surface temperature, and sea surface salinity. The model for pilot whales included bottom slope, and temperature at 50 m depth. It also indicated that mixed layer depth, bottom depth and surface salinity contributed to group size. Similarly, temperature at 50 m depth was significant for Atlantic spotted dolphins. Predicted bottlenose dolphin distribution was determined by a combination of bottom slope, surface salinity, and temperature at 50 m depth, with mixed layer depth contributing to group size. Distribution is most likely a sign of prey availability and ecological implications can be drawn from the habitat parameters associated with each species. For example, regions of high slope can indicate zones of upwelling, enhanced vertical mixing and prey availability throughout the water column. Furthermore, surface temperature and salinity can be indicative of patchy zones of productivity where potential prey aggregations occur. The benefits of these models is that collected point data can be used to expand our knowledge of potential cetacean “hotspots” based on associations with physical parameters. Data collection for abundance estimates, higher resolution studies, and future habitat surveys can be adjusted based on these model predictions. Furthermore, predictive habitat models can be used to establish Marine Protected Areas with boundaries that adapt to dynamic oceanographic features reflecting potential cetacean mobility. This can be valuable for the advancement of cetacean conservation efforts and to limit potential vessel and fisheries interactions with cetaceans, which may pose a threat to the sustainability of cetacean populations.
APA, Harvard, Vancouver, ISO, and other styles
39

Sleinkofer, Amanda M. "Antarctic Sea Ice Extent Reconstructions Throughout the 20th Century." Ohio University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1620313247537371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Sambuco, Emily Nicole. "Exploring Great Basin National Park using a high-resolution Embedded Sensor Network." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1555579768450066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Lyles, Frank. "Climate Change Adaptation for Southern California Groundwater Managers: A Case Study of the Six Basins Aquifer." Scholarship @ Claremont, 2017. http://scholarship.claremont.edu/pomona_theses/172.

Full text
Abstract:
Groundwater has been very important to the economic development of Southern California, and will continue to be a crucial resource in the 21st century. However, Climate Change threatens to disrupt many of the physical and economic processes that control the flow of water in and out of aquifers. One groundwater manager, the Six Basins Watermaster in eastern Los Angeles and western San Bernardino Counties, has developed a long-term planning document called the Strategic Plan that mostly fails to address the implications of Climate Change, especially for local water supplies. This thesis presents an in-depth analysis of the Six Basin Watermaster’s Strategic Plan as a case-study of how groundwater managers can improve their planning assumptions to better prepare for Climate Change. It begins with a brief history of how Southern California’s environment influenced the development of the institutions that manage the Six Basins’ groundwater, then provides a physical description of the aquifer itself. The current scientific literature on Climate Change’s expected impacts on California water supplies are summarized, and the implications of these impacts for basin management are highlighted. The Strategic Plan’s projects are evaluated and critiqued in light of these insights, including a need for the Strategic Plan to: explicitly consider Climate Change in its planning assumptions, use decision-making frameworks that account for uncertainty, and prepare for more frequent droughts and floods in the future. Climate Change will have important effects on how Southern California’s groundwater is managed, and the Six Basins Strategic Plan should be revised to better account for these impacts.
APA, Harvard, Vancouver, ISO, and other styles
42

Patrick, Nathan A. "Evaluating Near Surface Lapse Rates Over Complex Terrain Using an Embedded Micro-Logger Sensor Network in Great Basin National Park." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1403203851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mauree, Dasaraden. "Développement d'un modèle météorologique multi-échelle pour améliorer la modélisation du climat urbain." Phd thesis, Université de Strasbourg, 2014. http://tel.archives-ouvertes.fr/tel-01002270.

Full text
Abstract:
Ce travail a consisté à developper un modèle de canopée (CIM), qui pourrait servir d'interface entre des modèles méso-échelles de calcul du climat urbain et des modèles micro-échelles de besoin énergétique du bâtiment. Le développement est présenté en conditions atmosphériques variées, avec et sans obstacles, en s'appuyant sur les théories précédemment proposées. Il a été, par exemple, montré que, pour être en cohérence avec la théorie de similitude de Monin-Obukhov, un terme correctif devait être rajouté au terme de flottabilité de la T.K.E. CIM a aussi été couplé au modèle méso-échelle WRF. Une méthodologie a été proposée pour profiter de leurs avantages respectifs (un plus résolu, l'autre intégrant des termes de transports horizontaux) et pour assurer la cohérence de leurs résultats. Ces derniers ont montré que ce système, en plus d'être plus précis que le modèle WRF à la même résolution, permettait, par l'intermédiaire de CIM, de fournir des profils plus résolus près de la surface.
APA, Harvard, Vancouver, ISO, and other styles
44

Shao, Hongfei Liu Guosheng. "Evaluating the aerosol first indirect effect using satellite data." Diss., 2006. http://etd.lib.fsu.edu/theses/available/etd-04042006-142407.

Full text
Abstract:
Thesis (Ph. D.)--Florida State University, 2006.
Advisor: Guosheng Liu, Florida State University, College of Arts and Sciences, Dept. of Meteorology. Title and description from dissertation home page (viewed June 13, 2006). Document formatted into pages; contains x, 84 pages. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
45

Shantz, Nicole C. "The effect of organic compounds on the growth rate of cloud droplets /." 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:NR19810.

Full text
Abstract:
Thesis (Ph.D.)--York University, 2006. Graduate Programme in Earth and Space Science.
Typescript. Includes bibliographical references (leaves 188-201). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:NR19810
APA, Harvard, Vancouver, ISO, and other styles
46

Akberov, Roald. "An improved numerical model for calculations of transport and size distributions of atmospheric aerosols and cloud droplets." 2008. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.17095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

(5930237), Paul E. Schmid. "Observing and Modeling Urban Thunderstorm Modification Due to Land Surface and Aerosol Effects." Thesis, 2020.

Find full text
Abstract:

Urban meteorology has developed in parallel to other sub-fields in the science, but in many ways remains poorly described. In particular, the study of urban rainfall modification remains behind compared to other comparable features. Urban rainfall modification refers to the change of a precipitation feature as it crosses an urban area. Typically, this manifests as rainfall initiation, local suppression, local invigoration, and/or storm morphology changes. Research in the prior decades have shown urban rainfall modification to arise from a combination of land-atmosphere and aerosol-cloud interaction. Urban areas create a greater surface roughness, which produces local convergence and divergence, modifying local thunderstorm inflow and morphology. The land surface also generates vertical velocity perturbations which can act to initiate or modify existing convection. Urban aerosols act as CCN to perturb existing cloud and precipitation characteristics. Higher CCN narrows the cloud droplet distribution, creating more smaller cloud droplets, and initially reducing precipitation efficiency by keeping more liquid water in the cloud than what would form into rain. The CCN-cloud interaction eventually increasing heavy rainfall production as graupel riming is enhanced by the narrower cloud droplet distribution, leading to more larger raindrops and higher rain in areas.

This dissertation addresses the observation and modeling of urban thunderstorm interaction from both the land surface and aerosol perspective. It reassesses the original urban rainfall anomaly: The La Porte Anomaly. First analyzed in the late 1960s, the La Porte Anomaly was ultimately dismissed by 1980 as either a temporary, biased, or otherwise unexplainable observation, as the process level understanding had yet to be explained. The contemporary analysis utilizes all existing data and objective optimal interpolation to show that a rainfall anomaly downwind of Chicago has indeed existed at least since the 1930s. The current rainfall anomaly exists as a broad region of warm season rainfall downwind of Chicago that is 20-30% greater than the regional average. Using synoptic parameters, the rainfall anomaly is shown to be independent of wind direction and most closely associated with local land surface forcing. Weekdays, where local aerosol loading has been measured at 40% or more greater than weekends, have up to 50% more warm season rainfall than weekends. The analysis is able to show that there is a land surface and aerosol contribution to the rainfall anomaly, but cannot unambiguously separate them.

In order to separate the land surface and aerosol effects on urban rainfall distribution, a numerical model was improved to better handle urban weather interaction. The Regional Atmospheric Modeling System (RAMS 6.0) was chosen for its base land surface and cloud physics parameterization. The Town Energy Budget (TEB) urban canopy model was coupled to RAMS to handle the urban land surface. The Simple Photochemical Module (SPM) was coupled with the cloud physics to handle conversion of surface emissions to CCN. The model utilized an external traffic simulation to create a realistic diurnal and weekly cycle of surface emissions, based on human behavior. The new Urban RAMS was used to study the land surface sensitivity of city size and of aerosol loading in two studies using the Real Atmosphere Idealized Land surface (RAIL) method, by which all non-urban features of the land surface are removed to isolate the urban effects. The city size study determined that the land surface of a given city eventually has a maximum effect on thunderstorm modifying potential, and that rainfall does not continue to increase or decrease locally for cities larger than a certain size based on that storm’s own motion. The aerosol-cloud analysis corroborated previous observations on the non-linear effects of aerosol loading on clouds. It also demonstrated that understanding the aerosol effect in an urban environment requires high resolution observations of precipitation change. In a single thunderstorm, regions can be both impacted by local rainfall rate increases and decreases from urban aerosols, leading to little total change in precipitation. But the rainfall rate changes can significantly affect soil moisture and drought potential in and around urban areas.Following the idealized studies, the historical and current La Porte Anomaly was simulated to separate the land surface from the aerosol factors near the Chicago area. The Urban RAMS model was deployed on a real land surface with full model physics. Simulations with 1932, 1962, 1992, and 2012 land covers were run over an exceptionally wet Aug. 2007 to approximate the rain variability for an entire summer season. Surface emissions were also varied in the 2012 land cover for variable aerosol loading. The simulations successfully reproduced the location of the downwind rainfall anomaly in each land cover scenario: farther east toward La Porte in 1932, moving southwestward to its current location by 2012. Doubling surface emissions eliminated the downwind anomaly, as was observed during the highest pollution decade of the 1970s. Eliminating surface emissions also decreased the downwind anomaly. As the land cover at the upwind edge of Chicago became more connected from the 1932 to 2012 land cover scenarios, a local upwind rainfall anomaly developed, moving westward with urban expansion. The results of these simulations enabled the conclusions that a) at the upwind edge, the land surface dominates urban rainfall modification, b) the aerosol loading sustains and increases the locally downwind rainfall increase, and c) that the total modification distance is static on given day and given urban footprint. A more expansive city does not produce a rainfall anomaly more distantly downwind, but rather the distance of rainfall modification moves to where the upwind edge of the city begins.

The modeling work ends with a two-city simulation in the southeast United States, of a bow-echo forming near Memphis, TN and crossing Birmingham, AL before splitting. Simulations were performed on different surface emissions rates, land covers where Birmingham did not exist, and a novel approach with two inner emitting grids over both Birmingham and Memphis. A storm tracking algorithm enabled one-to-one comparisons of point simulated storm characteristics between scenarios. The results of most scenarios only corroborated previous research, showing how increased aerosol loading changes cloud and rainfall characteristics until the highest aerosol loading shuts down riming and rainfall enhancement. However, the two most accurate simulations, where the storm forms and splits over Birmingham, were a non-urban higher rural aerosol scenario and the scenario with Memphis also emitting pollution. In order to split the storm over Birmingham, the upwind cloud characteristics were primed by higher upwind aerosols, either from a realistic city upwind or unrealistically high rural aerosols. The conclusions produced by this study demonstrated the importance of aerosol cloud interaction, perhaps equal with land surface, but also the need for far upwind information for a storm in a given city. Memphis and Birmingham are separated by over 300km, far exceeding the threshold thought to connect two cities by mutual rainfall modification.

The overall conclusions of the research presented in this dissertation shows a more unified approach to the effects of urban rainfall modification. The upwind edge of a city is a fixed location, and a thunderstorm begins modifying at that point. The thunderstorm usually produces a local rainfall maximum at the upwind edge, due to the vertical velocity of the urban land surface. The urban aerosols proceed to narrow the cloud droplet distribution, locally reducing rainfall as the storm passes over the urban area. Eventually the enhanced rainfall from enhanced riming produces a maximum somewhere downwind. However, “downwind” is a location relative to the storm’s motion and could exist anywhere over the urban footprint or downwind in a rural region. The climatological location of increased rainfall is an average of every storm in a season and beyond. The results of each part of the study provide a way to continue the research presented here.


APA, Harvard, Vancouver, ISO, and other styles
48

Krützmann, Nikolai Christian. "Application of complexity measures to stratospheric dynamics : a thesis submitted in partial fulfilment of the requirements for a masters degree in physics at the University of Canterbury /." 2008. http://hdl.handle.net/10092/2020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Grant, Stephen Ian. "Medium frequency radar studies of meteors." 2003. http://thesis.library.adelaide.edu.au/public/adt-SUA20040224.152811.

Full text
Abstract:
"July 2003." Includes bibliographical references (leaves 459-484) Electronic publication; full text available in PDF format; abstract in HTML format. Details the application of a medium frequency Doppler radar to observations of meteorites entering the Earth's atmosphere. Techniques were developed that verified system performance was to specification Electronic reproduction.[Australia] :Australian Digital Theses Program,2001. xx, 485 leaves : ill. ; 30 cm.
APA, Harvard, Vancouver, ISO, and other styles
50

Ράπτη, Αναστασία. "Μελέτη της εποχιακής ατμοσφαιρικής θόλωσης και άλλων ατμοσφαιρικών παραμέτρων στην περιοχή Πατρών με μετρήσεις της έντασης της ολοφασματικής ηλιακής ακτινοβολίας." Thesis, 1998. http://nemertes.lis.upatras.gr/jspui/handle/10889/1860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography