Journal articles on the topic 'Methanation; Nickel catalysts; Syngas methanation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Methanation; Nickel catalysts; Syngas methanation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhang, Jiaying. "Study on syngas methanation mechanism over Ni4/MCM-41 catalyst based on density functional theory." Progress in Reaction Kinetics and Mechanism 44, no. 3 (2019): 222–33. http://dx.doi.org/10.1177/1468678319854871.
Full textLu, Bin, Jiahao Zhuang, Jinping Du, et al. "Highly Dispersed Ni Nanocatalysts Derived from NiMnAl-Hydrotalcites as High-Performing Catalyst for Low-Temperature Syngas Methanation." Catalysts 9, no. 3 (2019): 282. http://dx.doi.org/10.3390/catal9030282.
Full textBuyan-Ulzii, Battulga, Odbayar Daariimaa, Chuluunsukh Munkhdelger, Galindev Oyunbileg, and Byambajav Enkhsaruul. "Effect of nickel precursor and catalyst activation temperature on methanation performance." Mongolian Journal of Chemistry 19, no. 45 (2018): 12–18. http://dx.doi.org/10.5564/mjc.v19i45.1084.
Full textDai, Bin, Bo Wen, Mingyuan Zhu, Lihua Kang, and Feng Yu. "Nickel catalysts supported on amino-functionalized MCM-41 for syngas methanation." RSC Advances 6, no. 71 (2016): 66957–62. http://dx.doi.org/10.1039/c6ra07451k.
Full textFeng, Fei, Lei Zhang, Shengbo Huang, Xiu Feng, Liang Jin, and Penggao Zhang. "Surface structure changes of nickel-based catalysts in the syngas methanation process." Reaction Kinetics, Mechanisms and Catalysis 130, no. 1 (2020): 229–40. http://dx.doi.org/10.1007/s11144-020-01787-8.
Full textZhang, Jiaying. "Preparation and catalytic performance of an efficient Raney nickel catalyst for syngas methanation." Journal of Materials Science 54, no. 22 (2019): 14197–208. http://dx.doi.org/10.1007/s10853-019-03864-3.
Full textFei, Feng, Cao Hui, Zhang Lei, and Jin Liang. "Carbon Deposition on Nickel-based Catalyst during Bio-syngas Methanation in a Fluidized Bed Reactor." IOP Conference Series: Earth and Environmental Science 199 (December 19, 2018): 032040. http://dx.doi.org/10.1088/1755-1315/199/3/032040.
Full textLu, Zhenpu, Hegui Zhang, Siyang Tang, Changjun Liu, Hairong Yue, and Bin Liang. "Molybdenum Disulfide-Alumina/Nickel-Foam Catalyst with Enhanced Heat Transfer for Syngas Sulfur-Resistant Methanation." ChemCatChem 10, no. 4 (2017): 720–24. http://dx.doi.org/10.1002/cctc.201701314.
Full textTande, Lifita N., Erik Resendiz-Mora, Valerie Dupont, and Martyn V. Twigg. "Autothermal Reforming of Acetic Acid to Hydrogen and Syngas on Ni and Rh Catalysts." Catalysts 11, no. 12 (2021): 1504. http://dx.doi.org/10.3390/catal11121504.
Full textTao, Miao, Xin Meng, Zhong Xin, Zhicheng Bian, Yuhao Lv, and Jia Gu. "Synthesis and characterization of well dispersed nickel-incorporated SBA-15 and its high activity in syngas methanation reaction." Applied Catalysis A: General 516 (April 2016): 127–34. http://dx.doi.org/10.1016/j.apcata.2016.02.019.
Full textZeng, Yan, Hongfang Ma, Haitao Zhang, Weiyong Ying, and Dingye Fang. "Impact of heating rate and solvent on Ni-based catalysts prepared by solution combustion method for syngas methanation." Polish Journal of Chemical Technology 16, no. 4 (2014): 95–100. http://dx.doi.org/10.2478/pjct-2014-0076.
Full textMarconi, Eleonora, Simonetta Tuti, and Igor Luisetto. "Structure-Sensitivity of CO2 Methanation over Nanostructured Ni Supported on CeO2 Nanorods." Catalysts 9, no. 4 (2019): 375. http://dx.doi.org/10.3390/catal9040375.
Full textAristizábal-Alzate, Carlos Esteban, Ana Belén Dongil, and Manuel Romero-Sáez. "Coffee Pulp Gasification for Syngas Obtention and Methane Production Simulation Using Ni Catalysts Supported on Al2O3 and ZrO2 in a Packed Bed Reactor." Molecules 28, no. 20 (2023): 7026. http://dx.doi.org/10.3390/molecules28207026.
Full textZhou, Long, Li Ping Ma, Ze Cheng Zi, Jun Ma, and Jian Tao Chen. "Study on Ni Catalytic Hydrogenation of Carbon Dioxide for Methane." Applied Mechanics and Materials 628 (September 2014): 16–19. http://dx.doi.org/10.4028/www.scientific.net/amm.628.16.
Full textLiu, Qi Hai, Lie Wen Liao, Xin Hua Zhou, and Quo Qiang Yin. "Selective Methanation of CO over Mesoporous Nano Zirconian Supported Ni Catalysts." Advanced Materials Research 236-238 (May 2011): 829–34. http://dx.doi.org/10.4028/www.scientific.net/amr.236-238.829.
Full textCui, Dianmiao, Jiao Liu, Jian Yu, Fabing Su, and Guangwen Xu. "Attrition-resistant Ni–Mg/Al2O3 catalyst for fluidized bed syngas methanation." Catalysis Science & Technology 5, no. 6 (2015): 3119–29. http://dx.doi.org/10.1039/c5cy00066a.
Full textGhazi, M., and J. Barrault. "Reaction de méthanation du gaz de synthèse: Influence de la température de calcination des catalyseurs à base de nickel." Canadian Journal of Chemistry 71, no. 1 (1993): 107–11. http://dx.doi.org/10.1139/v93-015.
Full textFrontera, Patrizia, Mariachiara Miceli, Francesco Mauriello, Pierantonio De Luca, and Anastasia Macario. "Investigation on the Suitability of Engelhard Titanium Silicate as a Support for Ni-Catalysts in the Methanation Reaction." Catalysts 11, no. 10 (2021): 1225. http://dx.doi.org/10.3390/catal11101225.
Full textGonzález-Rangulan, Vigni V., Inés Reyero, Fernando Bimbela, Francisca Romero-Sarria, Marco Daturi, and Luis M. Gandía. "CO2 Methanation over Nickel Catalysts: Support Effects Investigated through Specific Activity and Operando IR Spectroscopy Measurements." Catalysts 13, no. 2 (2023): 448. http://dx.doi.org/10.3390/catal13020448.
Full textNetskina, Olga V., Kirill A. Dmitruk, Olga I. Mazina, et al. "CO2 Methanation: Solvent-Free Synthesis of Nickel-Containing Catalysts from Complexes with Ethylenediamine." Materials 16, no. 7 (2023): 2616. http://dx.doi.org/10.3390/ma16072616.
Full textBattulga, Buyan-Ulzii, Munkhdelger Chuluunsukh, and Enkhsaruul Byambajav. "Methanation of Syngas over Ni-Based Catalysts with Different Supports." Advances in Chemical Engineering and Science 10, no. 02 (2020): 113–22. http://dx.doi.org/10.4236/aces.2020.102008.
Full textMa, Shengli, Yisheng Tan, and Yizhuo Han. "Methanation of syngas over coral reef-like Ni/Al2O3 catalysts." Journal of Natural Gas Chemistry 20, no. 4 (2011): 435–40. http://dx.doi.org/10.1016/s1003-9953(10)60192-2.
Full textZhao, Anmin, Weiyong Ying, Haitao Zhang, Ma Hongfang, and Dingye Fang. "Ni/Al2O3 catalysts for syngas methanation: Effect of Mn promoter." Journal of Natural Gas Chemistry 21, no. 2 (2012): 170–77. http://dx.doi.org/10.1016/s1003-9953(11)60350-2.
Full textLi, Li, Wenqing Zeng, Mouxiao Song, Xueshuang Wu, Guiying Li, and Changwei Hu. "Research Progress and Reaction Mechanism of CO2 Methanation over Ni-Based Catalysts at Low Temperature: A Review." Catalysts 12, no. 2 (2022): 244. http://dx.doi.org/10.3390/catal12020244.
Full textvan Stiphout, P. C. M., and J. W. Geus. "Platinum-nickel catalysts: Characterisation, methanation and carbon deposition." Applied Catalysis 25, no. 1-2 (1986): 19–26. http://dx.doi.org/10.1016/s0166-9834(00)81217-8.
Full textBarrientos, J., M. Lualdi, M. Boutonnet, and S. Järås. "Deactivation of supported nickel catalysts during CO methanation." Applied Catalysis A: General 486 (September 2014): 143–49. http://dx.doi.org/10.1016/j.apcata.2014.08.021.
Full textLoc, Luu Cam, Nguyen Manh Huan, N. A. Gaidai, et al. "Kinetics of carbon monoxide methanation on nickel catalysts." Kinetics and Catalysis 53, no. 3 (2012): 384–94. http://dx.doi.org/10.1134/s0023158412030093.
Full textCue Gonzalez, Alejandra, Elsa Weiss-Hortala, Quoc Nghi Pham, and Doan Pham Minh. "Catalytic Methanation over Natural Clay-Supported Nickel Catalysts." Molecules 30, no. 10 (2025): 2110. https://doi.org/10.3390/molecules30102110.
Full textRyczkowski, J., and T. Borowiecki. "Hydrogenation of CO2 over Alkali Metal-Modified Ni/Al2O3 Catalysts." Adsorption Science & Technology 16, no. 9 (1998): 759–72. http://dx.doi.org/10.1177/026361749801600908.
Full textPakharukova, V. P., O. A. Stonkus, N. A. Kharchenko, et al. "Nickel Based Ni–Ce<sub>1–<i>x</i></sub>Zr<sub><i>x</i></sub>O<sub>2</sub> Catalysts Prepared by Pechini Method for CO<sub>2</sub> Methanation." Кинетика и катализ 64, no. 5 (2023): 648–60. http://dx.doi.org/10.31857/s0453881123050064.
Full textGuo, Xinpeng, Hongyan He, Atsadang Traitangwong, et al. "Ceria imparts superior low temperature activity to nickel catalysts for CO2 methanation." Catalysis Science & Technology 9, no. 20 (2019): 5636–50. http://dx.doi.org/10.1039/c9cy01186b.
Full textTruszkiewicz, Elżbieta, Wioletta Raróg-Pilecka, Magdalena Zybert, Malwina Wasilewska-Stefańska, Ewa Topolska, and Kamila Michalska. "Effect of the ruthenium loading and barium addition on the activity of ruthenium/carbon catalysts in carbon monoxide methanation." Polish Journal of Chemical Technology 16, no. 4 (2014): 106–10. http://dx.doi.org/10.2478/pjct-2014-0079.
Full textKim, Jungpil. "Ni Catalysts for Thermochemical CO2 Methanation: A Review." Coatings 14, no. 10 (2024): 1322. http://dx.doi.org/10.3390/coatings14101322.
Full textWang, Luhui, Junang Hu, Hui Liu, et al. "Three-Dimensional Mesoporous Ni-CeO2 Catalysts with Ni Embedded in the Pore Walls for CO2 Methanation." Catalysts 10, no. 5 (2020): 523. http://dx.doi.org/10.3390/catal10050523.
Full textLiu, Yi, Wei Sheng, Zhanggui Hou, and Yi Zhang. "Homogeneous and highly dispersed Ni–Ru on a silica support as an effective CO methanation catalyst." RSC Advances 8, no. 4 (2018): 2123–31. http://dx.doi.org/10.1039/c7ra13147j.
Full textHoriguchi, Genki, Toshiaki Yamaguchi, Hiroyuki Tateno, Katherine Develos Bagarinao, Haruo Kishimoto, and Takehisa Mochizuki. "Preparation of Ni/YSZ Catalysts for Application of Solid Oxide Electrolysis Cell Methanation." ECS Meeting Abstracts MA2023-01, no. 54 (2023): 57. http://dx.doi.org/10.1149/ma2023-015457mtgabs.
Full textKim, Woohyun, Khaja Mohaideen Kamal, Dong Joo Seo, and Wang Lai Yoon. "Kinetic Study on CO-Selective Methanation over Nickel-Based Catalysts for Deep Removal of CO from Hydrogen-Rich Reformate." Catalysts 11, no. 12 (2021): 1429. http://dx.doi.org/10.3390/catal11121429.
Full textSun, Chao, Jugoslav Krstic, Vojkan Radonjic, Miroslav Stankovic, and Patrick da Costa. "The Effect of Ni Precursor Salts on Diatomite Supported Ni-Mg Catalysts in Methanation of CO2." Materials Science Forum 1016 (January 2021): 1417–22. http://dx.doi.org/10.4028/www.scientific.net/msf.1016.1417.
Full textGac, Wojciech, Witold Zawadzki, Magdalena Greluk, Grzegorz Słowik, Marek Rotko, and Marcin Kuśmierz. "The Effects of Ce and W Promoters on the Performance of Alumina-Supported Nickel Catalysts in CO2 Methanation Reaction." Catalysts 12, no. 1 (2021): 13. http://dx.doi.org/10.3390/catal12010013.
Full textGarbarino, Gabriella, Federico Pugliese, Tullio Cavattoni, Guido Busca, and Paola Costamagna. "A Study on CO2 Methanation and Steam Methane Reforming over Commercial Ni/Calcium Aluminate Catalysts." Energies 13, no. 11 (2020): 2792. http://dx.doi.org/10.3390/en13112792.
Full textSuksumrit, Kamonrat, Christoph A. Hauzenberger, Michael Gostencnik, and Susanne Lux. "CO2 Methanation over Ni-Based Catalysts: Investigation of Mixed Silica/MgO Support Materials." Catalysts 15, no. 6 (2025): 589. https://doi.org/10.3390/catal15060589.
Full textLiu, Yincong, Lingjun Zhu, Xiaoliu Wang, et al. "Catalytic methanation of syngas over Ni-based catalysts with different supports." Chinese Journal of Chemical Engineering 25, no. 5 (2017): 602–8. http://dx.doi.org/10.1016/j.cjche.2016.10.019.
Full textZhao, Anmin, Weiyong Ying, Haitao Zhang, Hongfang Ma, and Dingye Fang. "Ni–Al2O3 catalysts prepared by solution combustion method for syngas methanation." Catalysis Communications 17 (January 2012): 34–38. http://dx.doi.org/10.1016/j.catcom.2011.10.010.
Full textHuang, Xieyi, Peng Wang, Zhichao Zhang, et al. "Efficient conversion of CO2 to methane using thin-layer SiOx matrix anchored nickel catalysts." New Journal of Chemistry 43, no. 33 (2019): 13217–24. http://dx.doi.org/10.1039/c9nj03152a.
Full textGac, Wojciech, Witold Zawadzki, Grzegorz Słowik, Andrzej Sienkiewicz, and Agnieszka Kierys. "Nickel catalysts supported on silica microspheres for CO2 methanation." Microporous and Mesoporous Materials 272 (December 2018): 79–91. http://dx.doi.org/10.1016/j.micromeso.2018.06.022.
Full textBerry, Frank J., Andrew Murray, and Norman D. Parkyns. "Nickel-uranium oxide catalysts: characterisation and evaluation for methanation." Applied Catalysis A: General 100, no. 1 (1993): 131–43. http://dx.doi.org/10.1016/0926-860x(93)80121-6.
Full textRATHOUSKY, J., A. ZUKAL, and J. STAREK. "Stabilized magnesia as a support for nickel methanation catalysts." Applied Catalysis A: General 94, no. 2 (1993): 167–79. http://dx.doi.org/10.1016/0926-860x(93)85006-b.
Full textFrainetti, Alexandra J., and Naomi B. Klinghoffer. "Engineering biochar-supported nickel catalysts for efficient CO2 methanation." Biomass and Bioenergy 184 (May 2024): 107179. http://dx.doi.org/10.1016/j.biombioe.2024.107179.
Full textWu, Yushan, Jianghui Lin, Guangyuan Ma, et al. "Ni nanocatalysts supported on mesoporous Al2O3–CeO2 for CO2 methanation at low temperature." RSC Advances 10, no. 4 (2020): 2067–72. http://dx.doi.org/10.1039/c9ra08967e.
Full textKale, Sumeet S., Juan M. Asensio, Marta Estrader, et al. "Iron carbide or iron carbide/cobalt nanoparticles for magnetically-induced CO2 hydrogenation over Ni/SiRAlOx catalysts." Catalysis Science & Technology 9, no. 10 (2019): 2601–7. http://dx.doi.org/10.1039/c9cy00437h.
Full text