Journal articles on the topic 'Methane'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Methane.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Tselishchev, Oleksii, Ayodeji Ijagbuji, Maryna Loriia, and Vanadii Nosach. "Synthesis of Methanol from Methane in Cavitation Field." Chemistry & Chemical Technology 12, no. 1 (2018): 69–73. http://dx.doi.org/10.23939/chcht12.01.069.
Full textXu, Qingliang. "Reviews on the Production and Application of Methane." Applied and Computational Engineering 3, no. 1 (2023): 96–100. http://dx.doi.org/10.54254/2755-2721/3/20230358.
Full textLind, Natalie M., Natalie S. Joe, Brian S. Newell, and Aimee M. Morris. "High Yielding, One-Pot Synthesis of Bis(1H-indazol-1-yl)methane Catalyzed by 3d-Metal Salts." Reactions 3, no. 1 (2022): 59–69. http://dx.doi.org/10.3390/reactions3010005.
Full textTang, Ping, Xiong Yang, and Ying Shu Liu. "Active Carbon for Coal Mine Methane Separation by Pressure Swing Adsorption." Advanced Materials Research 236-238 (May 2011): 586–90. http://dx.doi.org/10.4028/www.scientific.net/amr.236-238.586.
Full textMuhammad Ahsan and Edgar Luna. "Resource classification of coal bed methane and its contribution in energy transition and decarbonization path of oil and gas industry (A synopsis of CBM Life Cycle Analysis)." World Journal of Advanced Engineering Technology and Sciences 12, no. 1 (2024): 001–7. http://dx.doi.org/10.30574/wjaets.2024.12.1.0156.
Full textStevenson, David S., Richard G. Derwent, Oliver Wild, and William J. Collins. "COVID-19 lockdown emission reductions have the potential to explain over half of the coincident increase in global atmospheric methane." Atmospheric Chemistry and Physics 22, no. 21 (2022): 14243–52. http://dx.doi.org/10.5194/acp-22-14243-2022.
Full textLi, Jin Shan, Zhong Xue Li, and Bing Hui Zu. "Coalbed Methane (CBM) Project Enrichment Area and Economic Evaluation." Advanced Materials Research 772 (September 2013): 776–80. http://dx.doi.org/10.4028/www.scientific.net/amr.772.776.
Full textAbulude, Francis Olawale, Akinyinka Akinnusotu, Samuel Dare Oluwagbayide, Julius Oyetunde, and Abigail Oluwakemi Feyisetan. "Methane emissions and air quality: A growing concern." Pollution Study 6, no. 2 (2025): 3311. https://doi.org/10.54517/ps3311.
Full textAkinsemolu, Adenike A., and Helen N. Onyeaka. "Can Methylococcus capsulatus Revolutionize Methane Capture and Utilization for Sustainable Energy Production?" SynBio 2, no. 3 (2024): 311–28. http://dx.doi.org/10.3390/synbio2030019.
Full textGhassemi Nejad, Jalil, Mun-Su Ju, Jang-Hoon Jo, et al. "Advances in Methane Emission Estimation in Livestock: A Review of Data Collection Methods, Model Development and the Role of AI Technologies." Animals 14, no. 3 (2024): 435. http://dx.doi.org/10.3390/ani14030435.
Full textPekarnikova, M. Е., and K. B. Valiullina. "Legal Regulation of Methane Emissions and Its Role in Supporting the Goal of the Paris Agreement: General Issues." Uchenye Zapiski Kazanskogo Universiteta Seriya Gumanitarnye Nauki 166, no. 6 (2025): 145–59. https://doi.org/10.26907/2541-7738.2024.6.145-159.
Full textZheng, Qing Rong, Fan Gui Zeng, and Shi Tong Zhang. "Characteristics and Mechanisms of Gaseous Organic Compound Generation during Coking." Applied Mechanics and Materials 71-78 (July 2011): 4710–16. http://dx.doi.org/10.4028/www.scientific.net/amm.71-78.4710.
Full textAllen, Robert J., Xueying Zhao, Cynthia A. Randles, Ryan J. Kramer, Bjørn H. Samset, and Christopher J. Smith. "Present-day methane shortwave absorption mutes surface warming relative to preindustrial conditions." Atmospheric Chemistry and Physics 24, no. 19 (2024): 11207–26. http://dx.doi.org/10.5194/acp-24-11207-2024.
Full textVigderovich, Hanni, Lewen Liang, Barak Herut, et al. "Evidence for microbial iron reduction in the methanic sediments of the oligotrophic southeastern Mediterranean continental shelf." Biogeosciences 16, no. 16 (2019): 3165–81. http://dx.doi.org/10.5194/bg-16-3165-2019.
Full textHe, Jian, Vaishali Naik, Larry W. Horowitz, Ed Dlugokencky, and Kirk Thoning. "Investigation of the global methane budget over 1980–2017 using GFDL-AM4.1." Atmospheric Chemistry and Physics 20, no. 2 (2020): 805–27. http://dx.doi.org/10.5194/acp-20-805-2020.
Full textWang, Jin, and Qinghua Peter He. "Methane Removal from Air: Challenges and Opportunities." Methane 2, no. 4 (2023): 404–14. http://dx.doi.org/10.3390/methane2040027.
Full textYudiandika, I. Putu, I. Wayan Suarna, and I. Made Sudarma. "PENGARUH JUMLAH BAKTERI METHANOBACTERIUM DAN LAMA FERMENTASI TERHADAP PROPORSI GAS METANA (CH4) PADA PENGOLAHAN SAMPAH ORGANIK DI TPA SUWUNG DENPASAR." ECOTROPHIC : Jurnal Ilmu Lingkungan (Journal of Environmental Science) 11, no. 1 (2017): 29. http://dx.doi.org/10.24843/ejes.2017.v11.i01.p05.
Full textBuzan, E. M., C. A. Beale, C. D. Boone, and P. F. Bernath. "Global stratospheric measurements of the isotopologues of methane from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer." Atmospheric Measurement Techniques Discussions 8, no. 10 (2015): 11171–207. http://dx.doi.org/10.5194/amtd-8-11171-2015.
Full textZhao, Shutao, Yuzhong Zhang, Shuang Zhao, Xinlu Wang, and Daniel J. Varon. "A data-efficient deep transfer learning framework for methane super-emitter detection in oil and gas fields using the Sentinel-2 satellite." Atmospheric Chemistry and Physics 25, no. 7 (2025): 4035–52. https://doi.org/10.5194/acp-25-4035-2025.
Full textBuzan, Eric M., Chris A. Beale, Chris D. Boone, and Peter F. Bernath. "Global stratospheric measurements of the isotopologues of methane from the Atmospheric Chemistry Experiment Fourier transform spectrometer." Atmospheric Measurement Techniques 9, no. 3 (2016): 1095–111. http://dx.doi.org/10.5194/amt-9-1095-2016.
Full textNeue, H. U., R. Wassmann, R. S. Lantin, M. C. Alberto, and J. B. Aduna. "Ebullition of methane." International Rice Research Notes 19, no. 3 (1994): 36–37. https://doi.org/10.5281/zenodo.6880460.
Full textElul, Michal, Maxim Rubin-Blum, Zeev Ronen, Itay Bar-Or, Werner Eckert, and Orit Sivan. "Metagenomic insights into the metabolism of microbial communities that mediate iron and methane cycling in Lake Kinneret iron-rich methanic sediments." Biogeosciences 18, no. 6 (2021): 2091–106. http://dx.doi.org/10.5194/bg-18-2091-2021.
Full textSingh, Arvind, Gurpreet Kaur, and Bubun Banerjee. "Recent Developments on the Synthesis of Biologically Significant bis/tris(indolyl)methanes under Various Reaction Conditions: A Review." Current Organic Chemistry 24, no. 6 (2020): 583–621. http://dx.doi.org/10.2174/1385272824666200228092752.
Full textOrtikov, Nurbek, Normurot Fayzullaev, Davron Hamidov, and Firdavsiy Buronov. "Study of methane carbonate conversion process in fixed catalyst layer in different membrane reactors." E3S Web of Conferences 402 (2023): 14013. http://dx.doi.org/10.1051/e3sconf/202340214013.
Full textBlankenship, Andrea N., Manoj Ravi, and Jeroen A. van Bokhoven. "Esterification Product Protection Strategies for Direct and Selective Methane Conversion." CHIMIA International Journal for Chemistry 75, no. 4 (2021): 305–10. http://dx.doi.org/10.2533/chimia.2021.305.
Full textRoss, Julian. "Methane." Applied Catalysis A: General 117, no. 2 (1994): N19—N20. http://dx.doi.org/10.1016/0926-860x(94)85101-8.
Full textNakoryakov, V. E., S. Ya Misyura, S. L. Elistratov, A. Yu Manakov, and A. A. Sizikov. "Methane combustion in hydrate systems: Water-methane and water-methane-isopropanol." Journal of Engineering Thermophysics 22, no. 3 (2013): 169–73. http://dx.doi.org/10.1134/s1810232813030016.
Full textNeue, H. U., R. Wassmann, R. S. Lantin, M. C. Alberto, and J. B. Aduna. "Methane emission from ricefields." International Rice Research Notes 19, no. 3 (1994): 31. https://doi.org/10.5281/zenodo.6880438.
Full textAmbundo, Edna A., Richard A. Friesner, and Stephen J. Lippard. "Reactions of Methane Monooxygenase Intermediate Q with Derivatized Methanes." Journal of the American Chemical Society 124, no. 30 (2002): 8770–71. http://dx.doi.org/10.1021/ja0265759.
Full textGalván, César G., José M. Cabrera-Trujillo, Ivonne J. Hernández-Hernández, and Luis A. Pérez. "Molecular dynamics approach for crystal structures of methane A and B." International Journal of Modern Physics C 28, no. 04 (2017): 1750048. http://dx.doi.org/10.1142/s0129183117500486.
Full textMaasakkers, Joannes D., Daniel J. Jacob, Melissa P. Sulprizio, et al. "Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015." Atmospheric Chemistry and Physics 19, no. 11 (2019): 7859–81. http://dx.doi.org/10.5194/acp-19-7859-2019.
Full textNisbet, Euan G., Edward J. Dlugokencky, Rebecca E. Fisher, et al. "Atmospheric methane and nitrous oxide: challenges alongthe path to Net Zero." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, no. 2210 (2021): 20200457. http://dx.doi.org/10.1098/rsta.2020.0457.
Full textRicardo, O. Russo. "Mitigating Methane Emissions from Husbandry: A brief review." INTERNATIONAL JOURNAL OF LIFE SCIENCE AND AGRICULTURE RESEARCH 03, no. 06 (2024): 507–9. https://doi.org/10.5281/zenodo.12526775.
Full textPrince, Bruce M. "Harnessing Nitrous Oxide for Sustainable Methane Activation: A Computational Exploration of CNC-Ligated Iron Catalysts." Methane 4, no. 1 (2025): 6. https://doi.org/10.3390/methane4010006.
Full textKamalanathan, Stephanie, Kerry Houlahan, Filippo Miglior, et al. "Genetic Analysis of Methane Emission Traits in Holstein Dairy Cattle." Animals 13, no. 8 (2023): 1308. http://dx.doi.org/10.3390/ani13081308.
Full textRivas-Loaiza, Juan A., Carlos E. Reyes-Escobedo, Yliana Lopez, Susana Rojas-Lima, Juan Pablo García-Merinos, and Heraclio López-Ruiz. "(Thio)urea-catalyzed Friedel-Crafts Reaction: Synthesis of Bis(indolyl)- methanes." Letters in Organic Chemistry 16, no. 12 (2019): 959–68. http://dx.doi.org/10.2174/1570178616666190222150915.
Full textHuang, Bingxiang, Weiyong Lu, Shuliang Chen, and Xinglong Zhao. "Experimental investigation of the functional mechanism of methane displacement by water in the coal." Adsorption Science & Technology 38, no. 9-10 (2020): 357–76. http://dx.doi.org/10.1177/0263617420948700.
Full textWu, Tao, Jiankang Cheng, Shifang Wang, et al. "Hotspot Detection and Estimation of Methane Emissions from Landfill Final Cover." Atmosphere 14, no. 11 (2023): 1598. http://dx.doi.org/10.3390/atmos14111598.
Full textMassa, Werner, Thomas Kämpchen, Johann Müller, and Ulf Pindur. "Zur Struktur von Tris(1,3-dimethyl-2-indolyl)-methan: Ein chiraler C3-Propeller aus der Trishetarylmethan-Reihe / The Structure of Tris(1,3-dim ethyl-2-indolyl)m ethane: a Chiral C3-Propeller in the Trishetarylmethane Series." Zeitschrift für Naturforschung B 41, no. 6 (1986): 762–67. http://dx.doi.org/10.1515/znb-1986-0614.
Full textNeue, H. U., R. Wassmann, R. S. Lantin, M. C. Alberto, and J. B. Aduna. "Measuring methane emission." International Rice Research Notes 19, no. 3 (1994): 32. https://doi.org/10.5281/zenodo.6880444.
Full textNeue, H. U., R. Wassmann, R. S. Lantin, M. C. Alberto, and J. B. Aduna. "Measuring methane emission." International Rice Research Notes 19, no. 3 (1994): 32. https://doi.org/10.5281/zenodo.6880428.
Full textNahmatova, G. Ch, L. M. Gasanova, and T. M. Nagiev. "MECHANISM AND KINETICS OF DIRECT OXIDATION OF METHANE TO METHANOL BY HYDROGEN PEROXIDE ON A BIOMIMETIC CATALYST IN THE CONTEXT OF COHERENTLY SYNCHRONIZED REACTIONS." Azerbaijan Chemical Journal, no. 3 (June 24, 2025): 54–62. https://doi.org/10.32737/0005-2531-2025-3-54-62.
Full textZhang, Xueli, Tao Zhu, Nengjing Yi, et al. "Study on Characteristics and Model Prediction of Methane Emissions in Coal Mines: A Case Study of Shanxi Province, China." Atmosphere 14, no. 9 (2023): 1422. http://dx.doi.org/10.3390/atmos14091422.
Full textBorowski, Marek, and Zbigniew Kuczera. "Comparison of Methane Control Methods in Polish and Vietnamese Coal Mines." E3S Web of Conferences 35 (2018): 01004. http://dx.doi.org/10.1051/e3sconf/20183501004.
Full textRinger, Ashley L., Michelle S. Figgs, Mutasem O. Sinnokrot та C. David Sherrill. "Aliphatic C−H/π Interactions: Methane−Benzene, Methane−Phenol, and Methane−Indole Complexes". Journal of Physical Chemistry A 110, № 37 (2006): 10822–28. http://dx.doi.org/10.1021/jp062740l.
Full textCooper, G., E. Christensen, and A. P. Hitchcock. "Quasielastic electron scattering from methane, methane-d4, methane-d2, ethylene, and 2-methylpropane." Journal of Chemical Physics 127, no. 8 (2007): 084315. http://dx.doi.org/10.1063/1.2772275.
Full textTopp, Edward, and Elizabeth Pattey. "Soils as sources and sinks for atmospheric methane." Canadian Journal of Soil Science 77, no. 2 (1997): 167–77. http://dx.doi.org/10.4141/s96-107.
Full textXu, Zhen Chao, and Eun Duck Park. "Gas-Phase Selective Oxidation of Methane into Methane Oxygenates." Catalysts 12, no. 3 (2022): 314. http://dx.doi.org/10.3390/catal12030314.
Full textJackson, Robert B., Sam Abernethy, Josep G. Canadell, et al. "Atmospheric methane removal: a research agenda." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, no. 2210 (2021): 20200454. http://dx.doi.org/10.1098/rsta.2020.0454.
Full textMiriam Sheba, V., J. Jayaprakash, P. G. Nisha, B. Balaji Prasath, S. Debora, and T. Nargis Begum. "Influence of seasons and environmental variables on methane dynamics in the Muthukuda Mangrove sediments of Tamil Nadu." Journal of Environmental Biology 45, no. 4 (2024): 438–45. http://dx.doi.org/10.22438/jeb/45/4/mrn-5213.
Full text