Journal articles on the topic 'Methanol transformation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Methanol transformation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Doluda, V., R. Brovko, N. Giniatullina, and M. Sulman. "Kinetic particularities of strained alicyclic compounds formation in catalytic methanol to hydrocarbon transformation process." Bulletin of Science and Practice, no. 12 (December 11, 2017): 105–12. https://doi.org/10.5281/zenodo.1101184.
Full textIlić, Dušica, Vesna Nikolić, Mihajlo Stanković, et al. "Transformation of Synthetic Allicin: The Influence of Ultrasound, Microwaves, Different Solvents and Temperatures, and the Products Isolation." Scientific World Journal 2012 (2012): 1–7. http://dx.doi.org/10.1100/2012/561823.
Full textMichalkiewicz, Beata. "Assessment of the possibility of the methane to methanol transformation." Polish Journal of Chemical Technology 10, no. 2 (2008): 20–26. http://dx.doi.org/10.2478/v10026-008-0023-5.
Full textLi, Teng, Tuiana Shoinkhorova, Jorge Gascon, and Javier Ruiz-Martínez. "Aromatics Production via Methanol-Mediated Transformation Routes." ACS Catalysis 11, no. 13 (2021): 7780–819. http://dx.doi.org/10.1021/acscatal.1c01422.
Full textKryshtopa, Sviatoslav, Krzysztof Górski, Rafał Longwic, Ruslans Smigins, and Liudmyla Kryshtopa. "Increasing Parameters of Diesel Engines by Their Transformation for Methanol Conversion Products." Energies 14, no. 6 (2021): 1710. http://dx.doi.org/10.3390/en14061710.
Full textSuebphanpho, Jitti, and Jaursup Boonmak. "Luminescence turn-on sensor for the selective detection of trace water and methanol based on a Zn(ii) coordination polymer with 2,5-dihydroxyterephthalate." RSC Advances 14, no. 14 (2024): 9781–90. http://dx.doi.org/10.1039/d4ra00500g.
Full textALBANIA, VILLARROEL, DJAOUADI DJAMAL, AVENDAÑO FÉLIX, and GARCÍA LUIS. "Transformation of methanol into aromatic compounds over MFI type zeolites." Catálisis 2 (January 1, 2013): 1–13. https://doi.org/10.5281/zenodo.4012400.
Full textNedomová, K., B. Wichterlová, S. Beran, and S. Bednárová. "Factors influencing deactivation of zeolites in methanol transformation." Catalysis Today 3, no. 5 (1988): 373–78. http://dx.doi.org/10.1016/0920-5861(88)87017-2.
Full textSakon, Aya, Akiko Sekine, and Hidehiro Uekusa. "Vapochromism of Organic Cocrystal Induced by Crystalline Solvent Exchange." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C671. http://dx.doi.org/10.1107/s2053273314093280.
Full textBrovko, R., L. Mushinskii, and V. Doluda. "H-ZSM-5 Zeolites Deactivation Mechanisms in Catalytic Transformation of Methanol to Hydrocarbons." Bulletin of Science and Practice 6, no. 11 (2020): 31–39. http://dx.doi.org/10.33619/2414-2948/60/03.
Full textCao, Xiaoxue, Shaochang Ji, Yumei Ben, et al. "The Methods to Crystallize Anhydrous L-Phenylalanine from Methanol-Water Solution." Crystals 10, no. 2 (2020): 60. http://dx.doi.org/10.3390/cryst10020060.
Full textShabir, Faizan, Muhammad Sultan, Yasir Niaz, et al. "Steady-State Investigation of Carbon-Based Adsorbent–Adsorbate Pairs for Heat Transformation Application." Sustainability 12, no. 17 (2020): 7040. http://dx.doi.org/10.3390/su12177040.
Full textWojcieszak, R., A. Karelovic, E. M. Gaigneaux, and P. Ruiz. "Oxidation of methanol to methyl formate over supported Pd nanoparticles: insights into the reaction mechanism at low temperature." Catal. Sci. Technol. 4, no. 9 (2014): 3298–305. http://dx.doi.org/10.1039/c4cy00531g.
Full textBrovko, R., L. Mushinskii, and V. Doluda. "Catalytic Methanol to Hydrocarbons Transformation Particularities in Case of Micro Structured Flows Application." Bulletin of Science and Practice 8, no. 1 (2022): 17–24. http://dx.doi.org/10.33619/2414-2948/74/02.
Full textDe Souza, Igor A., Paulo G. B. D. Nascimento, Daniela C. Orsi, and Claure Nain Lunardi. "Cassava Biomass Transformation by Aspergillus oryzae." Journal of Agricultural Science 8, no. 9 (2016): 37. http://dx.doi.org/10.5539/jas.v8n9p37.
Full textAhmed, A. S., A. B. Sharba, and Q. M. Salman. "Phase transformation and size control of CdS and Fe/CdS nanoparticles prepared by pulsed laser ablation." Chalcogenide Letters 21, no. 12 (2024): 989–99. https://doi.org/10.15251/cl.2024.2112.989.
Full textChang, Ruimiao, Qiang Fu, Pei Yu, et al. "A new polymorphic form and polymorphic transformation of loratadine." RSC Advances 6, no. 88 (2016): 85063–73. http://dx.doi.org/10.1039/c6ra14021a.
Full textWulandhani, Fiska Dewi, and Fajar Inggit Pambudi. "Investigating the Interaction between Methanol and the Heulandite-type Zeolite using First Principle Molecular Dynamic." Bulletin of Chemical Reaction Engineering & Catalysis 17, no. 3 (2022): 542–53. http://dx.doi.org/10.9767/bcrec.17.3.15169.542-553.
Full textLao-Ubol, Supranee, Phunthinee Somwongsa, Pracha Laoauyporn, Pasinee Panith, Siriporn Larpkiattaworn, and Shih Yuan Chen. "Effect of Silica Base Catalyst on Transformation of Methanol to Hydrocarbon." Key Engineering Materials 751 (August 2017): 512–17. http://dx.doi.org/10.4028/www.scientific.net/kem.751.512.
Full textYefimov, Stanislav V. "Kinetics of Spontaneous Conversion of Methylcobalamin into Hydroxocobalamin in Aqueous and Methanol Solutions HPLC/MS." Scholars Academic Journal of Pharmacy 11, no. 10 (2022): 176–81. http://dx.doi.org/10.36347/sajp.2022.v11i10.001.
Full textAhmadi, Soroush, Pradip Kumar Mondal, Mahmoud Mirmehrabi, and Sohrab Rohani. "Desolvation of dasatinib methanolate: an improved anhydrous polymorph." CrystEngComm 23, no. 24 (2021): 4272–83. http://dx.doi.org/10.1039/d1ce00337b.
Full textYang, Pengpeng, Chenguang Lin, Wei Zhuang, et al. "Insight into a direct solid–solid transformation: a potential approach for the removal of residual solvents." CrystEngComm 18, no. 10 (2016): 1699–704. http://dx.doi.org/10.1039/c6ce00034g.
Full textLefebvre, Frédéric, Eva Grinenval, and Piotr Putaj. "Methane Activation and Transformation on Polyoxometalates." Journal of Catalysts 2013 (January 14, 2013): 1–9. http://dx.doi.org/10.1155/2013/730978.
Full textZhai, Rongwei, Na Zheng, Joshua Rizak, and Xintian Hu. "Evidence for Conversion of Methanol to Formaldehyde in Nonhuman Primate Brain." Analytical Cellular Pathology 2016 (2016): 1–5. http://dx.doi.org/10.1155/2016/4598454.
Full textZhang, Wei, Kangzhou Wang, Xinhua Gao, Xiaojing Yong, and Yanlong Gu. "Synergistic Effect of Structure and Morphology of ZSM-5 Catalysts on the Transformation of Methanol to Propylene." Catalysts 14, no. 1 (2024): 67. http://dx.doi.org/10.3390/catal14010067.
Full textTSINTSKALADZE, G., A. NEFEDOVA, Z. GRYAZNOVA, G. TSITSISHVILI, and N. GIGOLASHVILI. "Active centres of decationated zeolites in oxidative transformation of methanol." Petroleum Chemistry U.S.S.R. 25, no. 3 (1985): 160–65. http://dx.doi.org/10.1016/s0031-6458(85)80005-8.
Full textBechadergue-Labiche, C., P. Canesson, and M. Blanchard. "Selective transformation of methanol into light olefins on metallic catalysts." Applied Catalysis 42, no. 2 (1988): 299–306. http://dx.doi.org/10.1016/0166-9834(88)80009-5.
Full textJiao, Mingyang, Subing Fan, Jianli Zhang, Xiaojuan Su, and Tian-Sheng Zhao. "Methanol-to-olefins over FeHZSM-5: Further transformation of products." Catalysis Communications 56 (November 2014): 153–56. http://dx.doi.org/10.1016/j.catcom.2014.07.025.
Full textPaul, Bhaskar, Milan Maji, Dibyajyoti Panja, and Sabuj Kundu. "Tandem Transformation of Aldoximes to N‐Methylated Amides Using Methanol." Advanced Synthesis & Catalysis 361, no. 23 (2019): 5357–62. http://dx.doi.org/10.1002/adsc.201900962.
Full textVoloshyna, Yuliya G., Olexandra P. Pertko, Serhiy V. Konovalov, and Lyubov K. Patrylak. "Benzene as a by-product of toluene with methanol transformation on the basic zeolite catalysts and its presumable origin." Adsorption Science & Technology 35, no. 7-8 (2017): 700–705. http://dx.doi.org/10.1177/0263617417705963.
Full textFikry, Ebeid M., Ali Abdel-Ghaffar, Amin Anwar та Sameh Aboul-Fotouh. "Heteropoly Acids Supported on α-Al2O3 as Solid Acid Catalysts for Methanol Transformation". Collection of Czechoslovak Chemical Communications 58, № 9 (1993): 2079–89. http://dx.doi.org/10.1135/cccc19932079.
Full textVali, Seyed Alireza, Ahmad Abo Markeb, Javier Moral-Vico, Xavier Font, and Antoni Sánchez. "Recent Advances in the Catalytic Conversion of Methane to Methanol: From the Challenges of Traditional Catalysts to the Use of Nanomaterials and Metal-Organic Frameworks." Nanomaterials 13, no. 20 (2023): 2754. http://dx.doi.org/10.3390/nano13202754.
Full textGe, Jing-Yuan, Jian-Cheng Wang, Jun-Yan Cheng, et al. "Oxygen and methanol mediated irreversible coordination polymer structural transformation from a 3D Cu(i)-framework to a 1D Cu(ii)-chain." Chem. Commun. 50, no. 34 (2014): 4434–37. http://dx.doi.org/10.1039/c4cc00857j.
Full textLin, Bo, Jinqiang Kuang, Jiajia Chen, Zhenguo Hua, Vahid Khakyzadeh та Yuanzhi Xia. "A one-pot protocol for the synthesis of β-ketosulfones from α,α-dibromoketones". Organic Chemistry Frontiers 6, № 15 (2019): 2647–53. http://dx.doi.org/10.1039/c9qo00440h.
Full textTan, Huiling, Qibin Chen, Yujie Sheng, Xiaoxiao Li, and Honglai Liu. "Guest-induced reversible crystal-to-amorphous-to-crystal transformation in a Co(ii)-based metal–organic framework." CrystEngComm 20, no. 42 (2018): 6828–33. http://dx.doi.org/10.1039/c8ce01324a.
Full textSahu, Ram Priye Kumar. "Retrofitting Marine Internal Combustion (IC) Engines for Methanol Fuel Integration." International Journal for Research in Applied Science and Engineering Technology 13, no. 4 (2025): 5137–55. https://doi.org/10.22214/ijraset.2025.69401.
Full textZageris, G. "METHANOL PRODUCTION UNITS OF MODULAR TYPE FOR INDUSTRY DECARBONIZATION." Eurasian Physical Technical Journal 19, no. 3 (41) (2022): 45–54. http://dx.doi.org/10.31489/2022no3/45-54.
Full textYu, Yang-Yen, and Chun-Yen Huang. "Morphological Transformation and Photophysical Properties of Polyfluorene-Based Luminescent Rod-Coil Block Copolymers." Journal of Nanomaterials 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/4041837.
Full textBarroso-Martín, Isabel, Antonia Infantes-Molina, Fatemeh Jafarian Fini, Daniel Ballesteros-Plata, Enrique Rodríguez-Castellón, and Elisa Moretti. "Silica-Related Catalysts for CO2 Transformation into Methanol and Dimethyl Ether." Catalysts 10, no. 11 (2020): 1282. http://dx.doi.org/10.3390/catal10111282.
Full textPajares, Arturo, de la Piscina Pilar Ramírez, and Narcís Homs. "Catalytic behaviour of transition metal carbides of group 5 in the methanol steam reforming." International Journal of Hydrogen Energy 52, A (2024): 1033–44. https://doi.org/10.1016/j.ijhydene.2023.06.017.
Full textChakrabarti, Kaushik, Kuheli Dutta, and Sabuj Kundu. "Synthesis of N-methylated amines from acyl azides using methanol." Organic & Biomolecular Chemistry 18, no. 30 (2020): 5891–96. http://dx.doi.org/10.1039/d0ob01303j.
Full textNastase, S. A. F., A. J. O’Malley, C. R. A. Catlow, and A. J. Logsdail. "Computational QM/MM investigation of the adsorption of MTH active species in H-Y and H-ZSM-5." Physical Chemistry Chemical Physics 21, no. 5 (2019): 2639–50. http://dx.doi.org/10.1039/c8cp06736h.
Full textLoriya, Mariya G., Ayodeji A. Ijagbuji, Alexei B. Tselishtev, and Ivan I. Zakharov. "Autocatalytic Photo-Oxidation Process of C3-C4 Fraction to Methanol." Advanced Materials Research 660 (February 2013): 51–56. http://dx.doi.org/10.4028/www.scientific.net/amr.660.51.
Full textGaya, Ndepana A., Victor Charles, Innocent Joseph, and Hitler Louis. "A review on CO oxidation, methanol synthesis, and propylene epoxidation over supported gold catalysts." Catalysis for Sustainable Energy 6, no. 1 (2019): 13–37. http://dx.doi.org/10.1515/cse-2019-0003.
Full textMorteza, Shiri, Gholami-Koupaei Zahra, Bandehali-Naeini Farzaneh та ін. "Highly Selective Synthesis of α-Hydroxy, α-Oxy, and α-Oxo Amides by a Post-Passerini Condensation Transformation". Synthesis (Germany) 52, № 21 (2020): 3243–52. https://doi.org/10.1055/s-0040-1707132.
Full textGálvez-González, Luis E., J. Octavio Juárez-Sánchez, Rafael Pacheco-Contreras, Ignacio L. Garzón, Lauro Oliver Paz-Borbón, and Alvaro Posada-Amarillas. "CO2 adsorption on gas-phase Cu4−xPtx (x = 0–4) clusters: a DFT study." Physical Chemistry Chemical Physics 20, no. 25 (2018): 17071–80. http://dx.doi.org/10.1039/c8cp00818c.
Full textJiang, Siyi, Yujing Weng, Yangbin Ren, et al. "Conversion of CO2 Hydrogenation to Methanol over K/Ni Promoted MoS2/MgO Catalyst." Catalysts 13, no. 7 (2023): 1030. http://dx.doi.org/10.3390/catal13071030.
Full textTian, Haifeng, Yongyong Nan, Jinlong Lv, et al. "Catalytic Performance of Phosphorus Incorporated HZSM-5 in Coupling Transformation of Methanol with 1-butene to Propylene." Revista de Chimie 72, no. 3 (2021): 33–44. http://dx.doi.org/10.37358/rc.21.3.8435.
Full textЧередниченко, Александр Константинович. "ОСОБЕННОСТИ ПРИМЕНЕНИЯ ПРОДУКТОВ КОНВЕРСИИ МЕТАНОЛА В СУДОВОЙ ГАЗОТУРБИННОЙ УСТАНОВКЕ С ТЕРМОХИМИЧЕСКОЙ РЕГЕНЕРАЦИЕЙ СБРОСНОГО ТЕПЛА". Aerospace technic and technology, № 3 (15 липня 2019): 28–34. http://dx.doi.org/10.32620/aktt.2019.3.03.
Full textVass, Ádám, Zoltán Pászti, Szabolcs Bálint, Péter Németh, András Tompos, and Emília Tálas. "Structural transformation of Ga2O3-based catalysts during photoinduced reforming of methanol." Materials Research Bulletin 95 (November 2017): 71–78. http://dx.doi.org/10.1016/j.materresbull.2017.06.034.
Full text