Journal articles on the topic 'Method of dust particles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Method of dust particles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ding, Tianxiang, Xuyan Hou, Man Li, et al. "Investigation on Computing Method of Martian Dust Fluid Based on the Energy Dissipation Method." International Journal of Aerospace Engineering 2020 (May 23, 2020): 1–13. http://dx.doi.org/10.1155/2020/2370385.
Full textRao, Qingwen, Guanjun Xu, Pengfei Wang, and Zhengqi Zheng. "Study on the Propagation Characteristics of Terahertz Waves in Dusty Plasma with a Ceramic Substrate by the Scattering Matrix Method." Sensors 21, no. 1 (2021): 263. http://dx.doi.org/10.3390/s21010263.
Full textCHUTOV, Yu I., O. Yu KRAVCHENKO, R. D. SMIRNOV, and P. P. J. M. SCHRAM. "Relaxation of dusty plasmas in plasma crystals." Journal of Plasma Physics 63, no. 1 (2000): 89–96. http://dx.doi.org/10.1017/s0022377899008107.
Full textMarkkanen, J., and J. Agarwal. "Thermophysical model for icy cometary dust particles." Astronomy & Astrophysics 643 (October 27, 2020): A16. http://dx.doi.org/10.1051/0004-6361/202039092.
Full textHavnes, Ove, Tarjei Antonsen, Gerd Baumgarten, et al. "A new method of inferring the size, number density, and charge of mesospheric dust from its in situ collection by the DUSTY probe." Atmospheric Measurement Techniques 12, no. 3 (2019): 1673–83. http://dx.doi.org/10.5194/amt-12-1673-2019.
Full textOno, Kohei, Yuki Mizushima, Masaki Furuya, et al. "Direct Measurement of Adhesion Force of Individual Aerosol Particles by Atomic Force Microscopy." Atmosphere 11, no. 5 (2020): 489. http://dx.doi.org/10.3390/atmos11050489.
Full textIwata, Ayumi, and Atsushi Matsuki. "Characterization of individual ice residual particles by the single droplet freezing method: a case study in the Asian dust outflow region." Atmospheric Chemistry and Physics 18, no. 3 (2018): 1785–804. http://dx.doi.org/10.5194/acp-18-1785-2018.
Full textMentiplay, Daniel, Daniel J. Price, Christophe Pinte, and Guillaume Laibe. "A smoothed particle hydrodynamics algorithm for multigrain dust with separate sets of particles." Monthly Notices of the Royal Astronomical Society 499, no. 3 (2020): 3806–18. http://dx.doi.org/10.1093/mnras/staa3171.
Full textChutov, Yu I., A. Yu Kravchenko, and P. P. J. M. Schram. "Expansion of a bounded plasma with dust particles." Journal of Plasma Physics 55, no. 1 (1996): 87–94. http://dx.doi.org/10.1017/s0022377800018687.
Full textJurányi, Z., H. Burtscher, M. Loepfe, M. Nenkov, and E. Weingartner. "Dual-wavelength light scattering for selective detection of volcanic ash particles." Atmospheric Measurement Techniques Discussions 8, no. 8 (2015): 8701–26. http://dx.doi.org/10.5194/amtd-8-8701-2015.
Full textJurányi, Z., H. Burtscher, M. Loepfe, M. Nenkov, and E. Weingartner. "Dual-wavelength light-scattering technique for selective detection of volcanic ash particles in the presence of water droplets." Atmospheric Measurement Techniques 8, no. 12 (2015): 5213–22. http://dx.doi.org/10.5194/amt-8-5213-2015.
Full textHaarig, Moritz, Albert Ansmann, Adrian Walser, et al. "Estimation of dust related ice nucleating particles in the atmosphere: Comparison of profiling and in-situ measurements." E3S Web of Conferences 99 (2019): 04002. http://dx.doi.org/10.1051/e3sconf/20199904002.
Full textSharif Moghadam, Samira, and Davoud Dorranian. "Effect of Size Distribution on the Dust Acoustic Solitary Waves in Dusty Plasma with Two Kinds of Nonthermal Ions." Advances in Materials Science and Engineering 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/389365.
Full textAnimasaun, I. L., O. K. Koriko, B. Mahanthesh, and A. S. Dogonchi. "A Note on the Significance of Quartic Autocatalysis Chemical Reaction on the Motion of Air Conveying Dust Particles." Zeitschrift für Naturforschung A 74, no. 10 (2019): 879–904. http://dx.doi.org/10.1515/zna-2019-0180.
Full textPędzik, Marta, Tomasz Rogoziński, Jerzy Majka, et al. "Fine Dust Creation during Hardwood Machine Sanding." Applied Sciences 11, no. 14 (2021): 6602. http://dx.doi.org/10.3390/app11146602.
Full textKopytenkova, O. I., A. V. Levanchuk, and Z. Sh Tursunov. "Assessment of health damage due to exposure to mineral wool fine dusts." Kazan medical journal 95, no. 4 (2014): 570–74. http://dx.doi.org/10.17816/kmj1846.
Full textShin, Sung-Kyun, Matthias Tesche, Youngmin Noh, and Detlef Müller. "Aerosol-type classification based on AERONET version 3 inversion products." Atmospheric Measurement Techniques 12, no. 7 (2019): 3789–803. http://dx.doi.org/10.5194/amt-12-3789-2019.
Full textLindqvist, H., O. Jokinen, K. Kandler, D. Scheuvens, and T. Nousiainen. "Single scattering by realistic, inhomogeneous mineral dust particles with stereogrammetric shapes." Atmospheric Chemistry and Physics 14, no. 1 (2014): 143–57. http://dx.doi.org/10.5194/acp-14-143-2014.
Full textLindqvist, H., O. Jokinen, K. Kandler, D. Scheuvens, and T. Nousiainen. "Single scattering by realistic, inhomogeneous mineral dust particles with stereogrammetric shapes." Atmospheric Chemistry and Physics Discussions 13, no. 7 (2013): 18451–88. http://dx.doi.org/10.5194/acpd-13-18451-2013.
Full textYuan, Jianming, Chenglong Jin, Fangping Ye, Zhihui Hu, and Huozhi Chen. "Dust Suppression Analysis of a New Spiral Hopper Using CFD-DEM Simulations and Experiments." Processes 8, no. 7 (2020): 783. http://dx.doi.org/10.3390/pr8070783.
Full textZhang, J., Y. Shao, and N. Huang. "Measurements of dust deposition velocity in a wind-tunnel experiment." Atmospheric Chemistry and Physics Discussions 14, no. 7 (2014): 9439–74. http://dx.doi.org/10.5194/acpd-14-9439-2014.
Full textZhang, J., Y. Shao, and N. Huang. "Measurements of dust deposition velocity in a wind-tunnel experiment." Atmospheric Chemistry and Physics 14, no. 17 (2014): 8869–82. http://dx.doi.org/10.5194/acp-14-8869-2014.
Full textZhang, Qiuli, Xiangrong Hui, Long Yan, et al. "Numerical Simulation of the Tar Mist and Dust Movement Process in a Low-Temperature Dry Distillation Furnace." Journal of Chemistry 2020 (March 2, 2020): 1–16. http://dx.doi.org/10.1155/2020/2356038.
Full textAugustin-Bauditz, Stefanie, Heike Wex, Cyrielle Denjean, et al. "Laboratory-generated mixtures of mineral dust particles with biological substances: characterization of the particle mixing state and immersion freezing behavior." Atmospheric Chemistry and Physics 16, no. 9 (2016): 5531–43. http://dx.doi.org/10.5194/acp-16-5531-2016.
Full textLiu, Xueqing, Song Yue, Luyi Lu, and Jianlan Li. "Study on Dust Deposition Mechanics on Solar Mirrors in a Solar Power Plant." Energies 12, no. 23 (2019): 4550. http://dx.doi.org/10.3390/en12234550.
Full textMariselvam, A. K., K. Padmanabhan, and S. Sivanesan. "Reliability of the results of measurements of air pollution by solid particles by the method of detection of scattered laser radiation." Izmeritel`naya Tekhnika, no. 4 (April 2020): 14–19. http://dx.doi.org/10.32446/0368-1025it.2020-4-14-19.
Full textKovtun, Yu V., A. I. Skibenko, E. I. Skibenko, and Ye V. Siusko. "Specific Features of Microwave Methods for Dusty Plasma Diagnostics. I. Dielectric Permittivity, Refractive and Absorption Indices." Ukrainian Journal of Physics 64, no. 5 (2019): 380. http://dx.doi.org/10.15407/ujpe64.5.380.
Full textWagner, J., A. Ansmann, U. Wandinger, et al. "Evaluation of the Lidar/Radiometer Inversion Code (LIRIC) to determine microphysical properties of volcanic and desert dust." Atmospheric Measurement Techniques Discussions 6, no. 1 (2013): 911–48. http://dx.doi.org/10.5194/amtd-6-911-2013.
Full textSong, Homin, Ukyong Woo, and Hajin Choi. "Numerical Analysis of Ultrasonic Multiple Scattering for Fine Dust Number Density Estimation." Applied Sciences 11, no. 2 (2021): 555. http://dx.doi.org/10.3390/app11020555.
Full textSong, Homin, Ukyong Woo, and Hajin Choi. "Numerical Analysis of Ultrasonic Multiple Scattering for Fine Dust Number Density Estimation." Applied Sciences 11, no. 2 (2021): 555. http://dx.doi.org/10.3390/app11020555.
Full textCao, Yunhua, Haiying Li, Zhe Wang, and Zhensen Wu. "Propagation Characteristics of Oblique Incident Terahertz Wave in Nonuniform Dusty Plasma." International Journal of Antennas and Propagation 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/9454730.
Full textAugustin-Bauditz, S., H. Wex, C. Denjean, et al. "The immersion freezing behavior of mineral dust particles mixed with biological substances." Atmospheric Chemistry and Physics Discussions 15, no. 20 (2015): 29639–71. http://dx.doi.org/10.5194/acpd-15-29639-2015.
Full textWagner, J., A. Ansmann, U. Wandinger, et al. "Evaluation of the Lidar/Radiometer Inversion Code (LIRIC) to determine microphysical properties of volcanic and desert dust." Atmospheric Measurement Techniques 6, no. 7 (2013): 1707–24. http://dx.doi.org/10.5194/amt-6-1707-2013.
Full textWang, Wen-Zheng, Yan-Ming Wang, Guo-Qing Shi, and De-Ming Wang. "Numerical Study on Infrared Optical Property of Diffuse Coal Particles in Mine Fully Mechanized Working Combined with CFD Method." Mathematical Problems in Engineering 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/501401.
Full textKoleda, Pavol, and Ľubomír Naščák. "Optical Analysis of Fractional Particles." Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 62, no. 5 (2014): 979–84. http://dx.doi.org/10.11118/actaun201462050979.
Full textMiloch, W. J., H. L. Pécseli, and J. Trulsen. "Numerical simulations of the charging of dust particles by contact with hot plasmas." Nonlinear Processes in Geophysics 14, no. 5 (2007): 575–86. http://dx.doi.org/10.5194/npg-14-575-2007.
Full textZawadowicz, Maria A., Karl D. Froyd, Daniel M. Murphy, and Daniel J. Cziczo. "Improved identification of primary biological aerosol particles using single-particle mass spectrometry." Atmospheric Chemistry and Physics 17, no. 11 (2017): 7193–212. http://dx.doi.org/10.5194/acp-17-7193-2017.
Full textLing, Bicao Can, Hai Yang Ju, and Zheng Ye. "Study on Numerical Simulation of Secondary Dust Deposition Phenomenon." Applied Mechanics and Materials 423-426 (September 2013): 2957–62. http://dx.doi.org/10.4028/www.scientific.net/amm.423-426.2957.
Full textOshikawa, S., S. Itoh, S. Matsuyama, et al. "Development of a method for analyzing the composition of ambient PM2.5 floating dust particles by micro-PIXE." International Journal of PIXE 24, no. 03n04 (2014): 121–29. http://dx.doi.org/10.1142/s0129083514400051.
Full textAzarov, V. N., I. V. Stefanenko, and R. A. Burkhanova. "Research of Aerodynamic Characteristics of Asbestos-Cement Dust in the Ventilation Emissions to the Atmosphere." Applied Mechanics and Materials 878 (February 2018): 251–54. http://dx.doi.org/10.4028/www.scientific.net/amm.878.251.
Full textSmall, James, Corrie van Hoek, Frank van der Does, et al. "Screening Coarse Airborne Dust for Lead-Rich Phase Occurrence during Characterisation of Particle Mineralogy, Chemistry and Provenance: Application to Deposits in the Vicinity of an Integrated Steelworks." Minerals 11, no. 9 (2021): 929. http://dx.doi.org/10.3390/min11090929.
Full textKuiry, D. R., and S. Bahadur. "Unsteady MHD Flow of a Dusty Visco-elastic Fluid between Parallel Plates with Exponentially Decaying Pressure Gradient in an Inclined Magnetic Field." Journal of Scientific Research 8, no. 2 (2016): 149–57. http://dx.doi.org/10.3329/jsr.v8i2.25745.
Full textBezborodov, Mikhail, Mikhail Eremin, Vitaliy Korolev, Ilya Kovalenko, and Elena Zhukova. "On Visualization of the Anisotropy of the Dispersion of Velocities of Polydisperse Dust in a Gas-Dust Medium." Mathematical Physics and Computer Simulation, no. 2 (August 2020): 70–81. http://dx.doi.org/10.15688/mpcm.jvolsu.2020.2.6.
Full textMAMUN, A. A., K. S. ASHRAFI, and M. G. M. ANOWAR. "Solitary waves in a dusty adiabatic electronegative plasma." Journal of Plasma Physics 76, no. 3-4 (2010): 409–18. http://dx.doi.org/10.1017/s0022377809990614.
Full textGanzha, Dmytro, and Ryta Ganzha. "Dusty atmospheric sediments of cold season of the year in Ivano-Frankivsk region." Visnyk of the Lviv University. Series Geography, no. 47 (November 23, 2014): 68–77. http://dx.doi.org/10.30970/vgg.2014.47.818.
Full textLasue, J., I. Maroger, R. Botet, et al. "Flattened loose particles from numerical simulations compared to particles collected by Rosetta." Astronomy & Astrophysics 630 (September 20, 2019): A28. http://dx.doi.org/10.1051/0004-6361/201834766.
Full textMannel, T., M. S. Bentley, P. D. Boakes, et al. "Dust of comet 67P/Churyumov-Gerasimenko collected by Rosetta/MIDAS: classification and extension to the nanometer scale." Astronomy & Astrophysics 630 (September 20, 2019): A26. http://dx.doi.org/10.1051/0004-6361/201834851.
Full textЗемский, Геннадий Тимофеевич, Владимир Александрович Зуйков, Наталья Валентиновна Кондратюк, and Александр Владимирович Зуйков. "About the mass of combustible dust deposited in the room." Pozharnaia bezopasnost`, no. 2(103) (June 22, 2021): 60–64. http://dx.doi.org/10.37657/vniipo.pb.2021.65.83.007.
Full textDavid, G., B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux. "Retrieving simulated volcanic, desert dust and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization lidar and T matrix." Atmospheric Chemistry and Physics 13, no. 14 (2013): 6757–76. http://dx.doi.org/10.5194/acp-13-6757-2013.
Full textMarinou, Eleni, Vassilis Amiridis, Albert Ansmann, et al. "Lidar Ice nuclei estimates and how they relate with airborne in-situ measurements." EPJ Web of Conferences 176 (2018): 05018. http://dx.doi.org/10.1051/epjconf/201817605018.
Full text