Dissertations / Theses on the topic 'Méthode des frontières immergées'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Méthode des frontières immergées.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Tayllamin, Bruno. "Evaluation d'une méthode de Frontières immergées pour les simulations numériques d'écoulements cardiovasculaires." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20100.
Full textThe most common approach in Computational Fluid Dynamics(CFD) for simulating blood flow into vessel is to make use of a body-fitted me-thod. This approach has lead to accurate and useful simulations of blood flowinto arteries. However, generation of the body-fitted grid is time consuming andrequires from the user an engineering knowledge.The Immersed Boundary Method has emerged as an alternate method whichdoes not require from the user any grid generation task. Simulations are done on astructured Cartesian grid which can be automatically generated. Here we addressthe question of the capability of an Immersed Boundary Method to cope withcardiovascular flow simulations.In particular, we assess the impermeable and moving properties of the wallwhen using the Immersed Boundary Method on simple but relevant vascular flowcases. Then, we show more complex and realistic cardiovascular flow simulations.The first application consists of blood flow simulation inside an aorta cross model.Then, the simulation of blood flow inside a cardiac ventricle with moving wall isshown
Lavoie, Pierre. "Méthode de frontières immergées pour la modélisation du givrage en vol des aéronefs." Thesis, Toulouse, ISAE, 2021. http://www.theses.fr/2021ESAE0016.
Full textIn-flight ice accretion poses a serious threat to an aircraft safety by affecting its aerodynamics, probes and sensors. The numerical modelling of this phenomenon generally involves a sequential call to different modules including mesh generation, aerodynamics, droplet trajectories, wall heat transfer, ice accretion and geometry update. The automation of this process is critical as the solvers are embedded in a time loop which is repeated several times (multi-step) to obtain an accurate ice shape prediction. The robustness of ice accretion tools is often limited by the difficulty of generating meshes on complex ice shapes and also by the geometry update which can exhibit overlaps if not treated properly. The objective of this thesis is to investigate the potential of Immersed Boundary Methods (IBMs) to solve these issues by eliminating the user intervention in the mesh update while maintaining the accuracy obtained from a Body-Fitted (BF) approach.The developments are done in the ice accretion suite IGLOO2D, using the Euler equations to model the airflow and a boundary layer code to retrieve the wall heat transfer. The proposed methodology is to start the simulations with the usual BF mesh and apply the IBM to deal with the ice shape only. Re-meshing is avoided entirely by properly refining the initial mesh where ice accretion is expected. As the ice shape can cut arbitrarily through the mesh, the volume solvers (aerodynamics and droplet trajectories) are modified to enforce the boundary conditions on the Immersed Boundary (IB). Surface data extraction at the IB is also performed as required by the surface solvers (boundary layer and ice accretion), which are left unchanged. In addition, the level-set method is implemented as a replacement to the Lagrangian node displacement method in order to solve the issues related to the geometry update.First, an IBM is developed for the Euler equations. The volume penalization method (an IBM) is commonly used for viscous flows but only one application to inviscid compressible flows can be found, which uses the CBVP method. This approach penalizes the Euler equations to enforce a no-penetration velocity and an adiabatic wall while accounting for wall curvature. A new approach based on the CBVP is proposed to impose the conservation of entropy and total enthalpy in the normal direction to the wall instead of the classical adiabatic condition. Numerical tests show that the new CBVP-Hs method is more accurate than the CBVP method on coarser meshes and better at retrieving attached flows for curved geometries.Second, a new penalization method is developed for the Eulerian droplet equations as no application to this system of equations is available in the literature. The wall boundary condition must be treated with care to avoid droplets re-injection from a solid boundary into the fluid. This is solved by the introduction of a droplet mask function in addition to the usual solid mask, providing an automatic detection of the wall boundary conditions in the impingement and shadow zones. The results show that the solution from a BF simulation can be reproduced using this new penalization method.Third, the previously developed penalization methods (Euler and droplet equations) are integrated in the ice accretion suite along with the level-set method. Multi step ice shape predictions are performed on 2D rime and glaze ice cases. The results are generally in good agreement with the BF approach but the IBM sometime requires a finer mesh to obtain a good ice shape prediction, especially in the presence of detached flows. The proposed methodology is an interesting alternative to the classical body-fitted approach and should be easy to extend for 3D ice accretion, where the use of an IBM and level-set method shows greater benefits
Riahi, Hamza. "Développement d’une méthode des frontières immergées pour l’analyse et le contrôle des écoulements compressibles." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2018. http://www.theses.fr/2018ESMA0015/document.
Full textThis thesis is related to the numerical simulation and the analysis of compressible flows, especially in complex or mobile geometry. In these situations, the establishment of a mesh correctly representing the solid with out loss of precision of discretization methods is difficult. An alternative is to use Cartesian mesh independently of the geometry of the flow domain by introducing an immersed boundary approach. In this context, we propose an improvement and extension of a method formulated for the simulation of incompressible flows. The two main characteristics of the proposed model are on the one hand the integration of a new velocity forcing term which takes into account the effects of pressure and on the other hand the integration of a new term of temperature correction in the treatment of the energy equation. This method has been integrated in two compressible solvers of OpenFOAM code: SonicFOAM and RhoCentralFOAM. The validation was carried out by considering different cases of increasing complexity on fixed and mobile 2D bodies, for which the Mach and Reynolds numbers were varied. In addition, cases involving parietal heat transfer have been studied. The results were compared to a large number of numerical and experimental data from the literature. Finally, studies on more complex three-dimensional configurations have been done. The flow regime bifurcations of the sphere have been investigated as the Mach number increases. A sphere with non-adiabatic walls was also analyzed. A realistic drone geometry was simulated in a compressible regime.These analyzes highlight many favorable features of the immersed boundary method in terms of accuracy, flexibility and computational cost
Nauleau, Florent. "Méthode des frontières immergées pour la simulation aux grandes échelles de véhicules de rentrée hypersoniques." Electronic Thesis or Diss., Bordeaux, 2023. http://www.theses.fr/2023BORD0477.
Full textThe aim of this thesis is to develop a simulation code for the design of atmospheric reentry vehicles. The code used is an immersed boundary code, which considerably reduces the time required to generate complex meshes. Several implementations within the code reduce computation time while increasing accuracy. The study of complex phenomena developing around simulated objects will be aided by topological analysis, helping in the choice of numerical method to be used. From a numerical point of view, the design of an atmospheric reentry vehicle for its aerothermal performance often relies on computational codes using averaged Navier-Stokes equations (RANS) and body-fitted structured meshes. These two technologies enable us to obtain an averaged representation of the phenomena in a reasonable time. However, the use of an averaged field implies less control over the maximum stresses that could be applied to the vehicle, and the generation of these body-fitted meshes is extremely time-consuming. From a visualization point of view, traditional analysis methods are based on flow geometry and field-averaged quantities. Due to high Mach and Reynolds numbers and the geometric complexity of flows, these methods are often pushed to the limits of their applicability, or even rendered obsolete for vortex segmentation and comparison. The aim of this thesis is to provide some answers to the above-mentioned numerical and scientific visualization concerns. To improve immersed boundary methods, new Riemann solvers and high-order reconstruction schemes such as TENO and WENO have been integrated within a Direct Numerical Simulation (DNS) code. To reduce the mesh cost of DNS simulations, the Wall-Adapting Local Eddy-Viscosity (WALE) subgrid-scale model has been implemented. This model able Large Eddy Simulation (LES) to be carried out. In these simulations, the larger vortices are computed and the smaller ones modeled. Boundary layer capture, i.e. aerodynamic and thermal effects at the vehicle wall, is investigated by proposing wall models for hypersonic flows. These wall models will make it possible to reduce the number of cells and thus the computational cost of modeling the boundary layer. Topological data analysis is a particularly interesting emerging approach to apprehend the quantity and complexity of data generated in aerodynamics. This field, born of computer science and applied mathematics, proposes to extract, measure and compare structural information hidden within large volumes of complex data. Based on projection and dimension reduction techniques, these approaches extract features from data that are difficult to identify in geometric space, and complement the functionalities of high-performance visualization software such as Paraview. Topological analysis protocols have been proposed to compare and validate the new Riemann solvers and high-order reconstructions implemented in this thesis. These protocols have been applied to 2D turbulence, and have enabled us to select pairs of Riemann solvers and high-order reconstructions to reduce the computational cost of simulations while maintaining good accuracy in describing the phenomena studied
Hovnanian, Jessica. "Méthode de frontières immergées pour la mécanique des fluides : application à la simulation de la nage." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2012. http://tel.archives-ouvertes.fr/tel-00835013.
Full textDurrenberger, Daniel. "NSIBM : un solveur parallèle de Navier-Stokes avec raffinement automatique basé sur la méthode des frontières immergées." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAD049/document.
Full textThis thesis, entitled NSIBM: a parallel Navier-Stokes solver with automatic mesh refinement based on immersed boundary method, has been conducted within the iCube laboratory dedicated to mechanics and located in Strasbourg. It has been supervised by Professor Yannick Hoarau. This work mainly deals with coding a program able to solve the Navier-Stokes equations that governs moving fluids, in a numerical way. Particular attention was paid to the production of meshes that suit given geometries and their generation.The means used here to handle the eternal problem of the fineness of the mesh opposed to too many cells are several~:refinement, parallelization and the immersed boundary method.Initially, I designed a two and three-dimensional mesh generator that includes the possibility of dividing cells,in an automatic way, by geometrical, numerical or physical criteria. It also allows to remove cells, where there is no point keeping it. Secondly, I parallelized the program by giving him the ability to use multiple processors to calculate faster and therefore use bigger meshes.This step uses two available libraries~: \textit{Metis}, which gives a optimal mesh partition, and \textit{openMPI}, which deals with communication between nodes. Finally, the immersed boundary method has been implemented to handle non-vertical or non-horizontal edges in a cartesian grid. Its principle is to confer a hybrid status to a cell which is crossed by an edge by adding a numerical force term simulating the presence of the boundary. This development work was then tested and validated in a serie of test cases in two and three dimensions. Examples of complex meshes easily generated are given
Pepona, Marianna. "Modèle de frontières immergées pour la simulation d'écoulements de fluide en interaction avec des structures poreuses." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4349/document.
Full textA wide spectrum of engineering problems is concerned with fluid flows in interaction with porous structures, ranging from small length-scale problems to large ones. These structures, often of complex geometry, may move/deform in response to the forces exerted by the surrounding flow. Despite the advancements in computational fluid dynamics, the numerical simulation of such configurations - a valuable tool for the study of the flow physics involved - remains a challenging task.The aim of the present work is to propose a numerical model for the macroscopic simulation of fluid flows interacting with moving porous media of complex geometry, that is easy to implement and can be used in a range of applications. To achieve this, the Lattice Boltzmann method is employed for solving the flow in porous media at the representative elementary volume scale. For the implementation of the desired body motion, the concept of the Immersed Boundary method is adopted. In this context, a novel model is proposed for dealing with moving volumetric porous media, whose resistance to the surrounding flow obeys the Brinkman-Forchheimer-extended Darcy law. The algorithm is initially tested for flow past a static cylinder. The simplicity of this academic test case allows us to assess in detail the accuracy of the proposed method. The model is later used to simulate fluid flows around and through moving porous bodies, both in a confined geometry and in open space. We are able to demonstrate the Galilean invariance of the macroscopic volume-averaged flow governing equations. Excellent agreement with reference results is obtained in all cases
Noël, Emeline. "Simulation numérique directe d'écoulements à l'aide d'une méthode de frontière immergée." Phd thesis, INSA de Rouen, 2012. http://tel.archives-ouvertes.fr/tel-00845203.
Full textNoël, Emeline. "Simulation numérique directe d’écoulements à l’aide d’une méthode de frontière immergée." Thesis, Rouen, INSA, 2012. http://www.theses.fr/2012ISAM0020/document.
Full textSince several years, the research conducted at the CORIA laboratory led to the development of a numerical tool (ARCHER) alllowing direct numerical simulations of two phase flows. In particular, the simulations of high speed liquid jet primary break-up have been strongly investigated. These simulations are able to capture primary break-up phenomena near the nozzle exit where experimental characterisations are difficult to conduct. These simulations need injection conditions tricky to gauge a priori, since they depend on the flow characteristics inside the nozzle. Moreover, some jets are highly sensitive to these injection conditions. Therefore, it becomes necessary to simulate the flow inside the nozzle to better understand this sensitive nature. The objective to simulate the whole atomization system guided the present work dedicated to the use of an immersed boundary method (IBM). Such an approach allows reproducing flows inside nozzles of arbitrary shape while keeping the original cartesian mesh valuable for numerical efficiency and accuracy. As a first step, the implementation of an IBM in ARCHER was carried out and tested on channels, pipes and uniform flows past a circular cylinder. An industrial application focused on the flow inside a triple disk compound injector. This work led to a refined description of the secondary flow origin in the discharge hole. In order to move towards the design of a numerical tool able to simulate the whole injection system, a coupling between IBM and the Ghost Fluid Method (GFM) has been found necessary. This allows accounting for two phase flows inside the nozzle where the dynamics of the triple line has to be considered. The bidimensional developments have been tested on drops released on walls. This version enabled to simulate flows inside channels with different ratios of length over diameter and the flow inside a convergent nozzle. The simultaneous computation of flows inside and outside nozzle has enabled to link the velocity fluctuations of internals flows to the surface setting-up gene-rated on external flows
Merlin, Cindy. "Simulation numérique de la combustion turbulente : Méthode de frontières immergées pour les écoulements compressibles, application à la combustion en aval d'une cavité." Phd thesis, INSA de Rouen, 2011. http://tel.archives-ouvertes.fr/tel-00782978.
Full textMerlin, Cindy. "Simulation numérique de la combustion turbulente : Méthode de frontières immergées pour les écoulements compressibles, application à la combustion en aval d’une cavité." Thesis, Rouen, INSA, 2011. http://www.theses.fr/2011ISAM0020/document.
Full textAn immersed boundary method has been developed for the simulation of compressible flow and validated with reference test cases (pressure wave reflection and quantification of mass conservation for various inclined channels). Large Eddy Simulation (LES) of a transonic cavity is then presented. The aeroacoustic feedback loop, which is highly sensitive to the boundary conditions, was accurately reproduced where the walls are immersed inside a structured grid. The comparison between the modeling approaches for this transonic flow and the correction of the filtering operation near immersed boundaries are also discussed. The often underestimated role of the numerical artificial dissipation is also quantified.In the last part of this manuscript, many studies are realized to help in the design of a new combustion chamber for Trapped Vortex Combustor (TVC). The turbulent combustion model is based on tabulated chemistry and a presumed probability density function (PCM-FPI) method.The flame dynamics is studied for various operating conditions (flowrate of the main flow and presence of swirl motion). Details concerning the realization of such a flow are discussed and special care is taken for the treatment of the most sensitive outlet boundary condition. The phenomena of combustion instabilities and of flame backflow are highlighted along with the modifications to be made for the device to minimize these effects. The existence of a acoustic limit cycle is emphasized and a formula is proposed and validated to anticipate the level of pressure fluctuations. Finally a correction to the PCM-FPI model is suggested to preserve the flame front speed and to ensure a more accurate description of the flame dynamics
Luu, Hong Quan. "Caractérisation numérique couplée fluide-aérothermique/structure dédiée à partir de techniques aux frontières immergées." Phd thesis, ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d'Aérotechique - Poitiers, 2013. http://tel.archives-ouvertes.fr/tel-00957783.
Full textMonasse, Laurent. "Analyse d'une méthode de couplage entre un fluide compressible et une structure déformable." Phd thesis, Université Paris-Est, 2011. http://tel.archives-ouvertes.fr/tel-00658152.
Full textCheny, Yoann. "La méthode LS-STAG : une nouvelle approche de type frontière immergée/level-set pour la simulation d'écoulements visqueux incompressibles en géométries complexes : Application aux fluides newtoniens et viscoélastiques." Thesis, Nancy 1, 2009. http://www.theses.fr/2009NAN10052/document.
Full textThis thesis concerns the development of a new Cartesian grid / immersed boundary (IB) method for the computation of incompressible viscous flows in two-dimensional irregular geometries. In IB methods, the computational grid is not aligned with the irregular boundary, and of upmost importance for accuracy and stability is the discretization in cells which are cut by the boundary, the so-called ``cut-cells''. In this thesis, we present a new IB method, called the LS-STAG method, which is based on the MAC method for staggered Cartesian grids and where the irregular boundary is sharply represented by its level-set function. This implicit representation of the immersed boundary enables us to calculate efficiently the geometry parameters of the cut-cells. We have achieved a novel discretization of the fluxes in the cut-cells by enforcing the strict conservation of total mass, momentum and kinetic energy at the discrete level. Our discretization in the cut-cells is consistent with the MAC discretization used in Cartesian fluid cells, and has the ability to preserve the 5-point Cartesian structure of the stencil, resulting in a highly computationally efficient method. The accuracy and robustness of our method is assessed on canonical flows at low to moderate Reynolds number~: Taylor Couette flow, flows past a circular cylinder, including the case where the cylinder has forced oscillatory rotations. We extend the \em LS-STAG \em method to the handling of moving immersed boundaries and present some results for the transversely oscillating cylinder flow in a free-stream. Finally, we present the first IB method that handles flows of viscoelastic fluids. The discretization of the constitutive law equation is based on the \em LS-STAG \em method and on the use of a fully staggered arrangement of unknowns, which ensures a strong coupling between all flow variables in the whole domain. The resulting method is applied to the flow of an Oldroyd-B fluid in a 4:1 planar contraction with rounded corner
Morente, Antoine. "Développement d'une méthode de pénalisation pour la simulation d'écoulements liquide-bulles." Phd thesis, Toulouse, INPT, 2017. http://oatao.univ-toulouse.fr/19922/1/MORENTE_Antoine.pdf.
Full textSarkis, Bruno. "Étude numérique de la relaxation de capsules confinées par couplage des méthodes Volumes Finis - Éléments Finis via la méthode des frontières immergées IBM : influence de l'inertie et du degré de confinement." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS184/document.
Full textCapsules, made of a drop protected by an elastic membrane, are widly present in nature and in diverse industrial applications, but few studies have explored the transient phenomena governing their relaxation. The objective of the PhD is to study the influence of inertia and confinement on the relaxation of a spherical capsule (1) pre-deformed into an ellipsoid and released in a square channel where the fluid is quiescent, (2) flowing in a square channel with a sudden expansion (‘step’). The capsule is modeled as a Newtonian fluid in a hyperelastic membrane without thickness or viscosity and is simulated coupling the Finite Volume - Finite Element - Immersed Boundary Methods. Its relaxation in a quiescent fluid exhibits three phases: the initiation of the fluid motion, the rapid and then slow retraction phases of the membrane. Three regimes exist depending on the confinement ratio and the Reynolds to capillary number ratio: pure, critical or oscillating damping. A Kelvin-Voigt inertial model is proposed to predict the response time constants and also applied to a capsule flowing in the microfluidic channel with a step. The comparison to 3D simulations shows its relevance at short relaxation times. This work paves the way to the study of transient flows of capsules confined in microfluidic devices
Mochel, Loïc. "Etude des effets technologiques par des méthodes numériques innovantes sur des configurations de lanceur." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066059/document.
Full textNowadays, access to space has become a great issue in scientific, technological and political framework. It is essential to ensure the success of the placing of orbiting satellites with a minimal flight cost. Launchers, as the Ariane 5 space launcher, are subject to pressure fluctuations which can lead to unsteady loads on the actuators of the Vulcain engine. These loads occur especially in the separated zone of the launcher base flow and act normally to the thrust axis. They are referred to as side loads. From the numerical simulation perspective, the launcher technological elements discretization process makes the generation of structured mesh particularly difficult. The present study lies within such a framework. In order to assess the influence of the technological effects on the side loads prediction for realistic launcher configurations, immersed boundaries are studied. The aim is to develop a numerical strategy able to increase the level of geometrical complexity of the geometry at stake while maintaining the accuracy of the results of previous studies on simplified configurations. This strategy fits into numerical simulations of ZDES type of separating/reattaching flows at high Reynolds number and compressible regime. The abilities of the methodology are first assessed on canonical numerical test cases. Then, the strategy is applied on simplified launcher configurations. Finally, the effect of this strategy on the side loads prediction is assessed
Rebeyrotte, Alain. "Contribution à l'étude des effets non-linéaires sur la surface libre au-dessus de corps immergés en mouvement instationnaire." Poitiers, 2003. http://www.theses.fr/2003POIT2277.
Full textThe aim of this work is to study the nonlinear effects on unsteady flows above a submerged body, and particularly the shape of the free surface. The originality of our research is that we keep the two free surface conditions in their nonlinear formulation. We use a MEL procedure to solve the problem : at each time step we know the potential on the free surface and its position, we then solve a mixed boundary value problem to find the unknown strength of the Rankine singularities. To update the potential and the elevation of the free surface we use a 4th order Runge-Kutta scheme. In order to avoid singular kernel in the integral calculation we use a desingularized technique for the distribution of the singularities on the free surface. First we apply this method to a source-sink pair moving above the free surface to validate the discretisation and calculation procedures. Then we study the motion of a submerged ellipsoid in infinite and shallow water. The end of this work presents the simulation of a source sink-pair in circular motion and the study of the steady wave train generated by a sine-shaped obstacle on a flat bottom in a uniform stream
Herichon, Eliam. "Modélisation et simulation du déplacement de corps indéformables dans les écoulements diphasiques." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4768.
Full textThis work deals with modelling and the numerical simulation of the effects of a moving rigid body on a multiphase flow. Here more than one object is moving, or an object is moving in a complex geometry domain. So the reference frame linked to the moving body can't be used. The model is build on a multiphase diffuse interface method with mechanical equilibrium. An advection equation is added. It applies on a Level Set function used to track the moving body. Coupling terms are added to the momentum equation and to the total energy equation. These terms are made of a penalization factor and a velocity relaxation factor. This new method allows to simulate complex cases where can interact high velocity objects, shock waves and liquid / gas interfaces
Laizet, Sylvain. "Développement d'un code de calcul combinant des schémas de haute précision avec une méthode de frontières immergées pour la simulation des mouvements tourbillonnaires en aval d'un bord de fuite." Poitiers, 2005. http://www.theses.fr/2005POIT2339.
Full textTo carry out simulations of the vortex dynamics behind a trailing edge remains a difficult task in fluid mechanics. Numerical development has been performed with a computer code which solves the incompressible Navier-Stokes equations with high order compact finite difference schemes on a Cartesian grid. The specificity of this code is that the Poisson equation is solved in the spectral space with the modified spectral formalism. This code can be combined with an immersed boundary method in order to simulate flows with complex geometry. A particular work was made to improve the resolution of the Poisson equation in order to use a stretched mesh and a staggered grid for the pressure. Two mixing layers flows with a blunt and a bevelled trailing edge were performed in order to determinate the influence of the separating plate's shape on the vortex dynamics
Monnier, Antoine. "Calcul par la méthode asymptotique numérique des instabilités en interaction fluide-structure." Thesis, Lorient, 2018. http://www.theses.fr/2018LORIS484/document.
Full textThis thesis is a first contribution to the bifurcation analysis of fluid flows by taking into account fluid-structure interactions. Instability with fluid-structure interactions appears in many areas of everyday life or industry such as, for example: flag floating in the wind, flow within heat exchangers for energy production, flow around submarine cables for the extraction of raw materials or the fixing of off-shore platforms, flow around aeronautical or naval structures. In these situations, complex vortex-induced vibrations of the structures can occur. The aim of the thesis is to propose an algorithm allowing stability analysis of such systems. Thus, an original coupling of a high order perturbation method (Asymptotic Numerical Method - ANM) to a spatial discretization which takes into account fluid-structure interactions is proposed. For this purpose, a purely Eulerian description of the motion is retained. Fluid-structure interaction is described using an immersed boundary method (IBM) with continuous forcing (penalization method) and discrete (Ghost-Cell method) forcing. The presence of bodies within the flow is obtained by means of the Level-Set method. In addition, a time integrator of the governing equations associating ANM, IBM and homotopy technique is proposed. All these algorithms are applied to analyse incompressible flows, at low Reynolds number, of a Newtonian viscous fluid in the presence of rigid solids (fixed or moving). Bifurcation analysis of flows in a channel with sudden expansion / contraction (stationary bifurcation), or around a cylinder (Hopf bifurcation) are carried out. Transient analysis of a flow around a moving rigid cylinder is also proposed. Our results make it possible to evaluate accuracy and performance of the proposed algorithms. Thus, thesis results allow to conclude on the validity of the proposed approach. Finally, this thesis work constitutes a first step towards flow stability analysis in the presence of complex structures, representative of real situations
Pierson, Jean-Lou. "Traversée d’une interface entre deux fluides par une sphère." Phd thesis, Toulouse, INPT, 2015. http://oatao.univ-toulouse.fr/15754/2/Pierson_2_sur_4.pdf.
Full textMoglan, Raluca. "Modeling and numerical simulation of flow and heat phenomena in a telecommunication heat cabinet." Rouen, 2013. http://www.theses.fr/2013ROUES060.
Full textIn this thesis we present a new 3D approach for solving the incompressible Navier-Stokes equations under the Boussinesq approximation. The advantage of the developed numerical code is the use of high order methods for time integration (3rd order Runge-Kutta method) and spatial discretization (6th order finite difference schemes). A study of the order of the numerical method was made, followed by an extensive validation for several cases of natural convection. A finite element simulation code for the same problem was developed using FreeFem++, and was validated with respect to the same cases of natural convection. The case of a telecommunication cabinet was treated by modelling interior obstacles generating heat using an immersed boundary method. This method was validated with respect to the finite element simulation, and many other cases from the literature. We present the results for different 2D and 3D configurations, with obstacles differently placed inside the cavity. Results are also presented for the comparison with experimental measurements in a cabinet with two components dissipating heat. The finite element code is finally extended and tested to simulate phase change materials that could serve as passive cooling devices
Gorsse, Yannick. "Approximation numérique sur maillage cartésien de lois de conservation : écoulements compressibles et élasticité non linéaire." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2012. http://tel.archives-ouvertes.fr/tel-00796722.
Full textConstant, Eddy. "Développement d’un solveur de frontières immergées dans OpenFOAM : vers le contrôle des vibrations induites par vortex dans le sillage d’un cylindre." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0637/document.
Full textThis thesis is related to the simulation and the control of the vortex induced vibrations phenomenon (VIV), which can result from the fluid structure interactions between an unsteady wake and the body, when the shedding frequency in the wake is close to the natural frequency of the body. The control of VIV is a critical issue when optimizing many systems. An Immersed Boundaries Method (IBM) was implemented into the PISO algorithm as a new library of OpenFOAM, in order to perform reliable simulations of incompressible flows around bluff bodies.To compute the divergence of the momentum equation and the interpolation of the fluxes, an hybrid calculation with an analytical resolution of the quantities involving the force term (singular quantities) has been proposed. The mesh convergence of several errors was shown by means of a manufactured solution, allowing to analyze both the errors irelated to the discretization and to the IBM. The new algorithm was subsequently extended to the RANS and DDES formalism proposed in OpenFOAM for the simulation of turbulent flows. A wall law was integrated into theIBM method to model the boundary layers that develop around the bodies at large Reynolds numbers. Various 2D and 3D well-documented test cases of academic flows around fixed or moving solid bodies (cylinderand sphere) have been simulated and carefully validated against existing data from the literature in a large range of Reynolds numbers. With the objective of developing optimal control laws for VIV, based on the linear instability mechanisms of the coupled system within the framework of the control theory, a new adjoint solver was also developed and validated in OpenFOAM
Cherfils, Jean-Marc. "Développements et applications de la méthode SPH aux écoulements visqueux à surface libre." Phd thesis, Université du Havre, 2011. http://tel.archives-ouvertes.fr/tel-00607041.
Full textBadirou, Naïm. "Etude de l'hydrodynamique d'un jet immergé dans un lit de particules." Compiègne, 1992. http://www.theses.fr/1992COMP0467.
Full textThe hydrodynamic behaviour of a vertically upflowing central gas jet immerged in bed of particles aerated or fluidized, is studied. Experiments have been carried out in a 0,32m. I. D. Column containing polystyrene particles with a sauter mean diameter of 1. 436 mm. The jet issuing from a 20. 3 mm I. D. Injector protruding within the bed was characterized by means of the pressure and gas velocity measured using a Pitot probe, while it’s effect on the bed was observed on the wall pressure profiles. The bed aeration gas superficial velocity and jet velocity have been varied as well as, marginally, the bed height. A complementary theoretical approach allowed the determination of the axial trends of variation of characteristic jet parameters which are confirmed by experimental results. A mechanism has been suggested which describes the axial decay of the immerged jet
Badirou, Naïm. "Etude de l'hydrodynamique d'un jet immergé dans un lit de particules." Compiègne, 1992. http://www.theses.fr/1992COMPD467.
Full textThe hydrodynamic behaviour of a vertically upflowing central gas jet immerged in bed of particles aerated or fluidized, is studied. Experiments have been carried out in a 0,32m. I. D. Column containing polystyrene particles with a sauter mean diameter of 1. 436 mm. The jet issuing from a 20. 3 mm I. D. Injector protruding within the bed was characterized by means of the pressure and gas velocity measured using a Pitot probe, while it’s effect on the bed was observed on the wall pressure profiles. The bed aeration gas superficial velocity and jet velocity have been varied as well as, marginally, the bed height. A complementary theoretical approach allowed the determination of the axial trends of variation of characteristic jet parameters which are confirmed by experimental results. A mechanism has been suggested which describes the axial decay of the immerged jet
Douteau, Louis. "CFD simulation with anisotropic mesh adaptation : application to floating offshore wind turbines." Thesis, Ecole centrale de Nantes, 2020. http://www.theses.fr/2020ECDN0003.
Full textThe simulation of Floating Offshore Wind Turbines (FOWTs) is a tool to help this technology reach an industrial scale. Nowadays, low-precision numerical methods are used for the dimensioning of the structures, as they involve a reduced computational effort. This PhD thesis focused on the development of highly-accurate numerical methods, with a potential to provide a thin description of the flows and efforts around FOWTs. The simulations presented in this thesis have been realized on the highly-parallelized software platform ICI-tech. A resolution of the Navier- Stokes equations in a Variational MultiScale formulation is performed using Stabilized Finite Elements. The representation of the different phases in the computational domain is achieved using immersed boundary methods. Several numerical tools have been implemented in ICItech towards an application to the simulation of FOWTs. A fluid-structure interaction paradigm has been set up, and a numerical wave tank has been defined. Verification and validation studies have been realized to assess the solver results for environmental conditions representative of those observed for operating FOWT. The accuracy achieved for both the aerodynamics at high Reynolds numbers and the propagation of wave fields has been disappointing. The influence of the anisotropic meshing on the results presented has been quantified. Several options aiming at increasing the accuracy of the simulations have been discussed
Sigüenza, Julien. "Fluid-structure interaction problems involving deformable membranes : application to blood flows at macroscopic and microscopic scales." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT301/document.
Full textThis thesis deals with several scientific aspects inherent to the numerical simulation of fluid-structure interaction problems involving thin deformable membranes. Two specific cases relevant to cardiovascular biomechanics are considered: the interaction of the blood flow with the aortic valve (which occurs at the macroscopic scale), and the interaction of the red blood cells membrane with its inner and outer fluids (which occurs at the microscopic scale). In both cases, the fluid-structure interaction coupling is handled using an immersed boundary formalism, representing the membrane by a Lagrangian mesh moving through an Eulerian fluid mesh.When dealing with red blood cells dynamics, the membrane is considered to be an infinitely thin and massless structure. The first question which is addressed in the present thesis work is how to model the complex microstructure of the red blood cells membrane. A possible way to characterize a suitable membrane model is to simulate the optical tweezers experiment, which is a well-controlled experimental configuration enabling to study the individual mechanics of an isolated red blood cell in a large range of deformation. Some relevant membrane models are identified, but the deformation characteristics measured during the optical tweezers experiment reveal to be not selective enough to be used in a validation context. Additional deformation measurements are proposed, which could allow a better characterization of the red blood cell membrane mechanics.Regarding the macroscopic configurations, an innovative numerical method is proposed to handle numerical simulations of 3D continuum membranes, still within the immersed boundary formalism. In this method, called immersed thick boundary method, the membrane has a finite thickness. The accuracy and robustness of the method are demonstrated through a variety of well-chosen test cases. Then, the proposed method is applied to a realistic fluid-structure interaction problem, namely the interaction of a pulsatile (blood) flow with a biomimetic aortic valve. A combined experimental and numerical study is led, showing that the method is able to capture the global dynamics of the valve, as well as the main features of the flow downstream of the valve.All the developments were performed within the YALES2BIO solver (http://www.math.univ-montp2.fr/~yales2bio/) developed at IMAG, which is thus available for further improvements, validations and applicative studies
Tran, Phu Ho. "Analyse numérique des écoulements internes au sein des moteurs à propergol solide. Vers une prise en compte des mécanismes instationnaires couplés." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2013. http://www.theses.fr/2013ESMA0030/document.
Full textCharacterization and simulation of internaI flow within the solid rocket motors, considering the physicalmechanisms strongly coupled, are the main focus of this thesis objective. In this context, the conjunctionbetween fluid/regression surface/fluid coupling structure imposed deploy c1ean during the development ofnumerical modeling strategy. Indeed, the model incorporates treatment coupled with an immersed boundarytracking moving boundary in order to realize the tremendous internai geometric variation experienced during ashot. Fluid side, an automatic mesh is required and the management of the latter is based on a recursivehierarchical structure development with type 2" tree. Particular attention was paid to the solver itself with anexplicit approach to time and a numerical scheme based on the approach of Roe with flow limiter in the secondorder. Tests cases were conducted to validate the sol ver and different boundary conditions introduced, inc1udingspecific conditions developed for the purpose of simulation. The first results emphasize the interest of theproposed and unless our error model, for the first time, the analysis of the sources responsible vortex instabilitiesin these engines has been studied by incorporating the effects of continuous change in geometry. Finally, thefeasibility of a strong interaction between fluid and solid solver was conducted on a simplified model of a multiengine.AlI the developments allows access to complex mechanisms coupled and strong interactions in solidrocket motors and off ers new insights into the characterization of strongly coupled mechanisms
Benguigui, William. "Modélisation de la réponse dynamique d’une paroi solide mise en vibration par un écoulement fluide diphasique." Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLY014.
Full textIn nuclear power plants, steam generator tubes vibrate because of steam/water cross-flows. In order to understant this phenomenon, reduced-scale experiments are performed. Numerical simulations have shown their ability to accurately reproduce the vibration induced by a single phase flow in a tube bundle. The aim of the present work is to do the same with two-phase flow and to characterize the effect of the mixture physical properties on vibration.To do so, a CFD code based on a two-fluid approach is used. A "discrete forcing" method is implemented in order to allow solid body motion in a two-phase flow. The validation is performed with simple and industrial cases using experimental and theoretical results.Using an existing implicit algorithm, a fluid-structure coupling based on the developed interface tracking method is implemented. Validated for single and two-phase flows, it is now possible to have solid motion induced by fluid forces.The different numerical models dedicated to two-phase flows are then evaluated on a freon/freon flow across an inclined tube bundle. The use of a multi-regime model is required. In order to investigate the role of the different physical properties on the vibration, three simple studies are performed.Finally, the industrial application, a freon/water flow across a square pitch tube bundle, is performed. First, it is compared to a steam/water flow in order to characterize the discrepancies when we are using a modeling mixture. Then, the vibration induced by single- and two-phase flows is reproduced by the developed method on feasibility test cases
Kiyoshi, Shimote Wilson. "Modélisation des phénomènes d'ablation de l'insert d'une tuyère de moteur-fusée à propergol solide. Approche expérimentale et numérique." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2016. http://www.theses.fr/2016ESMA0028/document.
Full textThe main objective of this study is understand the ablation mechanisms in the presence of a critical environment in pressure and temperature within a solid propellant rocket motor. The well-known parameters, aluminum percentage in the flow, adiabatic flame temperature and the consequent heat flux in front of the geometry of the insert and its thermochemical properties are studied from anumerical and experimental strategy. The ablation phenomenon, which occurs at the nozzle insert during the operation of the solid propellant rocket motor, is th us studied and results of tests of the small and full-scale motors are presented as well as numerically simulated. Indeed, tests carried-out provide results on the conditions of the material of the insert before and after firing tests, do not allow is to provide a complete analysis of the development of the mechanisms involved during the running time of the engines. To introduce these rather complex physical phenomena a strategy of progressive development is followed. Initially, a 1D model treated the heat transfer equations using a multi-block numerical discretization technique. From the 1D method, simple expressions to represent the evolution of the ablation and pyrolysis fronts are defined. These expressions are then used directly on the treatment of axisymmetric problems and confronted with simulations of the scale motor. Finally, the immersed boundary method is applied to tackle coupling between flow and heat transfer on the insert, highlighting the phenomenon of ablation. The numerical simulations reproduce the experimental results and show a robust numerical methodology, corresponding to expectations in what concerns the evaluation of the ablation phenomenon within a solid propellant rocket motor nozzle
Benguigui, William. "Modélisation de la réponse dynamique d’une paroi solide mise en vibration par un écoulement fluide diphasique." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLY014/document.
Full textIn nuclear power plants, steam generator tubes vibrate because of steam/water cross-flows. In order to understant this phenomenon, reduced-scale experiments are performed. Numerical simulations have shown their ability to accurately reproduce the vibration induced by a single phase flow in a tube bundle. The aim of the present work is to do the same with two-phase flow and to characterize the effect of the mixture physical properties on vibration.To do so, a CFD code based on a two-fluid approach is used. A "discrete forcing" method is implemented in order to allow solid body motion in a two-phase flow. The validation is performed with simple and industrial cases using experimental and theoretical results.Using an existing implicit algorithm, a fluid-structure coupling based on the developed interface tracking method is implemented. Validated for single and two-phase flows, it is now possible to have solid motion induced by fluid forces.The different numerical models dedicated to two-phase flows are then evaluated on a freon/freon flow across an inclined tube bundle. The use of a multi-regime model is required. In order to investigate the role of the different physical properties on the vibration, three simple studies are performed.Finally, the industrial application, a freon/water flow across a square pitch tube bundle, is performed. First, it is compared to a steam/water flow in order to characterize the discrepancies when we are using a modeling mixture. Then, the vibration induced by single- and two-phase flows is reproduced by the developed method on feasibility test cases
Feuillet, Rémi. "Embedded and high-order meshes : two alternatives to linear body-fitted meshes." Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLY010.
Full textThe numerical simulation of complex physical phenomenons usually requires a mesh. In Computational Fluid Dynamics, it consists in representing an object inside a huge control volume. This object is then the subject of some physical study. In general, this object and its bounding box are represented by linear surface meshes and the intermediary zone is filled by a volume mesh. The aim of this thesis is to have a look on two different approaches for representing the object. The first approach called embedded method consist in integrally meshing the bounding box volume without explicitly meshing the object in it. In this case, the presence of the object is implicitly simulated by the CFD solver. The coupling of this method with linear mesh adaptation is in particular discussed.The second approach called high-order method consist on the contrary by increasing the polynomial order of the surface mesh of the object. The first step is therefore to generate a suitable high-order mesh and then to propagate the high-order information in the neighboring volume if necessary. In this context, it is mandatory to make sure that such modifications are valid and then the extension of classic mesh modification techniques has to be considered
Etcheverlepo, Adrien. "Développement de méthodes de domaines fictifs au second ordre." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00821897.
Full textLepilliez, Mathieu. "Simulation numérique des ballotements d'ergols dans les réservoirs de satellites en microgravité et à faible nombre de Bond." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30248/document.
Full textThe core study of this PhD thesis is the sloshing in satellite tanks, during low acceleration maneuvers. Indeed the helium bubble used to pressurize the tank moves, thus generating perturbations on the global stability of the satellite. In order to understand this problem, numerical schemes have been developed, such as an immersed boundary method to model the tank wall. The numerical tool uses a Level-Set function coupled to a Ghost Fluid Method to track the interface and to account for the jump conditions.A BlackBox Multigrid Solver have been developed to improve computational cost. Finally a study is presented in the last chapter to predict the behaviour of the fluids with a varying rotational speed generated during some classical maneuvers
Gibaud, Etienne. "Numerical simulation of red blood cells flowing in a blood analyzer." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS135/document.
Full textThe aim of this thesis is to improve the understanding of the phenomena involved in the measurement performed in a blood analyzer, namely the counting and sizing of red blood cells based on the Coulter effect. Numerical simulations are performed to predict the dynamics of red blood cells in the measurement regions, and to reproduce the associated electrical measurement used to count and size the cells. These numerical simulations are performed in industrial configurations using a numerical tool developed at IMAG, the YALES2BIO solver. Using the Front-Tracking Immersed Boundary Method, a deformable particle model for the red blood cell is introduced which takes the viscosity contrast as well as the mechanical effects of the curvature and elasticity on the membrane into account. The solver is validated against several test cases spreading over a large range of regimes and physical effects.The velocity field in the blood analyzer geometry is found to consist of an intense axial velocity gradient in the direction of the flow, resulting in a extensional flow at the micro-orifice, where the measurement is performed. The dynamics of the red blood cells is studied with numerical simulations with different initial conditions, such as its position or orientation. They are found to reorient along the main axis of the blood analyzer in all cases. In order to understand the phenomenon, analytical models are adapted to the case of extensional flows and are found to reproduce the observed trends.This thesis also presents the reproduction of the electrical measurement used to count red blood cells and measure their volume distribution. Numerous dynamics simulations are performed and used to generate the electrical pulse corresponding to the passage of a red blood cell inside the micro-orifice. The resulting electrical pulse amplitudes are used to characterize the electrical response depending on the initial parameters of the simulation by means of a statistical approach. A Monte-Carlo algorithm helps quantifying the errors on the measurement of cell depending on its orientation and position inside the micro-orifice. This allows the generation of a measured volume distribution of a well defined red blood cell population and the characterization of the associated measurement errors
Savel, Marc. "Analyse et contrôle de modèles d'écoulements fluides." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30068/document.
Full textIn this work we study the well-posedness, the control and the stabilization of some fluid flow models. First, we focus on the 1D compressible Navier-Stokes equations. Under a geometric assumption on the flow of the target velocity corresponding to the possibility of emptying the domain under the action of the flow, we prove the local exact boundary controllability to trajectory. The main novelty of this work is that the target trajectory can now depend on time and space. In the second part, we study a model of an immersed boundary in an incompressible viscous fluid in 2D and 3D. Contrary to Peskin's Immersed Boundary Method where the boundary force depends on the elastic properties of the structure and its geometry, we consider that the boundary force is a given data. Two results are established: a local in time existence of strong solutions and an existence of strong solutions for all time with small data. This work is a first step on the mathematical analysis of Peskin's Immersed Boundary Method. Finally, we are interested in the stabilization of the interface between two fluid layers coupled through surface tension effect in 2D and 3D. We prove that the system is exponentially stabilizable at any rate around a flat configuration with fluids at rest using a control of finite dimension acting locally at one fluid boundary. This work is a first step in the study of the stabilization of Rayleigh-Taylor instabilities
Feuillet, Rémi. "Embedded and high-order meshes : two alternatives to linear body-fitted meshes." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLY010/document.
Full textThe numerical simulation of complex physical phenomenons usually requires a mesh. In Computational Fluid Dynamics, it consists in representing an object inside a huge control volume. This object is then the subject of some physical study. In general, this object and its bounding box are represented by linear surface meshes and the intermediary zone is filled by a volume mesh. The aim of this thesis is to have a look on two different approaches for representing the object. The first approach called embedded method consist in integrally meshing the bounding box volume without explicitly meshing the object in it. In this case, the presence of the object is implicitly simulated by the CFD solver. The coupling of this method with linear mesh adaptation is in particular discussed.The second approach called high-order method consist on the contrary by increasing the polynomial order of the surface mesh of the object. The first step is therefore to generate a suitable high-order mesh and then to propagate the high-order information in the neighboring volume if necessary. In this context, it is mandatory to make sure that such modifications are valid and then the extension of classic mesh modification techniques has to be considered
Brauer, Alexia de. "Simulation de modèles multi-matériaux sur maillage cartésien." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0152/document.
Full textWe are interested in the simulation of compressible multimaterial flows and especially influid/structure interactions in transient states and fast dynamics. We aim to describe the evolution of materials of very different constitutive laws with an unified model. The materials are only differentiated by their own constitutive laws and are separated by a sharp interface. They can be as well fluids or elastic solids and under go large de formations. The model is written in the Eulerian framework. The numerical scheme is solved on Cartesian grids for simulations in three dimensions. An extension of the elastic model is added to describe the plastic deformations of solids
Ghaddab, Driss. "Une Méthode de frontière immergée pour la simulation d'écoulements autour d'objets de forme arbitraire." Université Louis Pasteur (Strasbourg) (1971-2008), 2001. http://www.theses.fr/2001STR13208.
Full textAn immersed boundary method for the simulation of uid ow around arbitrarily shaped objects is presented. It is based on a second order _nite di_erence discretization in a regular cylindrical mesh. Temporal advancement is achieved with a fractional step method using a Runge-Kutta scheme for the non-linear terms and a Crank-Nicholson scheme for the linear terms. Object's geometry is described with a level set method. Near the uid-object interface, linear and non-linear terms are interpolated with second order precision to match wall boundary conditions without a_ecting the stability criteria. The arising Stokes problem is resolved using Uzawa algorithm to ensure second order temporal precision for the pressure. Velocity divergence is calculated with a nite-volume method to ensure mass conservation even near the object wall. The weak formulation of the problem linking the pressure to the divergence makes the Uzawa operator symmetric. The Stokes problem is then numerically solved using a preconditioned conjugate gradient method where the preconditioner is the inverse of the Laplacian which allows an e_cient resolution of the Navier-Stokes equations. The force and the momentum exerted by the uid on the body are computed using a control volume approach. The developed method is compared to a spectral-spectral elements code of sixth order precision previously validated in various works. The case of a sphere in a uniform ow is tested at di_erent ow regimes: stationary axisymmetric regime, stationary non axisymmetric regime and instationary regime. The method is qualitatively as well as quantitatively in good agreement with the results of the higher order spectral code
Wu, Jianzhao. "Numerical simulation of wind erosion : application to dune migration." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEC016/document.
Full textWind erosion is a complex dynamic process consisting in an atmospheric boundary layer, aeolian particle transport, sand dune deformation and their intricate interactions. This thesis undertakes this problems by conducting three-dimensional numerical simulations of solid particle transport over a fixed or deformable sand dune. Turbulent flow is calculated by a developed numerical solver (Large-eddy simulation (LES) coupled with immersed boundary method (IBM)). Solid particle trajectories are tracked by a Lagrangian approach. Particle entrainment, particle-surface interactions and particle deposition are taken into account by physical comprehensive wind erosion models. Firstly, a new numerical solver has been developed to simulate turbulent flows over moving boundaries by introducing the IBM into LES. Two canonical simulation cases of a turbulent boundary layer flow over a Gaussian dune and over a sinusoidal dune are performed to examine the accuracy of the developed solver. Recirculation region characteristics, mean streamwise velocity profiles, Reynolds stress profiles as well as the friction velocity over the dune are presented. In the Gaussian case, a good agreement between experimental data and simulated results demonstrates the numerical ability of the improved solver. In the sinusoidal case, the developed solver with wall modeling over the immersed boundary shows a better performance than the pure one, when a relatively coarse grid is used. Secondly, physical comprehensive modeling of wind erosion is described in detail, based on the forces acting an individual particle. An instantaneous entrainment model for both lifting and rolling-sliding modes is proposed to initialize particle incipient motions. Lagrangian governing equations of aeolian particle motion are presented and used to simulate the trajectories of solid particles. Particularly, Lagrangian governing equations of bed-load particle motion are originally deduced and applied to model the particle rolling-sliding movement on the bed surface. In addition, particle-surface interactions are taken into account by probabilistic rebound/splash models. Thirdly, numerical simulations of particle transport over a fixed Gaussian dune and over a deformable sinusoidal dune are carried out. In the fixed Gaussian case, an overall good agreement on the particle concentration profiles over the dune between the simulated results and the experimental data of Simoens et al. (2015) preliminarily validates the ability and accuracy of the developed numerical solver coupled with physical comprehensive wind erosion models. In the deformable sinusoidal case, the simulated dune shapes are compared with the experimental ones of Ferreira and Fino (2012). A good agreement between them is observed at t = 2.0 min and an obvious underestimate of the dune shape is shown at t = 4.0 min and t = 6.0 min. By analyzing the simulated results, it is shown that the recirculation zone behind the dune is gradually reduced as the dune deforms and that windward erosion and lee side deposition is observed. It is also shown after testing that the splash entrainment is important for the lee side erosion. Moreover, a preliminary attempt is presented to apply an improved splash model with accounting for the bed slope effect to the simulation of sand dune deformation. A better performance on the simulated dune shape is achieved at t = 4.0 min in comparison with the experimental one
Coundoul, Falilou. "Étude et modélisation des transferts verticaux dans l'interaction biofilm de rivière/couche limite turbulente." Phd thesis, Toulouse, INPT, 2012. http://oatao.univ-toulouse.fr/9268/1/coundoul_partie_1_sur_3.pdf.
Full textChateau, Sylvain. "Simulations numériques du transport et du mélange de mucus bronchique par battement ciliaire métachronal." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0637/document.
Full textThe mucociliary clearance process is a physico-chemical process which aims is to transport and eliminate bronchial mucus. To do so, billions of micro-sized appendages, called cilia, cover the respiratory epithelium. These cilia propel the mucus by performing a periodical pattern composed of a stroke phase where their tips can enter the mucus layer, and a recovery phase where the cilia are completely immersed in the periciliary liquid layer. A failure of this process may induce numerous health problems. It has been experimentally observed that cilia do not beat randomly, but instead adapt their beatings accordingly to their neighbours, forming metachronal waves. However, in vivo observations are extremely difficult to perfom, and the properties of these waves remain poorly understood. In this thesis, we use a Lattice Boltzmann - Immersed Boundary solver to reproduce a bronchial epithelium and study the emergence, as well as the transport and mixing capacities, of these waves
Boukharfane, Radouan. "Contribution à la simulation numérique d'écoulements turbulents compressibles canoniques." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2018. http://www.theses.fr/2018ESMA0003/document.
Full textThe study of compressible flows, especially supersonic, passing through the combustion chambers of ramjet and scramjet engines, requires the consideration of various complex devices for improving the combustion processand in particular its stabilization. Indeed, the knowledge of the interactions between turbulence, compressibility effects, and fluid-solid interactions in this type of flow still remains imperfect. This thesis is dedicated to improving our understanding of this type of flow in a number of canonical flow configurations through direct numerical simulation. All the simulations that have been conducted are based on the use of a high-precision numerical simulations tool, called CREAMS (Compressible REActive Multi-species Solver), developed at the Pprime Institute. This computational solver makes use of high precision numerical schemes: a 3rd order Runge–Kutta scheme for time integration combined with a 7th order WENO and 8th order centered scheme for spatial discretization. In a first step of this study, we present a new immersed boundary method for calculating the flow of compressible viscous fluids in irregular geometries. The method developed in this thesis is based on the combination of the "Directforcing" approach with the "Ghost-Point-Forcing" strategy. The originality of this method lies in its ability to simulate subsonic and supersonic flows at different Reynolds numbers. The accuracy of this method is found to be slightly larger than second order and its robustness is investigated by considering a large set of benchmarks. Ina second step, an idealized canonical configuration of shock-turbulence interaction is studied to highlight the fundamental physical mechanisms that are characteristic of the interaction between an isotropic homogeneous turbulence and a normal shock wave. This analysis is complemented by a scalar shock-mixing interaction study to investigate the impact of normal shock on the mixing process properties. Through this work, a database is made available. It can be used to assess and improve turbulence models. Finally, we investigated the effect of molecular transport properties, more specifically the volume viscosity, on the development of a mixture layer impacted by an oblique shock. The simulations performed in this configuration allow to scrutinize the validity of the Stokes hypothesis that is based on the neglection of the volume viscosity
Fry, Benjamin. "Modélisation multi-échelle d'un lit granulaire entraîné par un écoulement cisaillé." Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0132.
Full textIn this work, we consider the steady transport of a granular medium by a laminar Couette flow for a fixed density ratio of 2.5 and a range of particle Reynolds number, Re p [0.1, 10], and Shields number [0.1, 0.7]. All scales of this two-phase flow are captured (except for the lubrication effects). By solving the Navier-Stokes equations, taking into account the presence of particles using an Immersed Boundary Method (IBM) coupled to a granular solver (Discrete Elements Method - DEM) which solves the Newton equations for each particle, in particular grain-grain interactions (resolution at the microscopic scale). Up-scaling is then performed to describe the flow via equivalent continuous quantities (description at the mesoscopic scale). IBM-DEM simulations allow to quantify all the terms of the so-called mesoscopic model and to characterize the rheology of each phase and that of the equivalent mixture. A second up-scaling is finally performed to reduce the granular flow to a singularity, which corresponds to a boundary condition from the fluid view point. The boundary condition is of Navier’s type. The IBM-DEM simulations suggest that the corresponding "equivalent" slip-lenght scales as
Eugênio, Ribeiro Fábio Henrique. "Numerical Simulation of Turbulent Combustion in Situations Relevant to Scramjet Engine Propulsion." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2019. http://www.theses.fr/2019ESMA0001/document.
Full textScramjet engines are high-speed air breathing propulsion systems that do not require rotating elements to compress the air inlet stream. The flow is compressed dynamically through a supersonic intake system integrated in the aircraft’s forebody, reaching the required pressure and temperature for combustion to proceed within the combustor in this kind of engine. The combustion chamber is crossed by a supersonic flow, which limits severely the time available to inject fuel, mix it with oxidizer, ignite the resulting mixture and reach complete combustion. Cavities can be used to increase the residence time without excessive total pressure loss and are therefore used as flame holders in supersonic combustors.This thesis focuses in studying the flame stabilization mechanism and turbulence-chemistry interactions for a jet in a supersonic crossflow (JISCF) of vitiated air with hydrogen injection upstream of a wall-mounted squared cavity. The corresponding reactive high-speed flow conditions are scrutinized on the basis of numerical simulations of a scramjet model representative of experiments previously conducted at the University of Michigan. The computations are performed with the high-performance computational solver CREAMS, developed to perform the numerical simulation of compressible reactive multi-component flows on massively-parallel architectures. The solver makes use of high-order precision numerical schemes applied on structured meshes and the combustion chamber geometry is modeled by using the Immersed Boundary Method (IBM) algorithm. The present set of computations is conducted within the LES framework and the subgrid viscosity is treated with the wall-adapting local eddy (WALE)model. Two distinct temperatures are considered in the inlet vitiated airstream to study combustion stabilization. Special emphasis is placed on the analysis of the reactive flow topology and structure,and the combustion regimes are analyzed on the basis of standard turbulent combustion diagrams
Nikfarjam, Farhad. "Extension de la méthode LS-STAG de type frontière immergée/cut-cell aux géométries 3D extrudées : applications aux écoulements newtoniens et non newtoniens." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0023/document.
Full textThe LS-STAG method is an immersed boundary/cut-cell method for viscous incompressible flows based on the staggered MAC arrangement for Cartesian grids where the irregular boundary is sharply represented by its level-set function. This approach results in a significant gain in computer resources compared to commercial body-fitted CFD codes. The 2D version of LS-STAG method is now well-established and this manuscript presents its extension to 3D geometries with translational symmetry in the z direction (3D extruded configurations). This intermediate step will be regarded as the milestone for the full 3D solver, since both discretization and implementation issues on distributed memory machines are tackled at this stage of development. The LS-STAG method is then applied to Newtonian and non-Newtonian flows in 3D extruded geometries (axisymmetric pipe, circular cylinder, duct with an abrupt expansion, etc.) for which benchmark results and experimental data are available. The purpose of these investigations is to evaluate the accuracy of LS-STAG method, to assess the versatility of method for flow applications at various regimes (Newtonian and shear-thinning fluids, steady and unsteady laminar to turbulent flows, granular flows) and to compare its performance with well-established numerical methods (body-fitted and immersed boundary methods)
Georges-Picot, Alexandre. "Développement de modèles physiques et numériques pour la simulation aux grandes échelles des écoulements dans les tuyères supersoniques." Thesis, Rouen, INSA, 2014. http://www.theses.fr/2014ISAM0024.
Full textThis work, initiated by the CNES (Centre National d’Etudes Spatiales) in the ATAC research program (Aérodynamique Tuyères et Arrières-Corps), is devoted to the development and the validation of numerical and physical models for the prediction of side-loads in rocket engines. Indeed, propulsion systems involve complex physical phenomena : turbulent mixing, high compressibility (interaction shock / turbulence, coupling modes vorticity / entropy / acoustic), coherent structure, three-dimensional vortex organizations, massive detachment and large scale instabilities. The analysis of these phenomena requires the uses of advanced numerical simulations. To deal with the high cost of large-eddy simulations boundary layers, a new wall model, based on renormalization laws and a database, was developed. This model allows to take into account the dynamics of the flow while significantly reducing the number of calculation points and the time step required for LES simulations. Results show many complex interactions with in the flow. In particular, the upstream / downstream interactions (supersonic / subsonic), strongly influence the separation and the shock structure, causing the occurrence of energy peaks associated with acoustic disturbances and leading to the appearance of convective instability, coupled with global asymmetric modes. These self-sustained phenomena are synonymous of side-loads and are representative of laboratory experiments and rocket engine test benches. In terms of optimization of massively parallel computing, a new method, called "Drop-Procs", was developed as part of the immersed boundaries. This method is suitable for compute-intensive architectures Tier-0 and allows a significant reduction in CPU time (Central Processing Unit) consumption, up to 50%, making this type of simulation accessible for industrials